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Abstract
In this paper, a modified accelerated Bregman method (MABM) for solving the
regularized basis pursuit problem is considered and analyzed in detail. This idea is
based on the fact that the linearized Bregman method (LBM) proposed by Osher et al.
(Multiscale Model. Simul. 4(2):460-489, 2005) is equivalent to a gradient descent
method applied to a certain dual formulation which converges to the solution of the
regularized basis pursuit problem. The proposed method is based on an
extrapolation technique which is used in accelerated proximal gradient methods
presented by Nesterov (Dokl. Akad. Nauk SSSR 269:543-547, 1983). It is verified that
the modified accelerated Bregman method (MABM) is equivalent to the
corresponding accelerated augmented Lagrangian method (AALM). The theoretical
results confirm that the method has a rapid convergence rate of O(1/(k + 1)2).
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1 Introduction
Compressed sensing, an interesting research field involving how to obtain information,
acts as a crucial role in signal processing, image restoration, etc. The origin of its name is
based on the idea of encoding a large sparse signal exploiting a relatively small number of
linear measurements, then decoding the signal either through minimizing the -norm or
utilizing a combinational algorithm, a greedy algorithm, etc. It resulted from elementary
analysis and approximation theory by Kashin [], but was brought into the forefront by the
work of Candés et al. [–] andDonoho []who constructed specificmethods and showed
their application prospects. The concrete model considered in compressed sensing is the
so-called basis pursuit problem [, ]

min
x∈�n

‖x‖ subject to Ax = b, (.)

whereA ∈ �m×n, b ∈ �m. It can be deemed a classical transform in the compressed sensing
field into the following NP-hard discrete optimization problem:

min
x∈�n

‖x‖ subject to Ax = b, (.)

where A ∈ �m×n, b ∈ �m, ‖ · ‖ denotes the number of nonzero elements.
In many practical circumstances, the data or signals are frequently represented by a few

matrices, which, in fact, is convenient for data processing and analysis. However, the data
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are often given with damage, loss or noise pollution, etc. In this case, how to restore the
original data is among the practical difficulties faced when solving the matrix reconstruc-
tion problem. Being similar to handling the original signal (vector form) in the compressed
sensing field, matrix remodeling refers to an original compressible or sparse representa-
tion matrix which can be exactly or approximately reconstructed with a proper model.
The matrix reconstruction problem can be classified with matrix completion (MC) [, ]
andmatrix recovery (MR) [, ], which is met in various areas, e.g., a famous application
is the Netflix system [] in matrix completion; while the matrix recovery problem orig-
inates from face image processing, background modeling and so forth, it can be applied
to image alignment as by Peng et al. []. Generally speaking, the matrix reconstruction
problem is written as

min rank(X) subject to X ∈ C, (.)

where X ∈ �m×n and C is a convex set. Normally, the following affine constrained mini-
mization problem can be considered:

min rank(X) subject to A(X) = b, (.)

where the linear map A :�m×n → �d , b ∈ �d is a given vector.
Themodel emerges inmany fields, such as determining a low-order controller for a plant

[] and a minimum order linear system realization [], and solving low-dimensional
Euclidean embedding problems []. A natural generalization in the sense of compressed
sensing, (.) can be formulated as the nuclear norm minimization problem

min‖X‖∗ subject to A(X) = b, (.)

where ‖ · ‖∗ denotes the sum of singular values of the corresponding matrix. The matrix
completion problem

min rank(X) subject to Xi,j =Mi,j, (i, j) ∈ �, (.)

where X ∈ �m×n, M ∈ �m×n, � is a certain index set, is considered as a special case of
(.). The idea is inspired by the method presented in [, ] etc. Now, we consider the
so-called regularized basis pursuit problem

min
x∈�n

‖x‖ + μ


‖x‖ subject to Ax = b. (.)

Adding the penalized term of the constraint condition to the objection function of the
regularized basis pursuit problem, we obtain

min
x∈�n

‖x‖ + μ


‖x‖ +

λ


‖Ax – b‖. (.)

Particularly in [], putting in the term in (.) yields the tractable object function, which
is a strictly convex function. Thus, the linearly constrained basis pursuit problemhas a sole
solution and its dual problem is smooth. When μ is sufficiently small, the solution to (.)
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is also the solution of (.). This exact regularization property of (.) was studied in [,
]. Problem (.) has a -norm in the regularizer term, thus it is considered less sensitive
to noise than the basis pursuit problem (.).
To solve (.), a linearized Bregman iteration method was presented in [], which was

motivated by []. The idea of the linearized Bregman method is to combine a fixed point
iteration with the Bregman method in [, ], but the linearized Bregman method is a
bit slow in the convergence result. Hence, many accelerated schemes have been brought
up in various theses. For example, in [] the kicking technique was introduced. Yin []
verified that the linearized Bregman method is equivalent to a gradient descent method
applied to the Lagrangian dual problem of (.). They improved the linearized Bregman
method, utilizing the Barzilai-Borwein line of searching [], nonlinear conjugate gradi-
ent methods, and the method of limited memory BFGS []. Huang et al. [] proposed
an accelerated linearized Bregman method which is based on the fact that the linearized
Bregman method is equivalent to the gradient descent method applied to a Lagrangian
dual of problem (.) and the extrapolation technique, which is adopted in the acceler-
ated proximal gradient methods [] proposed by Nesterov et al. To solve problem (.),
Goldstein et al. [] used an alternating split technique and its Lagrange dual problem.
Based on these studies, we extend the accelerated Bregman method to solve (.) in

which the object function might be not differentiable but have the ‘good’ performance
(convex and continuous).We put forward a new improvement formula based on the accel-
erated Bregmanmethod. It can be proved to have the property that themodified Bregman
method is equivalent to the corresponding accelerated augmented Lagrangian method,
and the latter has a rapid convergence rate which can be deemed to be an improvement
of [].
The rest of this article is organized as follows. In Section , we sketch the original

Bregman method and the linearized Bregman method which are useful for the subse-
quent analysis. In Section , we introduce the accelerated augmented Lagrangian method
(AALM), and we present our modified accelerated Bregman method (MABM). Section 
is devoted to the convergence of the regularized basis pursuit problem and here we ana-
lyze the error bound of the MABM in detail. In Section , we give some conclusions and
discuss the research plans for our future work.

2 The original Bregmanmethod and its linearized form
The Bregman method was introduced into image processing by Osher et al. in [] for
solving the total-variation (TV)-based image restoration problems. Let ϕ(·) be a Bregman
function, the Bregman distance [] of the point u to the point v is defined as

Dp
ϕ(u, v) := ϕ(u) – ϕ(v) – 〈p,u – v〉, (.)

where p ∈ ∂ϕ(v), the subdifferential of ϕ at v. Note that updating the formula for (.), this
Bregman iterative regularization procedure recursively solves

xk+ := argmin
x

Dpk
ϕ

(
x,xk

)
+

λ


‖Ax – b‖ (.)

for k = , , . . . , starting with x = , p = . Since (.) is a convex programming problem,
the optimality conditions can be given by

 ∈ ∂ϕ
(
xk+

)
– pk – λAT(

b –Axk+
)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/130
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from which we obtain the updated formula

pk+ := pk + λAT(
b –Axk+

)
. (.)

Hence, the Bregman iterative scheme is given by{
xk+ := argminx D

pk
ϕ (x,xk) + λ

‖Ax – b‖,
pk+ := pk + λAT (b –Axk+).

(.)

By the following lemma, we get the equivalent form of (.){
xk+ := argminx ϕ(x) + λ

‖Ax – bk‖,
bk+ := bk + (b –Axk+),

(.)

starting with x = , b = b.
For the sake of the requirement for the whole theoretical analysis, in the following, we

propose some significant equivalence results, and we give the detailed proofs.

Lemma . The Bregman iterative scheme, which is given by (.), will obtain the same
optimum point in the first term as (.) if

pk = λAT(
bk – b

)
(.)

holds, where λ is a certain positive constant.

Proof From the first formula of (.) and the definition of Bregman distance (.), we get

xk+ = argmin
x

ϕ(x) – ϕ
(
xk

)
–

〈
pk ,x – xk

〉
+

λ


‖Ax – b‖

= argmin
x

ϕ(x) –
〈
λAT(

bk – b
)
,x

〉
+

λ


‖Ax – b‖

= argmin
x

ϕ(x) – λ
〈
bk – b,Ax – b

〉
+

λ


‖Ax – b‖ +

λ


∥∥bk – b

∥∥


= argmin
x

ϕ(x) –
λ


∥∥Ax – bk

∥∥
,

therefore, we complete the proof. �

From the discussion above, we can give a crucial conclusion.

Theorem. The original Bregman iterative scheme (.) is equivalent to its variant (.).

Proof By induction, in fact, we only need to verify that (.) holds.
If k = , p = λAT (b – b) = , (.) holds by the initial conditions p =  and b = b.
Now, we suppose that (.) holds for k – . Then

pk = pk– + λAT(
b –Axk

)
= λAT(

bk– – b
)
+ λAT(

b –Axk
)
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= λAT(
bk– – b + b –Axk

)
= λAT(

bk – b
)
,

where the first equality is from the second term of (.), and the third equality is from the
second term of (.). Therefore, the original Bregman iterative scheme (.) is equivalent
to its variant (.). �

Noting that [, , ] and the references therein, it was argued that the Bregman iter-
ative method is equivalent to the augmented Lagrangian method. The significance of this
statement will be demonstrated in our later analysis in Section .
For the following analysis, we define the Lagrangian function of (.),

L(x,σ ) := ϕ(x) + 〈σ ,b –Ax〉,

where σ ∈ �m is the Lagrangian multiplier. The corresponding augmented Lagrangian
function can be expressed as

L(x,σ ,λ) := ϕ(x) + 〈σ ,b –Ax〉 + λ


‖Ax – b‖, (.)

where ϕ(x) := ‖x‖ + μ

 ‖x‖ and λ
‖Ax – b‖ is the penalty term.

The augmented Lagrangian iterative scheme is

{
xk+ := argminx ϕ(x) + 〈σ k ,b –Ax〉 + λ

‖Ax – b‖,
σ k+ := σ k + λ(b –Axk+),

(.)

starting from σ  = .

Lemma . The first item of the iterative sequence {xk} of (.) and that of (.) are equal
if

bk = b +

λ

σ (.)

holds.

Proof From the first formula of (.) and (.), we get

xk+ = argmin
x

ϕ(x) +
λ



∥∥∥∥Ax – b –
σ k

λ

∥∥∥∥



= argmin
x

ϕ(x) +
λ


‖Ax – b‖ +

〈
σ k ,b –Ax

〉
.

The constant of the objective function does not affect the optimum point, so by com-
paring with the above equations, we get the conclusion. �

Theorem . The augmented Lagrangian iterative scheme (.) is equivalent to the
Bregman iterative method variant (.).
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Proof It is not difficult to see that the proof is the same as that of Theorem .. Similarly,
by the mathematical induction, we simply show that (.) holds.
If k = , b = b + σ

λ
, (.) holds by the initial conditions σ  =  and b = b. Now, we

suppose that (.) holds for n≤ k – . Then, when n = k,

bk = bk– +
(
b –Axk

)
= b +


λ

σ k– +
(
b –Axk

)
= b +


λ

σ k– +

λ

(
σ k – σ k–) = b +


λ

σ k ,

where the first equality is from the second term of (.), the second equality has its roots
in induction, and the third equality is derived from the second term of (.). Therefore,
the augmented Lagrangian iterative scheme (.) is equivalent to the Bregman iterative
method variant (.). Moreover, we can get the equivalence of (.) and (.) from the
two theorems above. �

For solving the subproblem of Bregman iterativemethod (.), different algorithmswere
conceived in [, , ], however, these methods have to perform significant iterations
for solving the subproblem. In order to overcome the difficulties, the linearized Bregman
method is obtained by linearizing the last term in (.) into 〈AT (Axk – b),x〉 (where λ = )
and adding the l-proximity term 

γ ‖x – xk‖. The concrete scheme is

{
xk+ := argminx D

pk
ϕ (x,xk) + 〈AT (Axk – b),x〉 + 

γ ‖x – xk‖,
pk+ := pk +AT (Axk+ – b) – 

γ
(x – xk).

(.)

By the optimality conditions, we obtain the following formula:

 ∈ ∂ϕ
(
xk+

)
– pk –AT(

b –Axk
)
+


γ

(
xk+ – xk

)
.

That is, for the second termof (.) pk+ ∈ ∂ϕ(xk+). In [, , ], the linearizedBregman
methodwas analyzed; as γ < 

‖A‖ (where ‖·‖ denotes the spectral normof the correspond-
ing matrix) the iterates of the linearized Bregman method converge to the solution of the
regularized basis pursuit problem

min
x∈�n

‖x‖ + 
γ

‖x‖ subject to Ax = b.

It has appeared in the accelerated Bregman algorithm in recent years, such as in [] etc.
But we shall argue that the accelerated Bregman method has large room to advance. We
give some valid improvements on these accelerated Bregman methods. It can be verified
that the theoretical result as regards the proposed method has a rapid convergence rate of
O(/(k + )).

3 Themodified accelerated Bregmanmethod
In [], the linearized Bregman algorithm could be written as follows.

Algorithm . (Linearized Bregman method (LBM))

http://www.journalofinequalitiesandapplications.com/content/2014/1/130
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Step . Input: J(·),H(·),γ > ; initial point: x, p.
Step . Initialize: k = , let x =  and p = .
Step . Compute xk+ := argminx D

pk
ϕ (x,xk) + 〈∇H(xk),x〉 + 

γ ‖x – xk‖.
Step . Set pk+ := pk –∇H(xk) – 

γ
(xk+ – xk).

Step . Set k := k + , go to step .

For the iterative scheme above, H(x) = 
‖Ax – b‖. Next, we give its equivalence form

from the following lemma.

Lemma . The linearized Bregman method (LBM) in Algorithm . is equivalent to the
iterative scheme{

xk+ := argminx ϕ(x) + 
γ ‖x – γuk‖,

uk+ := uk +AT (b –Axk+),
(.)

starting from u = ATb, where uk = pk +AT (b –Axk) + xk
γ
.

Proof From step  of Algorithm ., we have

pk+ = pk +AT(
b –Axk

)
–


γ

(
xk+ – xk

)
= · · · =

k∑
i=

AT(
b –Axi

)
–


γ
xk+. (.)

Thus, we denote

uk := pk+ +

γ
xk+ = pk +AT(

b –Axk
)
+


γ
xk =

k∑
i=

AT(
b –Axi

)
;

then we simplify step  of Algorithm .,

xk+ = argmin
x

ϕ(x) +
〈
pk ,x

〉
–

〈
AT(

b –Axk
)
,x

〉
+


γ

∥∥x – xk
∥∥


= argmin
x

ϕ(x) +

γ

∥∥∥∥x – γ

[
pk +AT(

b –Axk
)
+
xk

γ

]∥∥∥∥



= argmin
x

ϕ(x) +

γ

∥∥x – γuk
∥∥
.

On the other hand,

uk+ = pk+ +AT(
b –Axk+

)
+


γ
xk+

= pk +AT(
b –Axk

)
–


γ

(
xk+ – xk

)
+AT(

b –Axk+
)
+
xk+

γ

= pk +AT(
b –Axk

)
+


γ
xk +AT(

b –Axk+
)

= uk +AT(
b –Axk+

)
,

where the second equality is from (.). So, step  and step  in Algorithm . can be
rewritten as (.). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/130
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Yin et al. presented all kinds of techniques, for example, line search, and L-BFGS and
BB steps, to accelerate the linearized Bregman method. It is interesting that for the latter
in [] the accelerated linearized Bregman algorithm is argued for as follows.

Algorithm . (Accelerated linearized Bregman method (ALBM))
Step . Initialize: x = x̃ = p = p̃ = , γ > , λ > , k = .
Step . Compute xk+ := argminx D

p̃k
ϕ (x, x̃k) + λ〈AT (Ãxk – b),x〉 + 

γ ‖x – x̃k‖.
Step . Set pk+ := p̃k – λAT (Ãxk – b) – 

γ
(xk+ – x̃k).

Step . Set x̃k+ := αkxk+ + ( – αk)xk .
Step . Set p̃k+ := αkpk+ + ( – αk )̃xk .
Step . Set k := k + , go to step .

These methods motivated us to consider the following algorithm, and its acceleration
idea is based on the extrapolation technique proposed by Nesterov in [, ]; see also the
references therein.

Algorithm . (Modified accelerated Bregman method (MABM))
Step . Initialize: x = p = p̃ = , t = , λ > , k = .
Step . Compute xk+ := argminx D

pk
ϕ (x,xk) + λ

‖Ax – b‖.
Step . Set p̃k+ := pk + λAT (b –Axk).
Step . Set pk+ := ( – –tk

tk+
)̃pk+ + –tk

tk+
pk .

Step . Set tk+ = 
 (

√
 + tk + ).

Step . Set k := k + , go to step .

The basic idea of the equivalence between MABA and the corresponding AALM can
be traced back to []. Especially, we can see that our updated iterative for pk is obviously
better than the pre-iterative p̃k [], since we consider a sufficient amount of information
about the former iterative. In this way, most of the better iterative efficiency could be ex-
pected, which is just our purpose in improving the method. Then we will be dependent
on a series of transformations in preparation for the convergence proof in Section .

Lemma . The MABM in Algorithm . is equal to the following iterative scheme:

⎧⎪⎨⎪⎩
xk+ := argminx ϕ(x) + λ

‖Ax – bk‖,
b̃k+ := bk + (b –Axk+),
bk+ := ( – –tk

tk+
)̃bk+ + –tk

tk+
bk ,

(.)

starting with b = b.

Proof Recalling (.) and noting Theorem ., we can prove that (.) holds for all k by
induction.
If k = , p = λAT (b –b) = , (.) holds by the initial conditions p =  and b = b. Now,

we assume that (.) holds for n≤ k – , then

p̃n = pn– + λAT(
b –Axn

)
= λAT(

bn– – b
)
+ λAT(

b –Axn
)

= λAT(
bn– – b + b –Axn

)
= λAT (̃

bn – b
)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/130
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where the first equality is directly derived from step  of Algorithm ., the first equality
is derived from the induction hypothesis, the fourth equality utilizes the second step of
(.).
Moreover, when n = k, we have

pk =
(
 –

 – tk
tk+

)̃
pk +

 – tk
tk+

pk–

=
(
 –

 – tk
tk+

)
λAT (̃

bk – b
)
+
 – tk
tk+

λAT(
bk– – b

)
= λAT

[(
 –

 – tk
tk+

)̃
bk –

(
 –

 – tk
tk+

)
b +

 – tk
tk+

bk– –
 – tk
tk+

b
]

= λAT(
bk – b

)
,

where the first equality is from step  of Algorithm ., the second term is from (.) and
the induction hypothesis, the fourth equality is from the third term of (.), so (.) holds
for all k. Namely, the MABM in Algorithm . is equal to (.). �

Lemma . Iterative scheme (.) is equal to the following AALM iterative scheme:

⎧⎪⎨⎪⎩
xk+ := argminx ϕ(x) + 〈σ k ,b –Ax〉 + λ

‖Ax – bk‖,
σ̃ k+ := σ k + (b –Axk+),
σ k+ := ( – –tk

tk+
)̃σ k+ + –tk

tk+
σ k ,

(.)

starting from σ  = , where σ k ∈ �m is the Lagrangian multiplier.

Proof It is not difficult to see that the idea has likeness to Theorem., we are just required
to verify that (.) holds. To this end, we proceed by mathematical induction.
If k = , b = b + σ

λ
, (.) holds by the initial conditions σ  =  and b = b. Suppose that

(.) holds for n≤ k – , then, when n = k, we have

b̃k = bk– +
(
b –Axk

)
= b +


λ

σ k– +
(
b –Axk

)
= b +


λ

σ k– +

λ

(
σ̃ k – σ k–) = b +


λ

σ̃ k ,

where the first equality is from the second term of (.), the second equality stems from
induction, and the third equality is derived from the second term of (.).
Thus, we get

bk =
(
 –

 – tk
tk+

)̃
bk +

 – tk
tk+

bk–

=
(
 –

 – tk
tk+

)(
b +


λ

σ̃ n
)
+
 – tk
tk+

(
b +


λ

σ n–
)

= b +

λ

(
 – tk
tk+

σ̃ n +
 – tk
tk+

σ n–
)

= b +

λ

σ n.

http://www.journalofinequalitiesandapplications.com/content/2014/1/130


Xie et al. Journal of Inequalities and Applications 2014, 2014:130 Page 10 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/130

Therefore, AALM (.) is equivalent to iterative scheme (.). Moreover, we can get the
equivalence of the MABM in Algorithm . to AALM from the above two lemmas. �

Theorem. TheMABM inAlgorithm . is equivalent to the corresponding AALM (.).

4 The convergence analysis
A practical challenge for the regularized basis pursuit problem is to offer an efficient
method to solve the non-smooth optimization problems.Many algorithms have been pro-
posed in recent years []. In these methods, some schemes of approximation that have
to do with the non-smooth norm term are usually employed. However, a fast global con-
vergence is difficult to guarantee. Due to the non-smooth nature of the -norm, a simple
method to solve these problems is the subgradient approach [], which converges only
as O( √

k
), where k is the iteration counter.

In this paper, we present an efficient method with fast global convergence rate to solve
the regularized basis pursuit problem. Particularly, we verify that this result is an extended
gradient algorithm with the convergence rate of O( √

k
), like that for smooth problems.

Following the Nesterov method for accelerating the gradient method [, ], we show
that the MABM can be further accelerated to converge as O(/(k + )).
A series of lemmas in the following are to ensure the convergence rate of the MABM.

Lemma . Let (xn,σ n) be generated by the augmented Lagrangian iterative scheme (.),
and let (x∗,σ ∗) be a globally optimal solution of the problem

min
x∈�n

ϕ(x) s.t. Ax = b, (.)

then the inequality

ϕ
(
xk

)
– ϕ(x)≥ 〈

σ ,A
(
xk – x

)〉
(.)

for any (x,σ ) = (xn,σ n) and (x∗,σ ∗) holds.

Proof By the optimality conditions, we get

 ∈ ∂ϕ
(
xn

)
–ATσ n– – λAT(

b –Axn
)
.

From the second term of (.), we obtain

ATσ n ∈ ∂ϕ
(
xn

)
. (.)

By the definition of subdifferential, we have

ϕ
(
xk

) ≥ ϕ
(
xn

)
+

〈
σ n,A

(
xk – xn

)〉
.

So (.) holds for (x,σ ) = (xn,σ n). Owing to the fact that (x∗,σ ∗) of (.) satisfies the KKT
condition, it is easy to obtain

 ∈ ∂ϕ
(
x∗) –ATσ ∗ and Ax∗ = b.

http://www.journalofinequalitiesandapplications.com/content/2014/1/130
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Compared with (.), inequality (.) holds for (x,σ ) = (x∗,σ ∗), which completes the
proof. �

Lemma . Let (xk ,σ k) be generated by the augmented Lagrangian iterative scheme (.).
For any (x,σ ), the inequality

L
(
xk ,σ k) – L(x,σ )≥ 

λ

∥∥σ k – σ k–∥∥
 –


λ

〈
σ k– – σ ,σ k– – σ k 〉 (.)

holds.

Proof By the definition of the Lagrangian function and Lemma ., we get the following
result:

L
(
xk ,σ k) – L(x,σ ) = ϕ

(
xk

)
– ϕ(x) – 〈σ ,b –Ax〉 + 〈

σ k ,b –Axk
〉

≥ 〈
σ ,A

(
xk – x

)〉
– 〈σ ,b –Ax〉 + 〈

σ k ,b –Axk
〉

=
〈
σ k – σ ,b –Axk

〉
=


λ

〈
σ – σ k ,σ k – σ k–〉

=

λ

∥∥σ k – σ k–∥∥
 –


λ

〈
σ k– – σ ,σ k– – σ k 〉.

The second inequality is derived from (.), and the third equality is from (.). �

From the fact that ATσ k ∈ ∂ϕ(xk), ATσ ∗ ∈ ∂ϕ(x∗), and the definition of subdifferential,
we have

ϕ
(
x∗) ≥ ϕ

(
xk

)
+

〈
σ n,A

(
x∗ – xn

)〉
,

then

ϕ
(
x∗) – 〈

σ ∗,Ax∗ – b
〉 ≥ ϕ

(
xk

)
–

〈
σ n,Axn – b

〉
,

thus

L
(
x∗,σ ∗) ≥ L

(
xk ,σ k), (.)

where we exploit the fact that Ax∗ = b.

Lemma . Let (xk ,σ k) be generated by the augmented Lagrangian iterative scheme (.),
then ∥∥σ k – σ ∗∥∥

 ≥ ∥∥σ k– – σ ∗∥∥
 –

∥∥σ k – σ k–∥∥
 – λ

(
L
(
x∗,σ ∗) – L

(
xk ,σ k)).

Proof Considering (.) and replacing (x,σ ) with (x∗,σ ∗), we get∥∥σ k – σ ∗∥∥
 =

∥∥σ k – σ k– + σ k– – σ ∗∥∥


=
∥∥σ k – σ k–∥∥

 + 
〈
σ k – σ k–,σ k– – σ ∗〉 + ∥∥σ k– – σ ∗∥∥
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≤ ∥∥σ k – σ k–∥∥
 +

∥∥σ k– – σ ∗∥∥


– 
∥∥σ k – σ k–∥∥

 – λ
(
L
(
x∗,σ ∗) – L

(
xk ,σ k))

=
∥∥σ k– – σ ∗∥∥

 –
∥∥σ k – σ k–∥∥

 – λ
(
L
(
x∗,σ ∗) – L

(
xk ,σ k)),

which completes the proof. �

Moreover, ‖σ k – σ ∗‖ ≤ ‖σ k– – σ ∗‖ – ‖σ k – σ k–‖ holds due to (.), this implies the
global convergence of (.). By summing the above inequality over k = , , . . . ,n, we get

n∑
k=

∥∥σ k – σ k–∥∥
 ≤ ∥∥σ  – σ ∗∥∥

. (.)

Hence,

lim
k→∞

∥∥σ k – σ k–∥∥
 = . (.)

Theorem . Let (xk ,σ k) be generated by the augmented Lagrangian iterative scheme
(.), then L(x∗,σ ∗) – L(xk ,σ k) =O( k ).

Proof Noting (.) of Lemma . and substituting (xn–,σ n–) for (x,σ ), we get

L
(
xn,σ n) – L

(
xn–,σ n–) ≥ 

λ

∥∥σ n – σ n–∥∥
. (.)

By multiplying with n –  and summing it over n = , . . . ,k, we obtain

k∑
n=

{
(n – )L

(
xn,σ n) – (n – )L

(
xn–,σ n–)}

=
k∑

n=

{
nL

(
xn,σ n) – (n – )L

(
xn–,σ n–) – L

(
xn,σ n)}

= kL
(
xk ,σ k) – n∑

k=

L
(
xn,σ n)

≥
k∑

n=

n – 
λ

∥∥σ n – σ n–∥∥
 ≥ .

From the above inequality, we have

k∑
n=

L
(
xn,σ n) ≤ kL

(
xk ,σ k). (.)

On the other hand, it follows from Lemma . that

L
(
x∗,σ ∗) – L

(
xn,σ n) ≤ 

λ
(∥∥σ n– – σ ∗∥∥

 –
∥∥σ n – σ n–∥∥

 –
∥∥σ n – σ ∗∥∥



)
.
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Summing the inequality over n = , . . . ,k, we obtain

k∑
n=

(
L
(
x∗,σ ∗) – L

(
xn,σ n))

= –
k∑

n=

L
(
xn,σ n) + nL

(
x∗,σ ∗)

≤ 
λ

k∑
n=

(∥∥σ n– – σ ∗∥∥
 –

∥∥σ n – σ ∗∥∥
 –

∥∥σ n – σ n–∥∥


)

=

λ

(∥∥σ  – σ ∗∥∥
 –

∥∥σ k – σ ∗∥∥
 –

k∑
n=

∥∥σ n – σ n–∥∥


)
. (.)

Combining (.) with (.), we get

–kL
(
xk ,σ k) + kL

(
x∗,σ ∗) ≤ –

k∑
n=

L
(
xn,σ n) + kL

(
x∗,σ ∗)

≤ 
λ

(∥∥σ  – σ ∗∥∥
 –

∥∥σ k – σ ∗∥∥
 –

k∑
n=

∥∥σ n – σ n–∥∥


)

≤ 
λ

∥∥σ  – σ ∗∥∥
.

Consequently, we obtain

L
(
x∗,σ ∗) – L

(
xk ,σ k) ≤ 

kλ
∥∥σ ∗ – σ ∥∥

 =O
(

k

)
.

This completes the proof. �

Comparing (.) with (.), we have the following two lemmas by replacing (xk ,σ k) with
(xk , σ̃ k).

Lemma . Let (xk , σ̃ k) be generated by the augmented Lagrangian iterative scheme (.).
For any (x,σ ), we have the inequality

L
(
xk , σ̃ k) – L(x,σ )≥ 

λ

∥∥σ̃ k – σ k–∥∥
 –


λ

〈
σ k– – σ ,σ k– – σ̃ k 〉. (.)

Lemma . Let (xk , σ̃ k) be generated by the augmented Lagrangian iterative scheme (.),
then

∥∥σ̃ k – σ ∗∥∥
 ≥ ∥∥σ k– – σ ∗∥∥

 –
∥∥σ̃ k – σ k–∥∥

 – λ
(
L
(
x∗,σ ∗) – L

(
xk , σ̃ k)). (.)

Theorem . Let (xk , σ̃ k) be generated by the augmented Lagrangian iterative scheme
(.), then

L
(
x∗,σ ∗) – L

(
xk , σ̃ k) =O

(
/(k + )

)
.
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Proof We work from step  of Algorithm ., i.e., tk+ = 
 (

√
 + tk + ), where t = . By a

simple calculation, we have

tk+(tk+ – ) = tk (.)

and

tk ≥ k + 


. (.)

Based on Lemma ., by replacing (x,σ ) with (xn–, σ̃ n–) and (x∗,σ ∗), setting k = n, we
get the two inequalities

wn– –wn ≥ 
λ

∥∥σ̃ n – σ n–∥∥
 –


λ

〈
σ n– – σ̃ n–,σ n– – σ̃ n〉, (.)

–wn ≥ 
λ

∥∥σ̃ n – σ n–∥∥
 –


λ

〈
σ n– – σ ∗,σ n– – σ̃ n〉, (.)

where

wn := L
(
x∗,σ ∗) – L

(
xn, σ̃ n).

By multiplying both sides of (.), (.) with tn – and , respectively, and adding the
two sides, we obtain

(tn – )wn – tnwn+

≥ tn
λ

∥∥σ̃ n – σ n–∥∥
 +


λ

〈
σ ∗ + (tn – )̃σ n– – tnσ n–,σ n– – σ̃ n〉. (.)

For the sake of convenience, we denote

Pn := σ ∗ + (tn – )̃σ n– – tnσ̃ n + tnσ n–

and

Qn := σ ∗ + (tn – )̃σ n– – tnσ̃ n – tnσ n–.

By multiplying both sides of (.) with tn, we have

tn(tn – )wn – tnwn+

≥ 
λ

∥∥tn(σ̃ n – σ n–)∥∥


+

λ

〈
σ ∗ + (tn – )̃σ n– – tnσ n–, tn

(
σ n– – σ̃ n)〉

=

λ

〈
σ ∗ + (tn – )̃σ n– – tnσ̃ n, tn

(
σ n– – σ̃ n)〉

=

λ

∥∥σ ∗ + (tn – )̃σ n– – tnσ̃ n + tnσ n–∥∥
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–

λ

∥∥σ ∗ + (tn – )̃σ n– – tnσ̃ n – tnσ n–∥∥


=

λ

‖Pn‖ –

λ

‖Qn‖,

where the second equality is derived from the fact that ‖α + β‖ – ‖α – β‖ = 〈α,β〉.
Then we have

Pn –Qn =
[
σ ∗ + (tn – )̃σ n– – tnσ̃ n + tnσ n–]
–

[
σ ∗ + (tn – )̃σ n– – tnσ̃ n – tnσ n–]

= tnσ n– – tnσ̃ n

= tnσ n– – tn
tn+σ n – ( – tn)σ n–

tn+ + tn – 

=: K
(
σ n– – σ n),

where

K :=
tntn+

tn+ + tn – 
,

and the third equality is from the third iterative scheme of (.) and we make a transposi-
tion to the third term. Thus,

tn–wn – tnwn+ ≥ 
λ

‖Pn‖ –

λ

∥∥Pn – (Pn –Qn)
∥∥


≥ 
λ

‖Pn‖ –

λ

(‖Pn‖ + ‖Pn –Qn‖
)

≥ –

λ

‖Pn –Qn‖

:= –
K

λ

∥∥σ n– – σ n∥∥
.

Summing the inequality over n = , . . . ,k, we get

tw – tkwk+ ≥ –
k∑

n=

K

λ

∥∥σ n– – σ n∥∥
. (.)

Then, combining (.), (.) with (.), we have

wk+ ≤ tw +
∑k

n=
K
λ

‖σ n– – σ n‖
tk

≤ tw + ε
(k + )

,

as k tends to infinity, where ε is an arbitrarily small positive number. Hence,

L
(
x∗,σ ∗) – L

(
xk , σ̃ k) =O

(
/(k + )

)
.

Thus, we complete the convergence proof. �
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Remark The right formula of (.) exploits the fact that the choice of the penalty factor
λ can be seen as a monotonically increasing sequence (such as λk) that depends on the
selection of tk in Algorithm .. In this way, we are not only able to guarantee the conver-
gence in the formula of K divided by λk , but also to play a critical role of punishment to
the constraint condition.

5 Conclusion
In this paper, we put forward the modified accelerated Bregman method (MABM) for
solving the regularized basis pursuit problem.We give some beneficial improvement tasks
on the basis of some recent literature on the accelerated Bregmanmethod, andwe perform
the theoretical feasibility analysis in detail. It can be showed that the proposedMABMhas
a rapid convergence rate of O(/(k + )). We will devote our future study to combining
the advantages of LBM with our MABM as regards theory and numerical results.
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