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1 Introduction

The intrinsic square functions were first introduced by Wilson in [1, 2]. They are defined
as follows. For 0 < o« < 1, let C, be the family of functions ¢ : R” — R such that ¢’s support
is contained in {x: |x| <1}, [ ¢ dx =0, and for x,x" € R",

[¢@) - ¢(x)] = x-«".

For (y,t) e R and f € L} (R"), set

loc

Aof(t,y) = sup |f * ¢:(y)],
¢eCy

where ¢,(y) = t‘"¢(%). Then we define the varying-aperture intrinsic square (intrinsic
Lusin) function of f by the formula

dydt\?
Gap () = ( / /F ﬂ(x)(Aaf(t,y))z tynut) '

where I'g(x) = {(y,£) € R™!: |x — y| < Bt}. Denote G 1(f) = G,(f).
This function is independent of any particular kernel, such as Poisson kernel. It domi-

nates pointwise the classical square function (Lusin area integral) and its real-variable gen-
eralizations. Although the function G, g(f) depends on the kernels with uniform compact
support, there is a pointwise relation between G, g(f) with different 8 (8 > 1):

Gup(F)x) < BT *Gy(f) ().

We refer for details to [1].
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The intrinsic Littlewood-Paley g-function and the intrinsic g} -function are defined, re-

spectively, by

2 ) = ( | m(AJ(t,y))zdt) g

t

i B t " 2dydt?
8nof (%) = (f /R’j*l(m> (Auf (8,9)) il ) :

In [1], Wilson proved the following result.

Theorem A Let1<p<00,0<a <1, then G, is bounded from L* (R") to itself.

After that, Huang and Liu [3] studied the boundedness of intrinsic square functions on
weighted Hardy spaces. Moreover, they characterized the weighted Hardy spaces by in-
trinsic square functions. In [4] and [5], Wang and Liu obtained some weak type estimates
on weighted Hardy spaces. In [6] and [7], Wang considered intrinsic functions and the
commutators generated with BMO functions on weighted Morrey spaces. Let b be a lo-

cally integrable function on R”. Setting

Agpf (t,y) = sup
¢eCy

’

/R b0 - bla)]ou -2 @) de

the commutators are defined by

dydt\?
[b’ Gct]f(x) = (/ /1"( )(Aﬂl:bf(t’y))z t);;rlt) ’

b ([ s’

and

ENY dydt\?
o= ([ [ (rr) e i)

A function f € L} (R") is said to be in BMO(R") if

loc

1

sup
xeR”,r>0 |B(x: r)l B(x,r)

Il = [f ) = fn| dy < 00,

1
where f3(.,) = B /; bSO dy.

In this paper, we will consider Gy, g, g5 , and their commutators on generalized Morrey
spaces. Let ¢(x,r) be a positive measurable function on R” x R*. For any f € Lﬁ)C(R”), we

denote by L7¢(R") the generalized Morrey spaces, if

1
p
If oo ny = sup w(x,r)'l< ( )[f(x)lpdx) < 00.
B(x,r

x€R”,r>0
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In [8], Mizuhara introduced these generalized Morrey spaces L#*(R") and discussed the
boundedness of the Calderén-Zygmund singular integral operators. Note that the gener-
alized Morrey spaces L”*(R") with normalized norm

1

_1 p

Ifllipo@y = sup w(x,r)|Blx,r)| 1"( ( lf(x)|pdx>p,
B(x,r)

x€R",r>0

were first defined by Guliyev in [9]. When w(x,7) = rkf%n , LP2(R™) = LP*(R™). Tt is the clas-
sical Morrey space which was first introduced by Morrey in [10]. There are many papers
discussed the conditions on w(x, r) to obtain the boundedness of operators on the gener-
alized Morrey spaces. For example, in [8], the function ¢ is supposed to be a positively
growth function and satisfy the double condition: for all r > 0, ¢(2r) < Dg(r), where D > 1
is a constant independent of r. This type of conditions on ¢ is studied by many authors;
see, for example, [11, 12]. In [13], the following statement was proved by Nakai for the
Calder6n-Zygmund singular integral operators T.

Theorem B Let 1 < p < 00 and let w(x, r) satisfy the conditions
ol r) < wx,t) < colx,r),

whenever r < t < 2r, where ¢ (> 1) does not depend on t,r,x € R" and

o0 dt
/ olx, £y - = cox, 1),

where c does not depend on x and r. Then the operator T is bounded on LP*(R") for p > 1
and from LY (R") to WLY*(R") for p = 1.

The following statement, containing some results which were obtained in [8] and [13],
was proved by Guliyev in [14, 15] (also see [16]).

Theorem C Let 1 < p < 0o and let the pair (w1, w) satisfy the condition

‘/OO w1 (%, r)? < cwsy(x,t), 1)

where ¢ does not depend on x and t. Then the operator T is bounded from LP“1(R") to
LP2(R") for p > 1 and from LY\ (R") to WL*2(R") for p = 1.

Recently, in [17] and [9], Guliyev et al. introduced a weaker condition for the bound-
edness of Calderén-Zygmund singular integral operators from LP“!(R") to LP“2(R"): If
1 <p<+oo, forany x € R” and ¢ > 0, there exists a constant ¢ > 0, such that

e dr < cwnr(x, t). (2)

n
/ *° e8sinf,ceno w1 (X, 5)sP
t re

By an easy computation, we can check that if the pair (w;, ;) satisfies double condition,
then it will satisfy condition (1). Moreover, if (w1, w,) satisfies condition (1), it will also
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satisfy condition (2). But the opposite is not true. We refer to [13] and Remark 4.7 in [9]
for details.

In this paper, we will obtain the boundedness of the intrinsic function, the intrinsic
Littlewood-Paley g function, the intrinsic g} function and their commutators on gener-

alized Morrey spaces when the pair (@), ®,) satisfies condition (2) or the following in-

equality:
0 inf 5)sh
[ (um%)“s‘“ resxo I 4y (a,). 3)
t re

Our main results in this paper are stated as follows.

Theorem1.1 Letl<p<o00,0<a <1,let(w,w,) satisfy condition (2), then G, is bounded
from LP1(R") to LP*2(R").

Theorem 1.2 Let1<p < 00,0 <a <1,let (w,w,) satisfy condition (2), then for A > 3 + 27"‘,
we have g5 , is bounded from L/ (R") to LP*(R").

Theorem 1.3 Let 1 <p <00, 0 < <1, b € BMO, let (o, w,) satisfy condition (3), then
[b, G,] is bounded from LP*1(R") to LP*2(R").

Theorem 1.4 Let1<p<o00,0<a <1, beBMO, let (w;,w,) satisfy condition (3), then for
A>3+ 270‘, (b,g5 ] is bounded from L' (R") to LP>(R").

In (1], the author proved that the functions G, and g, are pointwise comparable. Thus,
as a consequence of Theorem 1.1 and Theorem 1.3, we have the following results.

Corollary1.5 Let1<p < 00,0 <a <1,let (w,w,) satisfy condition (2), then g, is bounded
from LP1(R") to LP“2(R").

Corollary 1.6 Let 1 <p <00, 0<a <1, b e BMO, and let (w1, ws) satisfy condition (3),
then [b,g,] is bounded from LP*1(R") to LP*2(R").

Throughout this paper, we use the notation A < B to mean that there is a positive con-
stant C (> 1) independent of all essential variables such that A < CB. Moreover, C maybe

different from place to place.

2 Proofs of main theorems

Before proving the main theorems, we need the following lemmas.

Lemma 2.1 ([18]) The inequality esssup,., w(t)Hg(t) < esssup,., v(£)g(t) holds for all non-
negative and non-increasing g on (0,00) if and only if
o) [* dr

A=sup—- | ————— <00,
0 t Jo esssupy., v(s)

(4)

where Hg(t) is the Hardy operator Hg(t) := % fotg(r) dr,0 <t <oo.
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Lemma 2.2 ([19]) (1) For1<p < o0,

1

L r

| ”*% o < / )_ ,rpd> .
If xernr>0 \ 1B )| JBn lf()’ B )| ly

(2) Let f e BMO(R"), 0 < 2r < t, then

t
lﬁg(x,r) _fB(x,t)| = ”f”* In ;

Lemma 2.3 Forje Z*, denote

° dydr\?
G () = ( fo f| oy A0 t))ztyn—f) ~

Let1l<p<00,0<a<1,then we have

(31
|Go Ol gy = 22 Ga )] -

From [1], we know that

Gap(F)(x) < BT Gy(f) ().

Then, by an easy computation, we get Lemma 2.3.
By a similar argument as in [20], we can easily get the following lemma.

Lemma2.4 Letl<p< 00,0 <o <1,thenthecommutators [b, G,] is bounded from L (R")
to itself whenever b € BMO.

Now we are in a position to prove the theorems.

Proof of Theorem 1.1 The main ideas of these proofs come from [9]. We decompose f =

fi +f2, where A®) = f W) x280), o(¥) =f @) = A®B), B := B(xo,r). Then
NGef Il Bexor) < NGafillz@or) + | Gaf2ll e Bg,ry) =1 + 1.

First, let us estimate I. By Theorem A, we obtain

o0
n _r_3
I < ||IGufillzwny = Wfillee@ny = If ) < 77 / If lzzBeo.ent »~ dt. (5)
2r

Then let us estimate II. Recalling the properties of function ¢, we know that

Since x € B(xo,7), (,t) € I'(x) and |z — xo| > 2r, we have

<t [ﬁ(z)! dz.

ly—z|<t

r<lz—xol=lxo—xl < |x—z| <|lx-yl+|y—z] <2t

Page 5 of 12
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So, we obtain

2 1
dydt\?
o= ([ [ [, mele] )
(%) ly—z|<t 3
2 dydt\ *
= (/ / ( sz(Z)|dZ) 3n+1>
tor/2 J [x—y|<t \J|z—x|<2t 13
=

2 4t \?
(L[ o) 55)

By Minkowski’s inequality and |z — x| > |z — x| — |xo — x| > % |z —x0|, we have

@M@ﬁé‘/zﬁﬂym&Wh

5/ V@|”5/ @i,
|z—x0|>2r |Z_x|n |z—xg|>2r |Z_x0|n

ﬁ/ f(@)| mmﬁ
|z—xq|>2r t

lz=xo|

/+oo /
2r 2r<|z—xq|<t

The last inequality is due to Holder’s inequality. Thus,

oo " 1
_/ e Beo,0nt # dt.
2r

o0
n _n_3
|GafollLr o) 5”’/ If |l B, ent P~ dt. (6)

2r

By combining (5) and (6), we have

o0
n _n_3
1Gaf 2o Bxo ) 5””/ I Nl Bo.ent P~ dt.
2r

P
ns

So, let t = s7%; we have

x0€R”,r>0

_ Lo [ 1
G i < sup nla ) B0 1 [ it
2r 192

r ?
= sup wz(xo,f)flf I[fIILp(B o ds
0

x0€R",r>0 (o5~ 1))
_Pp
= sup w xo,r n |[f|| ds.
x0€R",r>0 LP(Blxo ))

Take w(t) = wo(xo, t ’5)‘1t v(t) = a)l(xo,t’g)‘lt Since (w1, w,) satisfies condition (2), we

can verify that w(t), v(¢) satisfy condition (4). Let g(s) = |[f|| P (Blgsh Obv1ously, it is
X0,S

decreasing on variable s. So, by Lemma 2.1, we can conclude the followmg estimates:

P
1Gaf lpon@ny = sup (%0, 7 ”) r”f”ms = |[f lzzer gy

x0€R”,r>0
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Proof of Theorem 1.2

2dydt

[g)ha f /|1¢ y|<t(t+|x y|> (Qf(y’t)) tn+l
> ¢ " 2 dydt

+/o /|xy|zr(t+lx—yl> (4 0:0)) g+l

=1I+1V.

First, let us estimate III:

+00 dvd
m= [ [ A0y = )’
x—y|<t

Then let us estimate IV:

ni
t 2 dydt
IV < / / ( ) At nt)
Z 2 lt<|x—y|<2/t t+ |x y| ( O(-f(y ) t”+1
> o0
j dydt
=< 977 (4 ,t) 2
;/-0 /?jlt<|x—y|<2/t ( S ) i+l

dydt
< Zz /"A/ / (Auf 0025
|x—y| <Vt

oo
=Y 27(G (W)
j=1
Thus,
ad Jni
500 | o oy < 1Gaf laporny + Y27 |Gy ()| o gy
j=1
By Theorem 1.1, we have

|Gaf llzpor @my < I\f lzpor mny.

(8)

To complete the proof, it suffices to estimate |G, 5 (f)llpo2 wn). Take fi(y) = f(¥) x28(%),

L) =f») A1), 2B = B(xo, 2r). Then

||Ga,?j(f)||l,1’(3(x0,r)) = ” Ga,?/’(fl)”Lp(B(xO,r)) + ” Ga,:)/(ﬁ)”zp(B(xo,r))'

For the first part, by Lemma 2.3, we obtain

|G P 1 iy = 259 Gy (f) | rigeny = PE|f | pap)

j(3n +a) n o0 1
<22 %y W Nl 22 Bxo ) =y it
2r tr

)

(10)
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For the other part, we know

00 d d %
Gy ()(x) = ( L/ a0y if)

00 2 d d %
- (/ / , (sup Ifs * ¢z()’)|> {Ht)
0 Jlx-yl<Vt “peCy L
2 1
o0 dydt) 2
d .
= </0 /x—y<2/'t< \z—ylstv2(2)| Z) gl

Since |z — x| < |z —y| + |y — x| < ¥*'t, by Minkowski’s inequality, we get

~ 2 dydr\ 2

Cuar )09 = (fo fxy<2/t<fzx|<gj+ltlﬁ(z)’dz) tgl"”)
00 22]‘,, dlf %
</0 (-/Z—x|<2/”tlf2(2)|dz> t2"—*1)

1
b 2 1 2
* /R( ¢>@lf2(z)| Wdt) dz
= o+l
ﬂ%/ @l
|

z—x0|>2r |Z - x|n

IA

IA

For x € B(xg, 1), we have |z — x| > |z — xg| — |xo — x| > |z — x| — %lz—xol = %|z—x0|.Soby

Fubini’s theorem and Hoélder’s inequality, we obtain

3 [f (2)]
Gt 2% [T
«? |z—x0|>2r |Z — X0 |n
3jn o0 1
<27 )| — dtdz
|z—x0|>2r |z—x0 | e

3n [ 1
_ ¥ / / @)y dzde
2r |lz—x0|<t

% o0
<27 If 122 Bxo.0) dt.
2r

)t1ﬂ7+1

Thus,

yn o [ 1
ISeir o =257 [ Wllan .

Combining by (9), (10), and (11), we have

.0 3n n o0 1
||Ga,2/(f)||w(3(xo,r)) < 2Fpp /2 ”f”U’(B(xo,t))F dt.

r

(11)

Page 8 of 12


http://www.journalofinequalitiesandapplications.com/content/2014/1/128

Wu and Zheng Journal of Inequalities and Applications 2014, 2014:128
http://www.journalofinequalitiesandapplications.com/content/2014/1/128

Thus, by substitution of variables and Lemma 2.1, we get

n
p

(3n - _L [T
|G )y g < 2 F ) sup coa(Blxo, ) [ Blaro, )| 7 / [T
A ,

x0€R™,r>0

= (¥ +a) )
2 sup  @p xo,r |[f||Lp(Bx “2y ds

x0€R",r>0

i3 +) -
< 2/(3 sup wl(xO:’” ”) r”f”[}’(B(xo,r_”‘))

x0€R”,r>0

i3 4o
= V2| || o ).
Since A >3 + 2 =, by (7), (8) and (12), we have the desired theorem.

Proof of Theorem 1.3 We decompose f = f; + f, as in the proof of Theorem 1.2,
fi=fx:pandfo =f —fi. Then

106, Galf | sy = 1182 Galfill ey + 116 Gelfol sy

By Lemma 2.4, we have

A 1
|16, Golfi | o e,y = Willrny = Ilflle(zwﬁr”/ IlfIILP(B(xO,t»th.

2r

Next, we estimate the second part. We divide it into two parts. We have

2dyd
[b, Galfo(x) = ( / /F s / [b() - b(@)] oy - 2 (2) dz Zj)
2dyd
( / / sup / blx) - b el - 2)fs (o) dz ﬁf)
I'(x) peCq
2 dydt\ 2
(// sup/ (b5 — b(2)|¢:(y - 2)fa(2) dz ;Ht)
I'(x) p€Cq

=V + VL

First, for V, we find that

—bg ( / / sup
I'(x) peCq
Following the proof in Theorem 1.1, we get
1
p
( / |b(x) - bg|"|Gefo () [” dx)
B(xq,r)

1
p +00 dt
< </ |b(x) - bs|" dx) / W Nl Bo.tn o7
B(xg,r) 2r tr

" +00 dt
< |1bllr? / (A7) n
2 tr

r

dydt
-2)f,(2)dz Y

n+1

Page 9 of 12
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(12)
O

where

—) — |bx) - bs| Gy ).
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For VI, since |y — x| < £, we get |x — z| < 2¢. Thus, by Minkowski’s inequality, we obtain

2 dyde\ ?
VI < (f f IbB—b(Z)Hﬁ(ZWZ‘ fl)
Tx) |/ |x—z|<2t 4

> 2 gr \?
f(f f|“|<2tlbs—b<z)|tfz<z>|dz t—)
1
by —b
5/lxo—z>2r| b (Z)|V(Z)||x— |n

Since |z — x| > %|z — %o/, by Fubini’s theorem, we get

5 1
VI d. bg—b d
(/B(xo,r) i x) = (L(xo,r) -/xo—z|>2r} i (Z)| V(Z)’ lx — z|" ‘

n 1
=" /|;€0—2|>2r|b3 - b(Z)| lf(Z)| |x0 - Z|n dz

" +0Q0 1
re / |bB - b(z)f Lf(z)| / T dtdz
|x0—z|>2r [x0—2| e

I 1
<rp / / ‘bB - b(z)| [f(z)‘ dztnj dt
2r B(xo,t)
n [+ 1
=" /zr /t;(xo,t) 162 = bt ||/ 2 Az ot
n [T 1
+rp f / |b(z) - bB(xo,z){ V(z)| dzm dt
2 JBo.t) 3

:=A+B.

N
dx)

IA

For A, using Lemma 2.2 and Holder’s inequality, we have

n +00 1 t
A < |[bllsr? / |f ()| dz—In - dt
2r B(x0,t) tht r

n [T° ¢ dt
<rp In- —
< /2 " I |22 Bixo.2)) s

r

For B, we denote D = fB 0.0 If (2)11bBxy,p) — b(2)| dz. Then, by Hélder’s inequality and

Lemma 2.2, we get

1
D< ( If2)|” dZ)p ( / |baixo.) — b(2)]” dz)
B(xo,t) B(xo,t)

< 67 |IBIL I v Blo.1))-

=

This yields B < rp S W lzrBexo ) . Thus,

T 1 t
|| [b; G‘)‘]f”LP(B(xo,r)) <rr Ar ”f”l}’(B(xo,t))th (1 +1n ;) dt.
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By a change of variables, we obtain

16, Galf | o ey

_ 1oa [ 1 t
< sup  wy(xo,7) " [Blxo,7)| p”’/ ”f”LP(B(xo,t))—<1+1n_) dt
2 t

x0€R”,r>0 - g+1 r
_n
r? s‘lﬁ’
-1
< sup wy(xog,r p |1+In— )ds
_xoe]R"I,)r>O 2(0:7) /(; Hf”Lp(B(xo,sﬂ))< r >
oy [T p.r
= sup  wy(xo,7") 1l 2 |1+51In-)ds.
x0€R,r>0 0 LP(B(xo,s~ 7)) n s

Let w(t) = wy(x0, 27 )1, v(£) = wi(wo, £~ 7)t. Since (wy, w,) satisfies condition (3), by a

similarly argument with Theorem 1.1, we conclude the following estimates:

|6 Gelf o = sp (o) iy,

)= f | zpor @y
x0€R”,r>0

r

Using an argument similar to the above proofs and that of Theorem 1.2, we can also
show the boundedness of [b, g, ]. O
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