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1 Introduction
The intrinsic square functions were first introduced by Wilson in [, ]. They are defined
as follows. For  < α ≤ , let Cα be the family of functions φ :Rn �→R such that φ’s support
is contained in {x : |x| ≤ }, ∫ φ dx = , and for x,x′ ∈R

n,

∣∣φ(x) – φ
(
x′)∣∣ ≤ ∣∣x – x′∣∣α .

For (y, t) ∈R
n+
+ and f ∈ Lloc(R

n), set

Aαf (t, y) ≡ sup
φ∈Cα

∣∣f ∗ φt(y)
∣∣,

where φt(y) = t–nφ( yt ). Then we define the varying-aperture intrinsic square (intrinsic
Lusin) function of f by the formula

Gα,β (f )(x) =
(∫ ∫

�β (x)

(
Aαf (t, y)

) dydt
tn+

) 

,

where �β (x) = {(y, t) ∈R
n+
+ : |x – y| < βt}. Denote Gα,(f ) =Gα(f ).

This function is independent of any particular kernel, such as Poisson kernel. It domi-
nates pointwise the classical square function (Lusin area integral) and its real-variable gen-
eralizations. Although the functionGα,β (f ) depends on the kernels with uniform compact
support, there is a pointwise relation between Gα,β (f ) with different β (β ≥ ):

Gα,β (f )(x)≤ β
n
 +αGα(f )(x).

We refer for details to [].

©2014 Wu and Zheng; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/128
mailto:wuxm@zjnu.cn
http://creativecommons.org/licenses/by/2.0


Wu and Zheng Journal of Inequalities and Applications 2014, 2014:128 Page 2 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/128

The intrinsic Littlewood-Paley g-function and the intrinsic g∗
λ-function are defined, re-

spectively, by

gαf (x) =
(∫ ∞



(
Aαf (t, y)

) dt
t

) 

,

g∗
λ,αf (x) =

(∫ ∫
R
n+
+

(
t

t + |x – y|
)nλ(

Aαf (t, y)
) dydt

tn+

) 

.

In [], Wilson proved the following result.

Theorem A Let  < p < ∞,  < α ≤ , then Gα is bounded from Lp(Rn) to itself.

After that, Huang and Liu [] studied the boundedness of intrinsic square functions on
weighted Hardy spaces. Moreover, they characterized the weighted Hardy spaces by in-
trinsic square functions. In [] and [], Wang and Liu obtained some weak type estimates
on weighted Hardy spaces. In [] and [], Wang considered intrinsic functions and the
commutators generated with BMO functions on weighted Morrey spaces. Let b be a lo-
cally integrable function on R

n. Setting

Aα,bf (t, y) ≡ sup
φ∈Cα

∣∣∣∣
∫
Rn

[
b(x) – b(z)

]
φt(y – z)f (z)dz

∣∣∣∣,

the commutators are defined by

[b,Gα]f (x) =
(∫ ∫

�(x)

(
Aα,bf (t, y)

) dydt
tn+

) 

,

[b, gα]f (x) =
(∫ ∞



(
Aα,bf (t, y)

) dt
t

) 

,

and

[
b, g∗

λ,α
]
f (x) =

(∫ ∫
R
n+
+

(
t

t + |x – y|
)λn(

Aα,bf (t, y)
) dydt

tn+

) 

.

A function f ∈ Lloc(R
n) is said to be in BMO(Rn) if

‖f ‖∗ = sup
x∈Rn ,r>


|B(x, r)|

∫
B(x,r)

∣∣f (y) – fB(x,r)
∣∣dy < ∞,

where fB(x,r) = 
|B(x,r)|

∫
B(x,r) f (y)dy.

In this paper, we will considerGα , gα , g∗
λ,α and their commutators on generalizedMorrey

spaces. Let ϕ(x, r) be a positive measurable function on R
n ×R

+. For any f ∈ Lploc(R
n), we

denote by Lp,ϕ(Rn) the generalized Morrey spaces, if

‖f ‖Lp,ϕ (Rn) = sup
x∈Rn ,r>

ϕ(x, r)–
(∫

B(x,r)

∣∣f (x)∣∣p dx
) 

p
< ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/128


Wu and Zheng Journal of Inequalities and Applications 2014, 2014:128 Page 3 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/128

In [], Mizuhara introduced these generalized Morrey spaces Lp,ϕ(Rn) and discussed the
boundedness of the Calderón-Zygmund singular integral operators. Note that the gener-
alized Morrey spaces Lp,ω(Rn) with normalized norm

‖f ‖Lp,ω(Rn) = sup
x∈Rn ,r>

ω(x, r)–
∣∣B(x, r)∣∣– 

p

(∫
B(x,r)

∣∣f (x)∣∣p dx
) 

p
,

were first defined by Guliyev in []. When ω(x, r) = r
λ–n
p , Lp,ω(Rn) = Lp,λ(Rn). It is the clas-

sical Morrey space which was first introduced by Morrey in []. There are many papers
discussed the conditions on ω(x, r) to obtain the boundedness of operators on the gener-
alized Morrey spaces. For example, in [], the function ϕ is supposed to be a positively
growth function and satisfy the double condition: for all r > , ϕ(r) ≤Dϕ(r), whereD ≥ 
is a constant independent of r. This type of conditions on ϕ is studied by many authors;
see, for example, [, ]. In [], the following statement was proved by Nakai for the
Calderón-Zygmund singular integral operators T.

Theorem B Let ≤ p <∞ and let ω(x, r) satisfy the conditions

c–ω(x, r)≤ ω(x, t)≤ cω(x, r),

whenever r ≤ t ≤ r, where c (≥ ) does not depend on t, r,x ∈R
n and

∫ ∞

r
ω(x, t)p

dt
t

≤ cω(x, r)p,

where c does not depend on x and r. Then the operator T is bounded on Lp,ω(Rn) for p > 
and from L,ω(Rn) toWL,ω(Rn) for p = .

The following statement, containing some results which were obtained in [] and [],
was proved by Guliyev in [, ] (also see []).

Theorem C Let ≤ p < ∞ and let the pair (ω,ω) satisfy the condition

∫ ∞

t
ω(x, r)

dr
r

≤ cω(x, t), ()

where c does not depend on x and t. Then the operator T is bounded from Lp,ω (Rn) to
Lp,ω (Rn) for p >  and from L,ω (Rn) toWL,ω (Rn) for p = .

Recently, in [] and [], Guliyev et al. introduced a weaker condition for the bound-
edness of Calderón-Zygmund singular integral operators from Lp,ω (Rn) to Lp,ω (Rn): If
≤ p < +∞, for any x ∈ R

n and t > , there exists a constant c > , such that

∫ ∞

t

ess infr<s<∞ ω(x, s)s
n
p

r
n
p +

dr ≤ cω(x, t). ()

By an easy computation, we can check that if the pair (ω,ω) satisfies double condition,
then it will satisfy condition (). Moreover, if (ω,ω) satisfies condition (), it will also
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satisfy condition (). But the opposite is not true. We refer to [] and Remark . in []
for details.
In this paper, we will obtain the boundedness of the intrinsic function, the intrinsic

Littlewood-Paley g function, the intrinsic g∗
λ function and their commutators on gener-

alized Morrey spaces when the pair (ω,ω) satisfies condition () or the following in-
equality:

∫ ∞

t

(
 + ln

r
t

)
ess infr<s<∞ ω(x, s)s

n
p

r
n
p +

dr ≤ cω(x, t). ()

Our main results in this paper are stated as follows.

Theorem . Let  < p < ∞,  < α ≤ , let (ω,ω) satisfy condition (), then Gα is bounded
from Lp,ω (Rn) to Lp,ω (Rn).

Theorem . Let  < p < ∞,  < α ≤ , let (ω,ω) satisfy condition (), then for λ > + α
n ,

we have g∗
λ,α is bounded from Lp,ω (Rn) to Lp,ω (Rn).

Theorem . Let  < p < ∞,  < α ≤ , b ∈ BMO, let (ω,ω) satisfy condition (), then
[b,Gα] is bounded from Lp,ω (Rn) to Lp,ω (Rn).

Theorem . Let  < p < ∞,  < α ≤ , b ∈ BMO, let (ω,ω) satisfy condition (), then for
λ >  + α

n , [b, g∗
λ,α] is bounded from Lp,ω (Rn) to Lp,ω (Rn).

In [], the author proved that the functions Gα and gα are pointwise comparable. Thus,
as a consequence of Theorem . and Theorem ., we have the following results.

Corollary . Let  < p < ∞,  < α ≤ , let (ω,ω) satisfy condition (), then gα is bounded
from Lp,ω (Rn) to Lp,ω (Rn).

Corollary . Let  < p < ∞,  < α ≤ , b ∈ BMO, and let (ω,ω) satisfy condition (),
then [b, gα] is bounded from Lp,ω (Rn) to Lp,ω (Rn).

Throughout this paper, we use the notation A � B to mean that there is a positive con-
stant C (≥ ) independent of all essential variables such that A ≤ CB. Moreover, C maybe
different from place to place.

2 Proofs of main theorems
Before proving the main theorems, we need the following lemmas.

Lemma. ([]) The inequality ess supt> ω(t)Hg(t)� ess supt> v(t)g(t) holds for all non-
negative and non-increasing g on (,∞) if and only if

A := sup
t>

ω(t)
t

∫ t



dr
ess sup<s<r v(s)

< ∞, ()

where Hg(t) is the Hardy operator Hg(t) := 
t
∫ t
 g(r)dr,  < t < ∞.
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Lemma . ([]) () For  < p < ∞,

‖f ‖∗ ≈ sup
x∈Rn ,r>

(


|B(x, r)|
∫
B(x,r)

∣∣f (y) – fB(x,r)
∣∣p dy

) 
p
.

() Let f ∈ BMO(Rn),  < r < t, then

|fB(x,r) – fB(x,t)| � ‖f ‖∗ ln
t
r
.

Lemma . For j ∈ Z
+, denote

Gα,j (f )(x) =
(∫ ∞



∫
|x–y|≤jt

(
Aαf (y, t)

) dydt
tn+

) 

.

Let  < p < ∞,  < α ≤ , then we have

∥∥Gα,j (f )
∥∥
Lp(Rn) � j(

n
 +α)∥∥Gα(f )

∥∥
Lp(Rn).

From [], we know that

Gα,β (f )(x)≤ β
n
 +αGα(f )(x).

Then, by an easy computation, we get Lemma ..
By a similar argument as in [], we can easily get the following lemma.

Lemma. Let  < p < ∞,  < α ≤ , then the commutators [b,Gα] is bounded from Lp(Rn)
to itself whenever b ∈ BMO.

Now we are in a position to prove the theorems.

Proof of Theorem . The main ideas of these proofs come from []. We decompose f =
f + f, where f(y) = f (y)χB(y), f(y) = f (y) – f(y), B := B(x, r). Then

‖Gαf ‖Lp(B(x,r)) ≤ ‖Gαf‖Lp(B(x,r)) + ‖Gα f‖Lp(B(x,r)) := I + II.

First, let us estimate I. By Theorem A, we obtain

I ≤ ‖Gαf‖Lp(Rn) � ‖f‖Lp(Rn) = ‖f ‖Lp(B) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t–

n
p – dt. ()

Then let us estimate II. Recalling the properties of function φ, we know that

∣∣f ∗ φt(y)
∣∣ =

∣∣∣∣t–n
∫

|y–z|≤t
φ

(
y – z
t

)
f(z)dz

∣∣∣∣ � t–n
∫

|y–z|≤t

∣∣f(z)∣∣dz.

Since x ∈ B(x, r), (y, t) ∈ �(x) and |z – x| ≥ r, we have

r ≤ |z – x| – |x – x| ≤ |x – z| ≤ |x – y| + |y – z| ≤ t.

http://www.journalofinequalitiesandapplications.com/content/2014/1/128
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So, we obtain

Gαf(x) �
(∫ ∫

�(x)

∣∣∣∣t–n
∫

|y–z|≤t

∣∣f(z)∣∣dz
∣∣∣∣
 dydt
tn+

) 


≤
(∫

t>r/

∫
|x–y|<t

(∫
|z–x|≤t

∣∣f(z)∣∣dz
) dydt

tn+

) 


�
(∫

t>r/

(∫
|z–x|≤t

∣∣f(z)∣∣dz
) dt

tn+

) 

.

By Minkowski’s inequality and |z – x| ≥ |z – x| – |x – x| ≥ 
 |z – x|, we have

Gαf(x) �
∫
Rn

(∫
t> |z–x|



dt
tn+

) 
 ∣∣f(z)∣∣dz

�
∫

|z–x|>r
|f (z)|

|z – x|n dz �
∫

|z–x|>r
|f (z)|

|z – x|n dz

�
∫

|z–x|>r

∣∣f (z)∣∣
∫ +∞

|z–x|


tn+
dt dz

=
∫ +∞

r

∫
r<|z–x|<t

∣∣f (z)∣∣dz 
tn+

dt �
∫ ∞

r
‖f ‖Lp(B(x,t))t–

n
p – dt.

The last inequality is due to Hölder’s inequality. Thus,

‖Gαf‖Lp(B(x,r)) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t–

n
p – dt. ()

By combining () and (), we have

‖Gαf ‖Lp(B(x,r)) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))t–

n
p – dt.

So, let t = s–
p
n ; we have

‖Gαf ‖Lp,ω (Rn) � sup
x∈Rn ,r>

ω(x, r)–
∣∣B(x, r)∣∣– 

p r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))



t
n
p +

dt

� sup
x∈Rn ,r>

ω(x, r)–
∫ r–

n
p


‖f ‖

Lp(B(x,s–
p
n ))

ds

= sup
x∈Rn ,r>

ω
(
x, r–

p
n
)– ∫ r


‖f ‖

Lp(B(x,s–
p
n ))

ds.

Take w(t) = ω(x, t–
p
n )–t, v(t) = ω(x, t–

p
n )–t. Since (ω,ω) satisfies condition (), we

can verify that w(t), v(t) satisfy condition (). Let g(s) = ‖f ‖
Lp(B(x,s–

p
n ))

. Obviously, it is
decreasing on variable s. So, by Lemma ., we can conclude the following estimates:

‖Gαf ‖Lp,ω (Rn) � sup
x∈Rn ,r>

ω
(
x, r–

p
n
)–r‖f ‖

Lp(B(x,r–
p
n ))

= ‖f ‖Lp,ω (Rn). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/128
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Proof of Theorem .

[
g∗
λ,α(f )(x)

] =
∫ ∞



∫
|x–y|<t

(
t

t + |x – y|
)nλ(

Aαf (y, t)
) dydt

tn+

+
∫ ∞



∫
|x–y|≥t

(
t

t + |x – y|
)nλ(

Aαf (y, t)
) dydt

tn+

:= III + IV .

First, let us estimate III:

III ≤
∫ +∞



∫
|x–y|<t

(
Aαf (y, t)

) dydt
tn+

=
(
Gαf (x)

).

Then let us estimate IV:

IV ≤
∞∑
j=

∫ ∞



∫
j–t≤|x–y|≤jt

(
t

t + |x – y|
)nλ(

Aαf (y, t)
) dydt

tn+

�
∞∑
j=

∫ ∞



∫
j–t≤|x–y|≤jt

–jnλ
(
Aαf (y, t)

) dydt
tn+

�
∞∑
j=

–jnλ

∫ ∞



∫
|x–y|≤jt

(
Aαf (y, t)

) dydt
tn+

:=
∞∑
j=

–jnλ
(
Gα,j (f )(x)

).

Thus,

∥∥g∗
λ,α(f )

∥∥
Lp,ω (Rn) ≤ ‖Gαf ‖Lp,ω (Rn) +

∞∑
j=

–
jnλ


∥∥Gα,j (f )
∥∥
Lp,ω (Rn). ()

By Theorem ., we have

‖Gαf ‖Lp,ω (Rn) � ‖f ‖Lp,ω (Rn). ()

To complete the proof, it suffices to estimate ‖Gα,j (f )‖Lp,ω (Rn). Take f(y) = f (y)χB(y),
f(y) = f (y) – f(y), B = B(x, r). Then

∥∥Gα,j (f )
∥∥
Lp(B(x,r))

≤ ∥∥Gα,j (f)
∥∥
Lp(B(x,r))

+
∥∥Gα,j (f)

∥∥
Lp(B(x,r))

. ()

For the first part, by Lemma ., we obtain

∥∥Gα,j (f)
∥∥
Lp(B(x,r))

� j(
n
 +α)∥∥Gα(f)

∥∥
Lp(Rn) � j(

n
 +α)‖f ‖Lp(B)

� j(
n
 +α)r

n
p

∫ ∞

r
‖f ‖Lp(B(x,t))



t
n
p +

dt. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/128
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For the other part, we know

Gα,j (f)(x) =
(∫ ∞



∫
|x–y|≤jt

(
Aαf(y, t)

) dydt
tn+

) 


=
(∫ ∞



∫
|x–y|≤jt

(
sup
φ∈Cα

∣∣f ∗ φt(y)
∣∣) dydt

tn+

) 


�
(∫ ∞



∫
|x–y|≤jt

(∫
|z–y|≤t

∣∣f(z)∣∣dz
) dydt

tn+

) 

.

Since |z – x| ≤ |z – y| + |y – x| ≤ j+t, by Minkowski’s inequality, we get

Gα,j (f)(x) �
(∫ ∞



∫
|x–y|≤jt

(∫
|z–x|≤j+t

∣∣f(z)∣∣dz
) dydt

tn+

) 


�
(∫ ∞



(∫
|z–x|≤j+t

∣∣f(z)∣∣dz
) jn dt

tn+

) 


≤ 
jn


∫
Rn

(∫
t≥ |z–x|

j+

∣∣f(z)∣∣ 
tn+

dt
) 


dz

� 
jn


∫
|z–x|>r

|f (z)|
|z – x|n dz.

For x ∈ B(x, r), we have |z – x| ≥ |z – x| – |x – x| ≥ |z – x| – 
 |z – x| = 

 |z – x|. So by
Fubini’s theorem and Hölder’s inequality, we obtain

Gα,j (f)(x) � 
jn


∫
|z–x|>r

|f (z)|
|z – x|n dz

� 
jn


∫
|z–x|>r

∣∣f (z)∣∣
∫ ∞

|z–x|


tn+
dt dz

= 
jn


∫ ∞

r

∫
|z–x|<t

∣∣f (z)∣∣ 
tn+

dzdt

≤ 
jn


∫ ∞

r
‖f ‖Lp(B(x,t))



t
n
p +

dt.

Thus,

∥∥Gα,j (f)
∥∥
Lp(B(x,r))

� 
jn
 r

n
p

∫ ∞

r
‖f ‖Lp(B(x,t))



t
n
p +

dt. ()

Combining by (), (), and (), we have

∥∥Gα,j (f )
∥∥
Lp(B(x,r))

� j(
n
 +α)r

n
p

∫ ∞

r
‖f ‖Lp(B(x,t))



t
n
p +

dt.

http://www.journalofinequalitiesandapplications.com/content/2014/1/128
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Thus, by substitution of variables and Lemma ., we get

∥∥Gα,j (f )
∥∥
Lp,ω (Rn) � j(

n
 +α) sup

x∈Rn ,r>
ω

(
B(x, r)

)–∣∣B(x, r)∣∣– 
p

∫ r–
n
p


‖f ‖

Lp(B(x,s–
p
n ))

ds

= j(
n
 +α) sup

x∈Rn ,r>
ω

(
x, r–

p
n
)– ∫ r


‖f ‖

Lp(B(x,s–
p
n ))

ds

� j(
n
 +α) sup

x∈Rn ,r>
ω

(
x, r–

p
n
)–r‖f ‖

Lp(B(x,r–
p
n ))

= j(
n
 +α)‖f ‖Lp,ω (Rn). ()

Since λ >  + α
n , by (), () and (), we have the desired theorem. �

Proof of Theorem . We decompose f = f + f as in the proof of Theorem ., where
f = f χB and f = f – f. Then

∥∥[b,Gα]f
∥∥
Lp(B(x,r))

≤ ∥∥[b,Gα]f
∥∥
Lp(B(x,r))

+
∥∥[b,Gα]f

∥∥
Lp(B(x,r))

.

By Lemma ., we have

∥∥[b,Gα]f
∥∥
Lp(B(x,r))

� ‖f‖Lp(Rn) = ‖f ‖Lp(B) � r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))



t
n
p +

dt.

Next, we estimate the second part. We divide it into two parts. We have

[b,Gα]f(x) =
(∫ ∫

�(x)
sup
φ∈Cα

∣∣∣∣
∫
Rn

[
b(x) – b(z)

]
φt(y – z)f(z)dz

∣∣∣∣
 dydt
tn+

) 


≤
(∫ ∫

�(x)
sup
φ∈Cα

∣∣∣∣
∫
Rn

[
b(x) – bB

]
φt(y – z)f(z)dz

∣∣∣∣
 dydt
tn+

) 


+
(∫ ∫

�(x)
sup
φ∈Cα

∣∣∣∣
∫
Rn

[
bB – b(z)

]
φt(y – z)f(z)dz

∣∣∣∣
 dydt
tn+

) 


:= V +VI.

First, for V, we find that

V =
∣∣b(x) – bB

∣∣(∫ ∫
�(x)

sup
φ∈Cα

∣∣∣∣
∫
Rn

φt(y – z)f(z)dz
∣∣∣∣
 dydt
tn+

) 

=

∣∣b(x) – bB
∣∣Gαf(x).

Following the proof in Theorem ., we get

(∫
B(x,r)

∣∣b(x) – bB
∣∣p∣∣Gαf(x)

∣∣p dx
) 

p

�
(∫

B(x,r)

∣∣b(x) – bB
∣∣p dx

) 
p
∫ +∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p +

� ‖b‖∗r
n
p

∫ +∞

r
‖f ‖Lp(B(x,t))

dt

t
n
p +

.
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For VI, since |y – x| < t, we get |x – z| < t. Thus, by Minkowski’s inequality, we obtain

VI �
(∫ ∫

�(x)

∣∣∣∣
∫

|x–z|<t

∣∣bB – b(z)
∣∣∣∣f(z)∣∣dz

∣∣∣∣
 dydt
tn+

) 


�
(∫ ∞



∣∣∣∣
∫

|x–z|<t

∣∣bB – b(z)
∣∣∣∣f(z)∣∣dz

∣∣∣∣
 dt
tn+

) 


�
∫

|x–z|>r

∣∣bB – b(z)
∣∣∣∣f (z)∣∣ 

|x – z|n dz.

Since |z – x| ≥ 
 |z – x|, by Fubini’s theorem, we get

(∫
B(x,r)

|VI|p dx
) 

p
�

(∫
B(x,r)

∣∣∣∣
∫

|x–z|>r

∣∣bB – b(z)
∣∣∣∣f (z)∣∣ 

|x – z|n dz
∣∣∣∣
p

dx
) 

p

� r
n
p

∫
|x–z|>r

∣∣bB – b(z)
∣∣∣∣f (z)∣∣ 

|x – z|n dz

� r
n
p

∫
|x–z|>r

∣∣bB – b(z)
∣∣∣∣f (z)∣∣

∫ +∞

|x–z|


tn+
dt dz

≤ r
n
p

∫ +∞

r

∫
B(x,t)

∣∣bB – b(z)
∣∣∣∣f (z)∣∣dz 

tn+
dt

≤ r
n
p

∫ +∞

r

∫
B(x,t)

|bB – bB(x,t)|
∣∣f (z)∣∣dz 

tn+
dt

+ r
n
p

∫ +∞

r

∫
B(x,t)

∣∣b(z) – bB(x,t)
∣∣∣∣f (z)∣∣dz 

tn+
dt

:= A + B.

For A, using Lemma . and Hölder’s inequality, we have

A � ‖b‖∗r
n
p

∫ +∞

r

∫
B(x,t)

∣∣f (z)∣∣dz 
tn+

ln
t
r
dt

� r
n
p

∫ +∞

r
ln

t
r
‖f ‖Lp(B(x,t))

dt

t
n
p +

.

For B, we denote D =
∫
B(x,t)

|f (z)||bB(x,t) – b(z)|dz. Then, by Hölder’s inequality and
Lemma ., we get

D ≤
(∫

B(x,t)

∣∣f (z)∣∣p dz
) 

p
(∫

B(x,t)

∣∣bB(x,t) – b(z)
∣∣p′

dz
) 

p′

� t
n
p′ ‖b‖∗‖f ‖Lp(B(x,t)).

This yields B� r
n
p
∫ +∞
r ‖f ‖Lp(B(x,t)) dt

t
n
p +

. Thus,

∥∥[b,Gα]f
∥∥
Lp(B(x,r))

� r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))



t
n
p +

(
 + ln

t
r

)
dt.
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By a change of variables, we obtain

∥∥[b,Gα]f
∥∥
Lp,ω (Rn)

� sup
x∈Rn ,r>

ω(x, r)–
∣∣B(x, r)∣∣– 

p r
n
p

∫ ∞

r
‖f ‖Lp(B(x,t))



t
n
p +

(
 + ln

t
r

)
dt

� sup
x∈Rn ,r>

ω(x, r)–
∫ r–

n
p


‖f ‖

Lp(B(x,s–
p
n ))

(
 + ln

s–
p
n

r

)
ds

= sup
x∈Rn ,r>

ω
(
x, r–

p
n
)– ∫ r


‖f ‖

Lp(B(x,s–
p
n ))

(
 +

p
n
ln

r
s

)
ds.

Let w(t) = ω(x, t–
p
n )–t, v(t) = ω(x, t–

p
n )–t. Since (ω,ω) satisfies condition (), by a

similarly argument with Theorem ., we conclude the following estimates:

∥∥[b,Gα]f
∥∥
Lp,ω (Rn) � sup

x∈Rn ,r>
ω

(
x, r–

p
n
)–r‖f ‖

Lp(B(x,r–
p
n ))

= ‖f ‖Lp,ω (Rn).

Using an argument similar to the above proofs and that of Theorem ., we can also
show the boundedness of [b, g∗

λ,α]. �
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