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Abstract
The aim of this presentation is to show several integral inequalities. Among these
inequalities we have the inequality varh(f )≤ (�1 –Mh[f ])(Mh[f ] – γ1), where varh(f )
denotes the h-variance of f , which is a bounded function defined on [a,b] with
γ1 ≤ f (x)≤ �1, and γ1, �1 are two constants. This inequality is important because it
proves a generalized form of the Grüss type inequality. This improvement is given by
the inequality

0 ≤ [covh(f ,g) covh(f ,q) – covh(g,q) varh(f )]2

varh(f ) varh(q) – [covh(f ,g)]2
≤ varh(f ) varh(g) –

[
covh(f ,g)

]2
.

Using the integral arithmetic mean and h-integral arithmetic mean for a
Riemann-integrable function f we can also rewrite several integral inequalities. In
addition, we will give a generalization of inequality of Grüss for normalized isotonic
linear functionals.
MSC: 26D15; 26D10
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1 Introduction
In , Grüss [] proved the following integral inequality which gives an approximation
for the integral of a product of two functions in terms of the product of integrals of the
two functions:
Let f and g be two bounded functions defined on [a,b] with γ ≤ f (x) ≤ � and γ ≤

g(x) ≤ �, where γ, y, �, � are four constants. Then we have

∣∣∣∣ 
b – a

∫ b

a
f (x)g(x)dx –


b – a

∫ b

a
f (x)dx


b – a

∫ b

a
g(x)dx

∣∣∣∣ ≤ 

(� – γ)(� – γ)

and the inequality is sharp, in the sense that the constant / cannot be replaced by a
smaller one.
It is well known that an important resource for studying inequalities is [–]. In [],

Peng and Miao established a form of inequality of Grüss type for functions whose first
and second derivatives are absolutely continuous and the third derivative is bound. Also,
in [] Dragomir presented several integral inequalities of Grüss type, and in [] he showed
some Grüss type inequalities in inner product spaces and applications for the integral.
Another improvement of the Grüss inequality was obtained by Mercer in []. Moreover,
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in [], a Grüss type inequality was used in order to obtain some sharp Ostrowski-Grüss
type inequalities by Liu. Kechriniotis and Delibasis showed in [] several refinements of
inequality of Grüss in inner product spaces using a Kurepa’s results for Gramians. New
generalizations of the inequality of Gruss were presented in [] using Riemann-Liouville
fractional integrals. Cerone and Dragomir studied in [] some refinements of Grüss’ in-
equality. Florea and Niculescu in [] treated the problem of estimating the deviation of
the values of a function from its mean value.
The estimation of the deviation of a function from its mean value is characterized in

terms of random variables.
We denote byR([a,b]) the space of Riemann-integrable functions on the interval [a,b],

and by C([a,b]) the space of real-valued continuous functions on the interval [a,b].
The integral arithmetic mean for a Riemann-integrable function f : [a,b] → R is the

number

M[f ] =


b – a

∫ b

a
f (x)dx.

If f ,h ∈ R([a,b]) and
∫ b
a h(x)dx > , then a generalization for the integral arithmetic

mean is the number

Mh[f ] =
∫ b
a f (x)h(x)dx∫ b

a h(x)dx

called the h-integral arithmetic mean for a Riemann-integrable function f .
We find the following property of the h-integral arithmetic mean for a Riemann-

integrable function f :

Mh[f ± k] =Mh[f ]± k,

where k is a real constant.
If the function f is a Riemann-integrable function, we denote by

var(f ) =M
[(
f –M(f )

)]
the variance of f .
The expression for the variance can be expanded thus:

var(f ) =


b – a

∫ b

a

(
f (x) –


b – a

∫ b

a
f (t)dt

)

dx.

In the same way we defined the h-variance of a Riemann-integrable function f by

varh(f ) =Mh
[(
f –Mh(f )

)].
The expression for the h-variance can be expanded thus:

varh(f ) =
∫ b

a h(x)dx

∫ b

a

(
f (x) –

∫ b
a f (t)h(t)dt∫ b

a h(t)dt

)

h(x)dx.
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It is easy to see another form of the h-variance, given by the following:

varh(f ) =Mh
[
f 

]
–M

h[f ].

We note the following property of the h-variance of an integrable function f :

varh(f ± k) = varh(f ),

where k is a constant.
In [], Aldaz showed a refinement of the AM-GM inequality and used in the proof that

 –
∫ b
a f 

 (x)dx

(
∫ b
a f (x)dx) 

is a measure of the dispersion of f 
 about its mean value, which is, in fact, comparable to

the variance,

Var

(
f 
 (x)

‖f 
 (x)‖

)
,

where ‖f (x)‖ =
√∫ b

a f (x)dx.
The covariance is a measure of how much two Riemann-integrable functions change

together and is defined as

cov(f , g) =M
[(
f –M[f ]

)(
g –M[g]

)]
,

and it is equivalent to the form

cov(f , g) =M[fg] –M[f ]M[g]

=


b – a

∫ b

a
f (x)g(x)dx –


b – a

∫ b

a
f (x)dx


b – a

∫ b

a
g(x)dx.

In fact the covariance is the Chebyshev functional attached to functions f and g . In []
is written as T(f , g). The properties of the Chebyshev functional have been studied by
Elezović, Marangunić and Pec̆arić in their paper, []. For other generalizations of the
Grüss’ inequality, see [, ].
The h-covariance is a measure of how much two integrable functions change together

and is defined as

covh(f , g) =Mh
[(
f –Mh[f ]

)(
g –Mh[g]

)]
,

and it is equivalent to the form

covh(f , g) =Mh[fg] –Mh[f ]Mh[g]

=
∫ b
a f (x)g(x)h(x)dx∫ b

a h(x)dx
–

∫ b
a f (x)h(x)dx∫ b

a h(x)dx
·
∫ b
a g(x)h(x)dx∫ b

a h(x)dx
.
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In [], Pečarić used the generalization of the Chebyshev functional notion attached of
functions f and g to the Chebyshev h-functional attached of functions f and g defined
by T(f , g;h). Here, Pečarić showed some generalizations of the inequality of Grüss by the
Chebyshev h-functional. It is easy to see that, in terms of the covariance, this can bewritten
as T(f , g;h) = covh(f , g).
In terms of covariance the inequality of Grüss becomes

∣∣cov(f , g)∣∣ ≤ 

(� – γ)(� – γ), ()

and in terms of Chebyshev functional the inequality of Grüss becomes

∣∣T(f , g)∣∣ ≤ 

(� – γ)(� – γ). ()

Let x,x, . . . ,xn be real numbers, assume m ≤ xi ≤ M for all i = ,n and the average x =

n
∑n

i= xi, and X a discrete random variable given by

X =

(
xi

n

)
i=,n

.

In , Popoviciu [] proved the following inequality:

Var(X) =

n

n∑
i=

(xi – x) ≤ 

(M –m). ()

Bhatia and Davis showed in [] that the following inequality holds:

Var(X) =

n

n∑
i=

(xi – x) ≤ (M – x)(x –m). ()

The inequality of Bhatia andDavis represents an improvement of Popoviciu’s inequality,
because (M –m) ≥ (M – x)(x –m).
If there is additional information about the mean values of the two functions in the in-

equality ofGrüss thenZitikis argued in his paper, [], that the inequality can be sharpened
and he gave also a probabilistic interpretation for it.

2 Main results
We will present in this paper the integral version of inequalities () and (). Therefore we
have the following inequalities.

Lemma  Let f be a Riemann-integrable function defined on [a,b] with γ ≤ f (x) ≤ �,
where γ and � are two constants. Then we have

varh(f ) ≤ 

(� – γ), ()

where h : [a,b]→ [,∞) is a Riemann-integrable function with
∫ b
a h(x)dx > .

http://www.journalofinequalitiesandapplications.com/content/2014/1/119
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Proof Since γ ≤ f (x)≤ �, we obtain the following inequality:

∣∣∣∣f (x) – � + γ



∣∣∣∣ ≤ � – γ


.

But it is easy to see that

varh(f ) = varh

(
f –

� + γ



)

=Mh

[(
f –

� + γ



)]
–M

h

[
f –

� + γ



]

≤Mh

[(
f –

� + γ



)]
=

∫ b
a h(t)dt

∫ b

a

(
f –

� + γ



)

h(t)dt

≤ ∫ b
a h(t)dt

∫ b

a

(
� – γ



)

h(t)dt =
(� – γ)


. �

Lemma  Let f be a Riemann-integrable function defined on [a,b] with γ ≤ f (x) ≤ �,
where γ and � are two constants and a Riemann-integrable function h : [a,b] → [,∞)
with

∫ b
a h(x)dx > . Then we have the following relations:

varh(f ) ≤
(
� –Mh[f ]

)(
Mh[f ] – γ

)

or

varh(f ) ≤
(

� –
∫ b
a f (x)h(x)dx∫ b

a h(x)dx

)(∫ b
a f (x)h(x)dx∫ b

a h(x)dx
– γ

)
. ()

Proof It is easy to see that varh(f ) = ∫ b
a h(x)dx

∫ b
a (f (x) –

∫ b
a f (t)h(t)dt∫ b
a h(t)dt

)h(x)dx can be rewritten
thus:

varh(f ) =
∫ b
a f (x)h(x)dx∫ b

a h(x)dx
–

[∫ b
a f (x)h(x)dx∫ b

a h(x)dx

]

.

Next, using the idea of Dragomir [], we will make several calculations, namely

∫ b
a (� – f (x))(f (x) – γ)h(x)dx∫ b

a h(x)dx

= –�γ + (� + γ)
∫ b
a f (x)h(x)dx∫ b

a h(x)dx
–

∫ b
a f (x)h(x)dx∫ b

a h(x)dx

= –�γ + (� + γ)
∫ b
a f (x)h(x)dx∫ b

a h(x)dx
– varh(f ) –

[∫ b
a f (x)h(x)dx∫ b

a h(x)dx

]

=
(

� –
∫ b
a f (x)h(x)dx∫ b

a h(x)dx

)(∫ b
a f (x)h(x)dx∫ b

a h(x)dx
– γ

)
– varh(f ).
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Since f is a bounded function defined on [a,b] with γ ≤ f (x) ≤ �, and the function h :
[a,b] → [,∞), it follows that (� – f (x))(f (x) – γ) ≥ . Therefore, it is easy to see that∫ b
a (�–f (x))(f (x)–γ)h(x)dx∫ b

a h(x)dx
≥ . This inequality proved the inequality of the statement. �

Next we show several relations between h-variance and h-covariance.

Lemma  If f , g ∈ R([a,b]), and a Riemann-integrable function h : [a,b] → [,∞) with∫ b
a h(x)dx > , then we have the following equality:

varh(af + bg) = a varh(f ) + b varh(g) + ab covh(f , g), ()

where a and b are real numbers.

Proof From the expression of the variance, we have

varh(af + bg) =Mh
[
(af + bg)

]
–M

h[af + bg]

=Mh
[
af  + abfg + bg

]
–

(
aMh[f ] + bMh[g]

)
= aMh

[
f 

]
+ abMh[fg] + bMh

[
g

]
– aM

h[f ]

– abMh[f ]Mh[g] – bM
h[g]

= a varh(f ) + b varh(g) + ab covh(f , g).

Therefore, we deduce relationship (). �

Proposition  If f , g ∈R([a,b]), then we have the following equality:

varh(f + g) = varh(f ) + varh(g) +  cov(f , g) ()

and

varh(f – g) = varh(f ) + varh(g) –  cov(f , g). ()

Proof If we take a = b =  and a = , b = – in relation (), then we obtain equalities () and
(). �

Remark  From relations () and (), we find the parallelogram law in terms of h-variance,
namely

varh(f + g) + varh(f – g) = varh(f ) + varh(g). ()

Lemma  If f , g,p,q ∈R([a,b]), then we have the following equality:

covh(af + bg, cp + dq)

= ac covh(f ,p) + ad covh(f ,q) + bc covh(g,p) + bd covh(g,q) ()

where a, b, c, and d are real numbers.

http://www.journalofinequalitiesandapplications.com/content/2014/1/119
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Proof From the expression of the covariance, we have

covh(af + bg, cp + dq) =Mh
[
(af + bg)(cp + dq)

]
–Mh[af + bg]Mh[cp + dq]

=Mh[acfp + adfq + bcgp + bdgq]

–
(
aMh[f ] + bMh[g]

)(
cMh[p] + dMh[q]

)
= ac

(
Mh[fp] –Mh[f ]Mh[p]

)
+ ad

(
Mh[fq] –Mh[f ]Mh[q]

)
+ bc

(
Mh[gp] –Mh[g]Mh[p]

)
+ bd

(
Mh[gq] –Mh[g]Mh[q]

)
= ac covh(f ,p) + ad covh(f ,q) + bc covh(g,p) + bd covh(g,q). �

We can prove an inequality for integrable functions similar to the inequality of Cauchy-
Schwarz for random variables given by the following.

Theorem  If f , g,h ∈R([a,b]), then we have the inequality

∣∣covh(f , g)∣∣ ≤ varh(f )varh(g) or
∣∣covh(f , g)∣∣ ≤ √

varh(f )varh(g). ()

Proof If varh(g) = , then relation () is true. If varh(g) �= , then we calculate the h-
variance for the function:

w = f –
covh(f , g)
varh(g)

g thus varh(w) = varh(f ) –
covh(f , g)
varh(g)

≥ ,

because varh(w) ≥ . �

Proposition  Let f and g be two Riemann-integrable functions defined on [a,b] with
γ ≤ f (x) ≤ � and γ ≤ g(x) ≤ �, where γ, γ, �, � are four constants, and we have
a Riemann-integrable h function, h : [a,b]→ [,∞) with

∫ b
a h(x)dx > . Then we have

∣∣covh(f , g)∣∣ = ∣∣T(f , g;h)∣∣
≤

√(
� –Mh[f ]

)(
Mh[f ] – γ

)(
� –Mh[g]

)(
Mh[g] – γ

)
≤ 


(� – γ)(� – γ). ()

Proof Using Theorem  and Lemma , we deduce the statement. �

Remark  Inequality () is a refinement of inequality of Grüss, because

∣∣covh(f , g)∣∣ = ∣∣T(f , g;h)∣∣ = ∣∣Mh[fg] –Mh[f ]Mh[g]
∣∣

≤
√(

� –Mh[f ]
)(
Mh[f ] – γ

)(
� –Mh[g]

)(
Mh[g] – γ

)
≤ 


(� – γ)(� – γ).

Remark  In the proof of Lemma  we found the equality in terms of random variables,
given by

cov(� – f , f – γ) =
(
� –Mh[f ]

)(
Mh[f ] – γ

)
– varh(f ). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/119
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Remark (a) Let f be aRiemann-integrable function defined on [a,b] with γ ≤ f (x) ≤ �,
where γ, � are two constants. Then we have

var(f ) ≤ 

(� – γ). ()

(b) Let f be a Riemann-integrable function defined on [a,b] with γ ≤ f (x)≤ �, where γ,
� are two constants. Then we have

var(f ) ≤ (
� –Mh[f ]

)(
Mh[f ] – γ

)
or

var(f ) ≤
(

� –


b – a

∫ b

a
f (x)dx

)(


b – a

∫ b

a
f (x)dx – γ

)
. ()

(c) Let f and g be two Riemann-integrable functions defined on [a,b] with γ ≤ f (x) ≤ �

and γ ≤ g(x)≤ � where γ, γ, �, � are four constants. Then we have

∣∣∣∣ 
b – a

∫ b

a
f (x)g(x)dx –


b – a

∫ b

a
f (x)dx


b – a

∫ b

a
g(x)dx

∣∣∣∣
≤

√(
� –


b – a

∫ b

a
f (x)dx

)(


b – a

∫ b

a
f (x)dx – γ

)

×
√(

� –


b – a

∫ b

a
g(x)dx

)(


b – a

∫ b

a
g(x)dx – γ

)

≤ 

(� – γ)(� – γ). ()

Theorem  If f , g,q ∈R([a,b]), with f �= kq and var(f ) �= , then we have the inequality

 ≤ [covh(f , g) covh(f ,q) – covh(g,q)varh(f )]

varh(f )varh(q) – [covh(f , g)]
≤ varh(f )varh(g) –

[
covh(f , g)

]. ()

Proof For the integrable functions f , g and q, with var(f ) �= , we take the following inte-
grable function:

w =
covh(f , g) + λ covh(f ,q)

varh(f )
f – g – λq.

We calculate the variance of the function w, thus:

varh(w) = varh

((
covh(f , g)
varh(f )

f – g
)
+ λ

(
covh(f ,q)
varh(f )

f – q
))

and applying Lemma , we have

varh(w) = varh

(
covh(f , g)
varh(f )

f – g
)
+ λ varh

(
covh(f ,q)
varh(f )

f – q
)

+ λ covh
(
covh(f , g)
varh(f )

f – g,
covh(f ,q)
varh(f )

f – q
)

http://www.journalofinequalitiesandapplications.com/content/2014/1/119
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= varh(g) –
[covh(f , g)]

varh(f )
+ λ

(
varh(q) –

[covh(f ,q)]

varh(f )

)

+ λ covh
(
covh(f , g)
varh(f )

f – g,
covh(f ,q)
varh(f )

f – q
)
.

Using Lemma , we deduce the following inequality:

covh

(
covh(f , g)
varh(f )

f – g,
covh(f ,q)
varh(f )

f – q
)

=
covh(f , g) covh(f ,q)

varh(f )varh(f )
covh(f , f )

–
covh(f , g) covh(f ,q)

varh(f )
–
covh(f ,q) covh(f , g)

varh(f )
+ covh(g,q)

= covh(g,q) –
covh(f , g) covh(f ,q)

varh(f )
.

Returning to calculation of the function w, we have

varh(w) = varh(g) –
[covh(f , g)]

varh(f )
+ λ

(
varh(q) –

[covh(f ,q)]

varh(f )

)

+ λ
(
covh(g,q) –

covh(f , g) covh(f ,q)
varh(f )

)
.

Therefore, we deduce the equality

varh(f )varh(w) = varh(f )varh(g) –
[
covh(f , g)

] + λ(varh(f )varh(q) – [
covh(f ,q)

])
+ λ

(
varh(f ) covh(g,q) – covh(f , g) covh(f ,q)

)
.

Since varh(f )varh(w) ≥ , it follows that

λ(varh(f )varh(q) – [
covh(f ,q)

]) + λ
(
varh(f ) covh(g,q) – covh(f , g) covh(f ,q)

)
+ varh(f )varh(g) –

[
covh(f , g)

] ≥ 

for every λ ∈ R.
This implies that

(
varh(f )varh(q) –

[
covh(f ,q)

])(
varh(f )varh(g) –

[
covh(f , g)

])
≥ (

varh(f ) covh(g,q) – covh(f , g) covh(f ,q)
). ()

Taking into account that varh(f )varh(q) – [covh(f ,q)] �= , because f �= kq and dividing by
varh(f )varh(q) – [covh(f ,q)], we obtain the inequality of the statement. �

Remark  Let f , g and q be three integrable functions, with varh(g) �=  and varh(q) �= . If
we take the following function:

w = f –
covh(f , g)
varh(g)

g – λq,

http://www.journalofinequalitiesandapplications.com/content/2014/1/119
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then we have the inequality

 ≤ [covh(f ,q) covh(g,q) – covh(f ,q)varh(g)]

varh(g)varh(q)

≤ varh(f )varh(g) –
∣∣covh(f , g)∣∣. ()

Lemma  Let f , g be two Riemann-integrable functions defined on [a,b]. Then we have

Mh
[
f 

]
Mh

[
g

] ≥M
h[fg]. ()

Proof IfMh[f ] = , then relation () is true. Now we consider thatMh[f ] �= .

Mh
[
(λf – g)

] ≥ ,

for all λ ∈ R, so, we have

Mh
[
(λf – g)

]
= λMh

[
f 

]
– λMh[fg] +Mh

[
g

]
,

which means that

λMh
[
f 

]
– λMh[fg] +Mh

[
f 

] ≥ ,

for all λ ∈ R, which implies

Mh
[
f 

]
Mh

[
g

] ≥M
h[fg].

Lemma  represents generalized integral variant of inequality of Cauchy. �

Now we compare inequalities () and () to see which is stronger.

Theorem  Let f , g be two Riemann-integrable functions defined on [a,b]. Then we have

Mh
[
f 

]
Mh

[
g

]
–M

h[fg] ≥
[
varh(f )varh(g) – covh(f , g)

] ≥ . ()

Proof We calculate the difference of the terms which appear in inequality () and (),
thus:

Mh
[
f 

]
Mh

[
g

]
–M

h[fg] –
[
varh(f )varh(g) – covh(f , g)

]
=Mh

[
f 

]
M

h[g] – Mh[fg]Mh[f ]Mh[g] +Mh
[
g

]
M

h[f ].

But, applying the inequality between the arithmetic mean and the geometric mean and
Lemma , we deduce the relation

Mh
[
f 

]
M

h[g] +Mh
[
g

]
M

h[f ] ≥ 
√
Mh

[
f 

]
Mh

[
g

]
Mh[f ]Mh[g]

≥ Mh[fg]Mh[f ]Mh[g].
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From this, we obtain the inequality

Mh
[
f 

]
M

h[g] – Mh[fg]Mh[f ]Mh[g] +Mh
[
g

]
M

h[f ] ≥ .

Consequently the statement is true. �

3 A refinement of Grüss’ inequality for normalized isotonic linear functionals
There are many directions in which the inequality of Grüss [] has been generalized.
Using the notion of normalized isotonic linear functional which appears in the paper

[], we will give a generalization of inequality of Grüss which is related to a theorem of
Andrica and Badea (), [].
Let E be a nonempty set, L a linear class of real-valued functions and g : E → R having

the properties:
(L) f , g ∈ L imply (αf + βg) ∈ L for all α,β ∈ R,
(L)  ∈ L, i.e. if f(t) = , (∀)t ∈ E, then f ∈ L.
An isotonic linear functional (in [] is called positive definite functional) A : L → R is a

functional satisfying:
(A) A(αf + βg) = αA(f ) + βA(g), for all f , g ∈ L and α,β ∈ R.
(A) If f ∈ L and f ≥ , then A(f ) ≥ .
(A) The mapping A is said to be normalized if A() = .

Theorem  Let f ∈ L be such that f  ∈ L and assume that there exist real numbers γ and
� so that γ ≤ f ≤ �.
Then for any normalized isotonic linear functional A : L→ R one has the inequality

A
(
f 

)
–

[
A(f )

] ≤ (
� –A(f )

)(
A(f ) – γ

)
. ()

Proof Taking into account the hypothesis we have by using (L) and (L) that (f –γ ·)(� ·
 – f ) ≥  and thus by (A), we see that

A
[
(f – γ · )(� ·  – f )

] ≥ .

Using also (A) and (A) we have,

A
[
f� ·  – γ� ·  – f  + γf · ] ≥ 

or

A(f )� – γ� ·A() –A
(
f 

)
+ γA(f ) ≥ 

or

(� + γ)A(f ) – γ� ·A() ≥ A
(
f 

)
.

Therefore

(� + γ)A(f ) – γ� ·A() – [
A(f )

] ≥ A
(
f 

)
–

[
A(f )

]
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and from this we obtain

(
� –A(f )

)(
A(f ) – γ

) ≥ A
(
f 

)
–

[
A(f )

].
From the inequality of Cauchy-Schwarz for a normalized isotonic linear functional, [],

a counterpart of the CBS inequality, we obtain for f , g, f , g ∈ L where f , g : E → R and
A : L → R is any normalized isotonic linear functional

[
A(fg)

] ≤ A
(
f 

)
A

(
g

)
. ()

Now if we consider this inequality and previous theorem we deduce as in Lemma  the
following result. �

Theorem  Let f , g, fg ∈ L such that f , g ∈ L and γ ≤ f ≤ �, γ ≤ g ≤ � where γ, γ,
�,� are given real numbers.Then for any normalized linear isotonic functional A : L → R
one has the inequality

A(fg) –A(f )A(g) ≤
√(

� –A(f )
)(
A(f ) – γ

)(
� –A(g)

)(
A(g) – γ

)
. ()

Proof Because we can write

A
[(
f –A(f ) · )(g –A(g) · )] = A

[(
f –A(f ) · )g] –A

[(
f –A(f ) · )A(g)]

= A(fg) –A(f )A(g)

we can apply the CBS-inequality for a normalized linear isotonic functional, if (f – A(f ) ·
), (g –A(g) · ), (f –A(f ) · )(g –A(g) · ) ∈ L, by Theorem  we have

A(fg) –A(f )A(g) = A
[(
f –A(f ) · )(g –A(g) · )]

≤
√
A

((
f –A(f ) · ))A((

g –A(g) · ))
≤

√(
� –A(f )

)(
A(f ) – γ

)(
� –A(g)

)(
A(g) – γ

)
. �

Remark  If we take in the first theorem A = 
b–a

∫ b
a , L = L(a,b) (the Lebesque space of

integrable functions on [a,b]) and g satisfying the condition γ ≤ g ≤ � on the interval
[a,b], then we obtain inequality ().

Theorem  Let f , g,h ∈ L be such that h ≥ , fh, gh, fgh ∈ L and there exist real constants
γ, � so that γ ≤ g ≤ �. Then for any B : L → R an isotonic linear functional so that
B(h) >  one has the inequality

∣∣∣∣B(fgh)B(h)
–
B(fh)
B(h)

B(gh)
B(h)

∣∣∣∣
≤

√(
� –

B(fh)
B(h)

)(
B(fh)
B(h)

– γ

)(
� –

B(gh)
B(h)

)(
B(gh)
B(h)

– γ

)
. ()
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Proof We use the normalized isotonic linear functional A on L defined by

Ah(f ) =


B(h)
B(hf ),

A : L → R. �

4 Properties of h-variance
. If f , g ∈R([a,b]), then we have the following inequality:

√
varh(f + g) ≤ √

varh(f ) +
√
varh(g). ()

Proof From equality (), we have

varh(f + g) = varh(f ) + varh(g) +  covh(f , g)

=
(√

varh(f ) +
√
varh(g)

) – 
(√

varh(f )varh(g) – covh(f , g)
)
.

Applying the inequality of Cauchy-Schwarz for integrable functions given by

∣∣covh(f , g)∣∣ ≤ √
varh(f )varh(g),

it follows that

varh(f + g) ≤ (√
varh(f ) +

√
varh(g)

),
which implies the inequality of the statement. �

. If f , g ∈R([a,b]), then we have the following inequality:

√
varh(f – g) ≥ ∣∣√varh(f ) –

√
varh(g)

∣∣. ()

Proof From relation (), we have

varh(f – g) = varh(f ) + varh(g) –  covh(f , g)

=
(√

varh(f ) –
√
varh(g)

) + 
(√

varh(f )varh(g) – covh(f , g)
)
.

Applying the inequality of Cauchy-Schwarz for integrable functions, we obtain

varh(f – g) ≥ (√
varh(f ) –

√
varh(g)

),
which implies the inequality of the statement. �

. The natural way to obtain these quantities is by introducing and using the standard
inner product (also known as the dot product) on C([a,b]). The inner product of any two
continuous f and g functions is defined by

〈f , g〉h = covh(f , g).
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The result is always a real number. Therefore the set C([a,b]) can be organized as an
Euclidean space.
The inner product of C([a,b]) with itself is always non-negative. This product allows

us to define the ‘length’ of an integrable function f through

‖f ‖h =
√〈f , f 〉h =

√
covh(f , f ) =

√
varh(f ).

This length function satisfies the required properties of a norm and is called the Euclidean
norm on C([a,b]).
Finally, one can use the norm to define a metric (or distance function) on C([a,b]) by

dh(f , g) = ‖f – g‖h =
√
varh(f – g).

This distance function is called the Euclideanmetric. This formula expresses a special case
of the Pythagorean theorem.
From relation (), we have

√
varh(f – q) =

√
varh

(
(f – g) + (g – q)

) ≤ √
varh(f – g) +

√
varh(g – q),

so we obtain the triangle inequality,

dh(f ,q) ≤ dh(f , g) + dh(g,q).

Remark  From [], the analog of the arithmetic mean in the context of finite measure
spaces (X,�;μ) is the integral arithmeticmean, which, for aμ-integrable function f : X →
R is the number

M(f ;μ) =


μ(X)

∫
X
f dμ,

whereM(f ;μ) represents in probability theory the conditional expectation of the random
variable f .

A result which represents another estimate of Jensen’s inequality, in the sense of gener-
alizations of the integral arithmetic mean and variance, can also be found in [], page .

Lemma  ([], .) (Another estimate of Jensen’s inequality) Let (X,�;μ) be a finite
measure space and let g : X → R be a μ-integrable function (or g ∈ L(μ)). If f is a twice
differentiable function given on an I interval that includes the image of g ; and m≤ f ′′ ≤M,
then

m

var(g) ≤M(f ◦ g;μ) – f

(
M(g;μ)

) ≤ M

var(g),

where var(g) =M((g –M(g;μ));μ) denotes the variance of g .

Izumio et al. showed in [] some extensions of Grüss’ inequality and they also studied
the integral-typeGrüss’ inequalities for Lebesque space Lμ(�) for a finite positivemeasure
μ on �.
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5 Applications
. Taking into account the integral arithmetic mean and h-integral arithmetic mean for a
Riemann-integrable function f : [a,b]→ R we can rewrite the following inequalities.
(a) In the casewhen p≥  the integral formof the inequality fromTheorem. (see [])

was given by Theorem .. Under the conditions of Theorem ., the inequality becomes

M

[
f m+

gp

]
≥ Mm+

 [f ]
Mp

 [g]
.

(b) In [], Mortici gave a new refinement of Radon’s inequality. Using the integral form
of the reverse of inequality from Theorem . (see []) we obtain, for p ∈ (–, ), m ∈
(–, ) and m ≤ p, if f , g : [a,b] → R+ are two integrable functions on [a,b] with g(x) > ,
(∀)x ∈ [a,b] a continuous function on [a,b], the inequality

M

[
f m+

gp

]
≤ Mm+

 [f ]
Mp

 [g]
.

(c) From the integral form of the inequality from Consequence  (see []) we deduce if
f , g : [a,b] → R+ are two integrable functions, g a continuous function on [a,b], g(x) > ,
(∀)x ∈ [a,b] and f (x) ∈ (, ), (∀)x ∈ [a,b] the following inequality:

M

[
f

gr( – f )

]
≥ 

Mr
[g]

M[f ]
 –M[f ]

,

where r ∈ [, ).
. (a) Starting from Theorem ., the inequalities (.) and (.), Theorem . and The-

orem ., given in [], by using Theorem  (see []) and Theorem  (see []) we
can obtain the next properties for certain Riemann-integrable functions. If g(x) >  and
if f , g : [a,b] → R+ are two integrable functions on [a,b] with m ≤ f (x)

g(x) ≤ M, (∀)x ∈ [a,b]
andM < , then

 ≤M

[
fg

g – f

]
–

M
 [g]

M[g] –M[f ]

≤M

[
fg

(g – f )

]
–

M[f ]M
 [g]

M
 [g] –M

 [f ]
–
M[f ]
M[g]

·
(
M

[
g

(g – f )

]
–

M
 [g]

(M[g] –M[f ])

)

and

 ≤M

[
fg

g – f

]
–

M
 [g]

M[g] –M[f ]

≤ 

(M –m)

(


( –M)
–


( –m)

)
M[g].

(b) If g(x) >  and if f , g : [a,b] → R+ are two integrable functions on [a,b] with m ≤
f (x)
g(x) ≤M, (∀)x ∈ [a,b] andM < , then we have

 ≤M

[
fg

g – f

]
–
M[f ]M[g]
M[f – g]

≤
(

M
 –M

+
m

 –m
–

(M +m)
 –M +m

)
M[g]
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and

 ≤M

[
fg

g – f

]
–
M[f ]M[g]
M[f – g]

≤M[g]
(M +m)M[g] –M[f ]

M[f + g] – (M +m)M[g]
– 

M +m
 – (M +m)

M[g] +M

[
fg

g – f

]
.

(c) Using the integral form of the inequality (.) and (.) from Theorem . (see []),
under the conditions of Theorem  (see []) we find that, for every n ≥ , p ≥ , g(x) > 
and if f , g : [a,b] → R+ are two continuous functions on [a,b] with m = inf[a,b]

f (x)
g(x) , M =

sup[a,b]
f (x)
g(x) , we have

 ≤M

[
f p

gp–

]
–

Mp
 [f ]

Mp–
 [g]

≤ p

(M –m)

(
Mp– –mp–)M[g].

If f , g : [a,b]→ R+ are two integrable functions on [a,b] then

 ≤M

[
f p

gp–

]
–

Mp
 [f ]

Mp–
 [g]

≤ p
(
M

[
f p

gp–

]
–

Mp
 [f ]

Mp–
 [g]

–
M[f ]
M[g]

(
M

[
f p–

gp–

]
–
Mp–

 [f ]
Mp–

 [g]

))
.

(d) Now we will rewrite the integral form of the inequality (.) from Theorem . (see
[]) which is given in Theorem  (see []). If p≥ , f and g are two continuous functions
f , g : [a,b]→ R+ on [a,b], withm = inf[a,b]

f (x)
g(x) ,M = sup[a,b]

f (x)
g(x) , then we have

 ≤M

[
f p

gp–

]
–

Mp
 [f ]

Mp–
 [q]

≤ [(M +m)M[g] –M[f ]]p

Mp–
 [f ]

–
(M +m)p

p–
M[g] +M

[
f p

gp–

]
.

. (i) Under the previous conditions we have

 ≤M

[
f p

gp–

]
–

Mp
 [f ]

Mp–
 [q]

≤
[
Mp +mp –

(M +m)p

p–

]
M[g].

(ii) If f , g : [a,b] → R+ are two integrable functions on [a,b] with g(x) > , (∀)x ∈ [a,b],
p >  andmg(x) ≤ f (x)≤Mg(x), (∀)x ∈ [a,b], then we have

p(p – )mp–
(
M

[
f 

g

]
–
M

 [f ]
M[g]

)
≤M

[
f p

gp–

]
–

Mp
 [f ]

Mp–
 [g]

≤ p(p – )Mp–
(
M

[
f 

g

]
–
M

 [f ]
M[g]

)
.

. The following two inequalities are rewritten here and have as a starting point an in-
equality from [].
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(i) If a,b ∈ R, a < b, f : [a,b]→ R+ is a convex and continuous function and h, l : [a,b]→
R+ are two integrable functions on [a,b], and, in addition, if g : [a,b] → R+ is integrable
on [a,b], then

sup
x∈[a,b]

{
h(x)
l(x)

}[
M

[
l · (f ◦ g)] – f

(
Ml[g]

) ·M[l]
]

≥ [
M

[
h · (f ◦ g)] – f

(
Mh[g]

) ·M[h]
]

≥ inf
x∈[a,b]

{
h(x)
l(x)

}[
M

[
l · (f ◦ g)] – f

(
Ml[g]

) ·M[l]
]
,

or

sup
x∈[a,b]

{
h(x)
l(x)

}
M[l]

[
Ml[f ◦ g] – f

(
Ml[g]

)]
≥M[h]

[
Mh[f ◦ g] – f

(
Mh[g]

)]
≥ inf

x∈[a,b]

{
h(x)
l(x)

}
M[l]

[
Ml[f ◦ g] – f

(
Ml[g]

)]
.

(ii) If a,b ∈ R, a < b, f : [a,b] → R+ is a convex and continuous function, p,q : [a,b] →
R+ are two integrable functions on [a,b] with q ∈ (, ), if g : [a,b] → R+ is integrable on
[a,b] andM ≥m ≥  are such thatMp(x)≥ q(x) ≥mp(x), (∀)x ∈ R, then

M

q

(
M[p]
M[q]

) 
q [
Mp[f ◦ g] – f

(
Mp[g]

)] ≥Mq [f ◦ g] – f
(
Mq [g]

)

≥m

q

(
M[p]
M[q]

) 
q [
Mp[f ◦ g] – f

(
Mp[g]

)]
.

. Starting from the inequality of Halliwell and Mercer (see []), we can establish the
following result.
If a,b ∈ R, a < b, f , g : [a,b] → R+ are two continuous and strict positive functions on

[a,b] andM[f ] =M[g], then the following inequality holds:

M
[

g(g – f )

g + (max{supx∈[a,b] f , supx∈[a,b] g})
]

≤M
[
f ln

(
f
g

)]

≤M
[

g(g – f )

g + (min{infx∈[a,b] f , infx∈[a,b] g})
]
.
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5. Peng, G-H, Miao, Y: A note on Grüss type inequality. Appl. Math. Sci. 3(8), 399-402 (2009)
6. Dragomir, SS: Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 31(4), 397-415 (2000)
7. Dragomir, SS: Some Grüss type inequalities in inner product spaces. JIPAM. J. Inequal. Pure Appl. Math. 4(2), Article

ID 42 (2003)
8. Mercer, AMcD: An improvement of the Grüss inequality. JIPAM. J. Inequal. Pure Appl. Math. 6(4), Article ID 93 (2005)
9. Liu, Z: Some sharp Ostrowski-Grüss type inequalities. Univ. Beograd. Publ. Electrotehn. Fak. Ser. Mat. 18, 14-21 (2006)
10. Kechriniotis, A, Delibasis, K: On generalizations of Grüss inequality in inner product spaces and applications.

J. Inequal. Appl. 2010, Article ID 167091 (2010)
11. Dahmani, Z, Tabharit, L, Taf, S: New generalizations of Grüss inequality using Riemann-Liouville fractional integrals.

Bull. Math. Anal. Appl. 2(3), 93-99 (2010)
12. Cerone, P, Dragomir, SS: Mathematical Inequalities: A Perspective. CRC Press, Taylor & Francis, New York (2011)
13. Florea, A, Niculescu, CP: A note on Ostrowski’s inequality. J. Inequal. Appl. 2005(5), 459-468 (2005)
14. Aldaz, JM: A refinement of the inequality between arithmetic and geometric means. J. Math. Inequal. 2(4), 473-477

(2008)
15. Halmos, P: Finite Dimensional Vector Spaces. Springer, Berlin (1974)
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