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Abstract

In this paper, we consider the problem for identifying the unknown source in the
Poisson equation in a half unbounded domain. A conditional stability result is given
and a quasi-boundary value regularization method is presented to deal with this
problem. For the regularization solution, the Holder type stability estimate between
the regularization solution and the exact solution is given. Numerical results are
presented to illustrate the accuracy and efficiency of this method.
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1 Introduction
Inverse source problems arise in many branches of science and engineering, e.g. heat con-
duction, crack identification, electromagnetic theory, geophysical prospecting, and pol-
lutant detection. For the heat source identification, there have been a large number of
research results for different forms of heat source [1-9]. To the author’s knowledge, there
were few papers for identifying an unknown source in the Poisson equation using the reg-
ularization method. In [10], the authors identified the unknown point source with the
logarithmic potential. In [11], the author identified the unknown point source using the
projective method. In [12], the authors identified the unknown point source using the
Green’s function. In [13, 14], the authors identified the unknown source dependent only
on one variable using the dual reciprocity method. In [15], the authors identified the un-
known source dependent only on one variable using the method of fundamental solution.
But by the regularization method, there are a few papers with strict theoretical analysis
on identifying the unknown source.

In this paper, we consider the following inverse problem: to find a pair of functions
(u(x,9),f (%)) which satisfy

Uy — Uyy = f(X), —00 <X <00,y >0,

u(x,0) = 0, —00 < X < 00,
(1.1)
u(x,9)|y—x bounded, —oo0<x<o0,

u(x,1) = g(x), —00 < X < 00,
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where f(x) is the unknown source depending only on one spatial variable and u(x,1) = g(x)
is the supplementary condition. In applications, input data g(x) can only be measured,
there will be measured data function gs(x) which is merely in L2(R), and it satisfies

llg —gsll2my <4, (12)

where the constant § > 0 represents a noise level of input data.

The problem (1.1) is ill-posed, i.e., the solution (if it exists) does not depend continuously
on the data. One way to solve an ill-posed problem is by perturbing it into a well-posed
one. Many perturbing techniques have been proposed, including a biharmonic regular-
ization developed by Lattés and Lions in [16], a pseudo-parabolic regularization proposed
by Showalter and Ting in [17], a stabilized quasi-reversibility proposed by Miller in [18],
the method of quasi-reversibility proposed by Mel'nikova in [19], a hyperbolic regulariza-
tion proposed by Ames and Cobb in [20], the Gajewski and Zacharias quasi-reversibility
proposed by Huang and Zheng in [21], a quasi-boundary value method by Denche and
Bessila in [22], and an optimal regularization proposed by Boussetila and Rebbani in [23].
It appears that Showalter in [24] was the first who used the quasi-boundary value regular-
ization method to consider the backward heat conduction problem. In [25], the authors
used the quasi-boundary-value method to consider the Cauchy problem for elliptic equa-
tions with nonhomogeneous Neumann data. In this paper, we use the quasi-boundary
value regularization method to identify the unknown source for the Poisson equation.

The outline of the paper is as follows. Section 2 gives an analysis on the ill-posedness
of this inverse problem and some auxiliary results. Section 3 gives a regularization solu-
tion and error estimation. Section 4 gives some examples to illustrate the accuracy and
efficiency of this method. Section 5 puts an end to this paper with a brief conclusion.

2 lll-posedness of the problem and some auxiliary results
The ill-posedness can be seen by solving the problem in the frequency domain. Let

f&):= 5 f (o) dx @.1)

1 o0
— e
A/ 27 [oo
be the Fourier transform of the function f(x).

The problem (1.1) can be formulated in frequency space as follows:

E20(E,y) — iy &,9) =f(E), E€Ry>0,

u(5,0)=0, £ eR, (2.2)
i(,9)y» bounded, & eR,
ﬁ(é:l)Zg(f): EelR.
The solution of the problem (1.1) is given by
5 £
f)= mg(é)- (2.3)
So
fw=—— [ Tee £ sera (2.4)
Var S 1m e ‘
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The unbounded function ﬁfm in (2.3) or (2.4) can be seen as an amplification factor
of g(£) when & — oo. Therefore when we consider our problem in L2(R), the exact data
function g(&§) must decay rapidly as § — oo. But in the applications, the input data g(x)
can only be measured and never be exact. We assume the measured data function gs(x) €
L2(R). Thus if we try to obtain the unknown source f(x), high frequency components in the
error are magnified and can destroy the solution. So it is impossible to solve the problem
(1.1) by using the classical method. In the following section, we will use a quasi-boundary
value regularization method to deal with the ill-posed problem. Before doing that, we

impose an a priori bound on the input data i.e.,

FOl,w <E p>0, 2.5)

where E > 0 is a constant, | - ||z» denotes the norm in Sobolev space H?(R) defined by

1
oo 2
Ol = ( / Fe (e d&) : (26)
—00
Now we give some lemmas which are very useful for our main conclusion.
Lemma 2.1 Ifx > 1, we have the following inequality:
1 e
<—- 2.7
l-e* " e-1 @7)
Lemma 2.2 For 0 < 8 <1, the following inequality hold:
p&? 0-4 b a2
Proof Let
__ p¥ 2-4
The proof of (2.8) is separated into three cases.
Casel. || =& = %; we get
AE) < (1+82) E <igl7 <57 = pr. (2.10)
Case 2.1 < |&] < &; we obtain
22-p
Ag) < e 2B%E77. (2.11)

= 1_ell =

If 0 < p <2, the above inequality becomes

A(§) <2B2E¥P <2827 =28 (2.12)
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Ifp >2, we get
A(g) <2B°6* <2p. (2.13)

Case 3. [§| <1; we get

262
A<l _<p o cap (2.14)
1-elél e-1
Combining (2.10) with (2.12), (2.13) and (2.14), the inequality (2.8) holds. O

3 The conditional stability result

Since the problem (1.1) is linear, stability estimates can be derived by estimating the size of
solutions to the corresponding homogeneous problem. We establish the stability estimate
for the problem (1.1).

Theorem 3.1 Suppose that f(x) is the solution of the problem (1.1) with the exact data g(x),
and suppose that (2.5) holds; then the following estimate holds:

"*2 (3.1)

ot = S5l + 27 (5 st

Proof According to (1.2), and using the Parseval formula, we have

; I{f(g)}ng = Ay + As.

2 1512
por-vor- | =
According to (2.7), when |&| < 1, we obtain

<

£2 e
‘1—6'5)_ -1

Hence

2
A < (ﬁ) le) . (3.2)

Now for A,, using the Holder inequality, we have

to= [ @Pas= [ [0 ePY QP[0 ) o)

[€1=1 [€1=1

5(/ (1+|S|2)plf(€)|2d€>p+2(/ (1+|s|2)‘2lf(5)|2ds)”+2
[&1>1 |&1>1

<ol ([ o) 2d§>%

P b
+2

& Y[ aora)

1

“f( )H <|g>1 1+[&1?)% |1
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VO (3 ] )l
<ol (—1)_ le)17%.
So we obtain
IFO] < VAL +As < VA + /A,
= Sl 5 (S5) ol .

Remark 3.1 Suppose the functions fi(x) and f,(x) are the solutions of the problem (1.1)
with the exact data g, (x) and g, (x), respectively, then we have the estimate

60 -A0] = a0 - g2<>||+w( ) () - 20 7. (33)

From (3.3), it is obvious that |i(-) — /4(-)|| = O when ||g(-) — &2(:)|| = 0. However,
this conditional stability result cannot ensure the stability of numerical computation with
noisy data. We must use the regularization method to deal with this ill-posed problem.

4 The quasi-boundary value regularization method and the error estimate
To obtain a stable approximate solution of the problem (1.1), we make a modification of
the boundary value of the (1.1) as follows:

ulx, 1) + B (x) = g5 (). (4.1)
We can obtain the regularization solution of the problem (1.1) by solving the following
problem:
—Uyx — Uyy = f(X), —00<x<00,y>0,
u(x,0) =0, —00 <X < 00,

u(x,9)y—0c bounded, —00<x< o0,

u(x, 1) + B (x) = gs(x), —o00<x <00,

where the parameter f§ is regarded as a regularization parameter. The problem (4.2) can
be formulated in frequency space as follows:

A

é”(é}’) uyy‘é;:y =f&), £§€eRy>0,
M(E,O): ’ SER:

(4.3)
i(&,9)y» bounded, £eR,
uE )+ P& =86),  EeR.
The solution of the problem (4.3) is given by
R 2
fps(&) = mf%(é), (4.4)
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1 [e¢) ex 52 R
S = o= [ e (4.5)

2 2
m is close to l_‘iw On the other hand, if |£] becomes
2
m is bounded. So f35(x) is considered as an approximation of f(x).
Now we will give an error estimate between the regularization solution and the exact

Note that for small 3,

large,
solution by the following theorem.

Theorem 4.1 Let f(x) given by (2.4) be the exact solution of (1.1) and let fg 5(x) given by
(4.5) be its regularization solution. Let assumptions (1.2) and an a priori condition (2.5)
hold. If we select

B = (%)_ (4.6)

then we have the following error estimate:

2-p

IO ~fas)]| < 672 B (1 +2max{1, (%)p }) (47)

Proof Using the Parseval formula, the triangle inequality, (2.8), and (4.6), we obtain

OB X0l ERVIORS R0l

£ £2 R
- |0 - e
g2 £2 R
= H T_emd®)- Wg(s)u
£2 . 2 A
i H FEr 1B g +1_e_|gga(s)H
& . g _z 1— ¢ l6l
i ng@ﬂ“%z) (1+8%) 7(“@)”
2
| i @O -2
; T
< p@)(HEZ) (R )H
g2 o
e W’”g(f)—&@)”
B’ s :
=swp| oy o (46 O£
+ sup L‘(S
£eR ,3252 +1—elEl

< 2max{ﬁp,ﬁ2}E+ %8
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b 2 -2
s\72 [8\P2 5\ 72
=2max;3 | = = E+| = 1)
E E E
2-p
r_ 2 S\ P2
= §r2Er2 | 1+ 2maxy1, | = . 0
E

5 Several numerical examples

In this section, we present three numerical examples to illustrate the usefulness of the pro-
posed method. The numerical examples were constructed in the following way: First we
selected the source function f(x), and we obtained the exact data function g(x) by solving
the direct problem. Then we added a normally distributed perturbation to each data func-
tion and obtained vectors gs(x). Finally we obtained the regularization solution fg 5(x) by
solving the inverse problem.

In the following, we first give an example which has the exact expression of the solutions

(). f ().
Example 1 It is easy to see that the function

u(x,y) = (1 - e’y) sinux (5.1)
and the function

f(x)=sinx (5.2)
are satisfied with the problem (1.1) with the exact data

gx) =(1-¢e")sinx. (5.3)

Suppose that the sequence {gi};_, represents samples from the function g(x) on an

equidistant grid, then we add a random uniformly perturbation to each data, which forms

the vector g;, i.e.,

& =g + erandn(size(g)), (5.4)
where
T . 1
g:(g(xl),...,g(x,,)) , xi=0-1)Ax, Ax = 1,1:1,2,...,71. (5.5)
n [—

The function ‘randn(-)’ generates arrays of random numbers whose elements are normally
distributed with mean 0, variance o2 = 1. ‘randn(size(g))’ returns an array of random en-
tries that is the same size as g. The total noise level § can be measured in the sense of root

mean square error (RMSE) according to

1

1 n 2
s=1gs —gllp = (; Y (@ _gi,5)2> . (5.6)
i=1
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Figure 1 Comparison between the exact 1.5
solution (- - -) and its computed approximations Q%& g
with various noise levels of € = 0.01 (- % -), T cé‘/ﬁw o J\ ?;9*
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Moreover, we need to make the vector g5 periodical [26] and then we take the discrete
Fourier transform for the vector gs. The approximation of the regularization solution are
computed by using the fast Fourier transform algorithm [26] and the range of the variable

x in the numerical experiment is [-8, 8].

Example 2 Consider a piecewise smooth source:

0, -8<x<-4,
X+ 4, -4<x<0,
Sfx) = (5.7)

—-x+4, 0<x<4,

0, 4<x<8.
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Figure 2 Comparison between the exact —=w————

solution and its computed approximations with 35 —*—-€=0.01
£=0.001

various levels of noise for Example 2: (a) p = 2,
(b) p=3,(c)p=4.

—6— ¢=0.0001
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f(x) and its approximations

0.5

Exact solution
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T 25f ]
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[ 2
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@ 15¢

._é

s 1Ir

g

N — — — Exact solution
35| S0 —%—- £=0.01
€=0.001

\ —e— £=0.0001

[
0

o

f(x) and its approximations

0.5

Example 3 Consider the following discontinuous case:

-1, -8<x<-4,
1, -4 <x<0,
flx) = (5.8)

-1, O0<x<4,

1, 4 <x <8.

From Figures 1-3, we can see that the smaller the ¢, the better the computed approx-
imation fps5(x). As p increases, the worse the computed approximation. This means the
numerical results are not so good for stronger ‘smoothness’ assumptions on the exact so-
lution f(x) which is consistent with the Tikhonov regularization method in [27].
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Figure 3 Comparison between the exact 15
solution and its computed approximations with
various levels of noise for Example 3: (a) p =2,
(b) p=3,(c) p=4.

f(x) and its approximations

7| — — — Exact solution

—*—- £=0.01
€=0.001

—o— £=0.0001

f(x) and its approximations

— — — Exact solution

—*—-€=0.01
£=0.001

—6&— €=0.0001

f(x) and its approximations

— — — Exact solution

—*—-€=0.01
£=0.001

—e— £=0.0001

-8 -6 -4 -2 0 2 4 6 8

In Examples 2 and 3, since the direct problem with the source f(x) does not have an
analytical solution, the data g(x) is obtained by solving the direct problem. From Figures 2
and 3, we can see that the numerical solutions are less ideal than that of Example 1. It is
not difficult to see that the well-known Gibbs phenomenon and the recovered data near
the non-smooth and discontinuities points are not accurate. Taking into consideration of
the ill-posedness of the problem, the results presented in Figures 2 and 3 are reasonable.

6 Conclusions

In this paper, we identify an unknown source term depending only on one variable in two-
dimensional Poisson equation. This problem is ill-posed, i.e., the solution (if it exists) does
not depend on the input data. We obtained the stability estimate using the conditional
stability. Moreover, using the quasi-boundary value regularization method, we obtain the
regularization solution and the Holder type error estimate between the exact solution and
the regularization solution. According to [28], this Holder type error estimate is order
optimal.
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