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Abstract
Let (X ,d,μ) be a geometrically doubling metric spaces and the measure μ satisfy the
upper doubling condition. The aim of this paper, under this assumption, is to study
the boundedness of the bilinear Calderón-Zygmund operator of type ω(t). As an
application, we obtain the Morrey boundedness properties of the bilinear operator.
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1 Introduction andmain results
In the last few decades, the classical theory of the singular integral has played an important
role in harmonic analysis. One of the main features of these works is that the underlying
spaces or domains X possess the measure doubling property,

μ
(
Q(x, r)

) ≤ Cμ
(
Q(x, r)

)
, (.)

whereμ is a Borelmeasure,Q(x, r) denotes the ball with center x and radius r > . Ametric
space (X ,d) equipped with such a measure μ is called a space of homogeneous type. It is
well known that themeasure doubling condition in the analysis on spaces of homogeneous
type is a key assumption, such as that Euclidean spaces with weightedmeasures satisfy the
doubling property (.).
However, recently, some works indicated that the measure doubling condition is super-

fluous for most of the classical singular integral operator theory, and many results on the
Calderón-Zygmund theory have been proved valid if the condition (.) is replaced by a
mild volume growth condition,

μ
(
Q(x, r)

) ≤ Crd, (.)

where C is a positive constant, d is a dimension of the underlying spaces, x ∈ X , r ∈
(,∞). Such a measure does not satisfy the doubling condition. For example, Tolsa []
established Calderón-Zygmund theory for a nondoubling measure and introduced the
RBMO spaces, a variant of the space BMO, and he proved that Calderón-Zygmund opera-
tors are bounded fromH(μ) into L(μ). Nazarov et al. [] showed that if T is a Calderón-
Zygmund operator bounded on L(μ), then T is bounded on Lp(μ) for all p ∈ (,∞) and
from L(μ) into L,∞(μ).
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Recently, Hytönen [] gave a new class of metric measures spaces (X ,d,μ) (instead of
(Rn,d,μ)), which are called non-homogeneous spaces, the measure μ satisfies the upper
doubling condition (see definition .). The new class of metric measures spaces are suf-
ficiently general to include in a natural way both the space of homogeneous type and a
metric space with the mild volume growth condition.
Anh and Doung [] established the boundedness of Calderón-Zygmund operator on

various function spaces on (X ,d,μ) and they extended the work of Tolsa on the non-
homogeneous spaces (Rn,d,μ) to a more general non-homogeneous spaces (X ,d,μ).
Meanwhile, multilinear Calderón-Zygmund theory has been studied by many re-

searchers. The theorywas introduced byCoifman andMeyer [] in  and it was further
investigated by Grafakos and Torres []. Chen and Fan [, ] obtained some estimates for
the bilinear singular integral. Xu [] obtained the boundedness of a multilinear Calderón-
Zygmund operator on Lp(Rn,μ),  < p <∞.
Yabuta [] introduced a generalized operator: a Calderón-Zygmund operator of type

ω(t), which generalizes the classical Calderón-Zygmund operator. Maldonado and Naibo
[] developed a theory of the bilinear Calderón-Zygmund operator of type ω(t) (see Def-
inition .) and extended some results of Yabuta.

Theorem A [] Consider ω(t) ∈ Dini(/), and let T be a bilinear Calderón-Zygmund
operator of type ω(t) in R

n. If  < p,p < ∞ and 
 ≤ p < ∞ such that 

p = 
p

+ 
p
, then T

can be extended to a bounded operator from Lp (Rn)× Lp (Rn) into Lp(Rn), where Lp (Rn)
or Lp (Rn) should be replaced by L∞

c (Rn) if p =∞ or p =∞, respectively.

In this paper, we study the boundedness of a bilinear Calderón-Zygmund operator of
type ω(t) on a non-homogeneous metric space, where we only assume ω ∈ Dini(). And
we also note that the condition of kernel (.) is more general than the size condition
defined by Hu []. So this is a new result, which generalizes some works of Maldonado
and Naibo [] and Anh and Doung [] on (X ,d,μ). As an application, we investigate the
boundedness of the bilinear Calderón-Zygmund operator of type ω(t) over aMorrey space
on (X ,d,μ).
Before stating our main results, we fix some notations and define some terminolo-

gies. Throughout this paper, a ball Q denotes Q = Q(x, r) = {y ∈ X : d(x, y) < r} which is
equipped with a fixed center x ∈ X and radius r > . The center and radius of Q are de-
noted by xQ and rQ. For α >  and Q =Q(x, r), the notation αQ := Q(x,αQ) stands for the
concentric dilation of Q. For notational convenience, we will occasionally write �f = (f, f).
The following notions of geometrically doubling and upper doublingmeasuresμ are orig-
inally from Hytönen [].
We finally observe that in the sequel the letterC will be used to denote various constants

which do not depend on the functions.

Definition . Ametric space (X ,d) is called geometrically doubling if there exists a num-
ber N ∈N such that any open ball Q(x, r)⊂X can be covered by at most N balls Q(xi, r ).

Lemma . For a metric space (X ,d), the following statements are equivalent:
() (X ,d) is geometrically doubling.
() For any ε ∈ (, ), any ball Q(x, r)⊂X can be covered by at most Nε–n balls Q(xi, εr).
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() For every ε ∈ (, ), any ball Q(x, r)⊂X can contain at most Nε–n centers xi of
disjoint balls Q(xi, εr).

() There existsM ∈ N such that any ball Q(x, r)⊂X can contain at mostM centers xi
of disjoint balls {Q(xi, r/)}Mi=.

Definition . A Borel measure μ in the metric space (X ,d,μ) is said to be an upper
doubling measures if there exists a dominating function λ :X ×R+ →R+ and a constant
Cλ such that:
() For any fixed x ∈X , r �−→ λ(x, r) is increasing.
() λ(x, r)≤ Cλλ(x, r).
() The inequality μ(x, r) := μ(Q(x, r))≤ λ(x, r)≤ Cλλ(x, r/) holds for all x ∈X ,

 < r < ∞.
() λ(x, r)≈ λ(y, r) for all r > , x, y ∈X and d(x, y) ≤ r.

Remark  If we take the dominating function λ(x, r) to be μ(Q(x, r)), then the measure
doubling is a special case of upper doubling. On the other hand, a Radon measure μ as in
(.) on R

d is also an upper doubling measure by taking the dominating function λ(x, r) =
Crd .

In this paper, we assume that (X ,d,μ) is a geometrically doubling metric spaces and the
measure μ is an upper doubling measure. And we denote Lp(X ,μ) by Lp(μ) for brevity.
We recall the Calderón-Zygmund operator defined by Anh and Doung []. A kernel

K (· , ·) ∈ Lloc(X ×X \ {(x, y) : x = y}) is called a Calderón-Zygmund kernel if it satisfies

∣∣K (x, y)
∣∣ ≤min

{


λ(x,d(x, y))
,


λ(y,d(x, y))

}
(.)

for all (x, y) ∈X ×X with x 
= y. There exists  < δ ≤  such that

∣∣K (x, y) –K
(
x′, y

)∣∣ + ∣∣K (y,x) –K
(
y,x′)∣∣ ≤ d(x,x′)δ

d(x, y′)δλ(x,d(x, y))
. (.)

A linear operator T is called a Calderón-Zygmund operator with K (· , ·) satisfying the
above conditions if for all f ∈ L∞(μ) with bounded support and x /∈ supp f ,

Tf (x) =
∫
X
k(x, y)f (y)dμ(y).

A new example of operators with kernel satisfying (.) and (.) is called Bergman-type
operator; it appeared in [].
For a > , we write ω ∈Dini(a) if ω : [,∞)→ [,∞), ω is nondecreasing, concave, and

|ω|Dini(a) :=
∫ 


ωa(t)

dt
t
<∞.

Now we define bilinear Calderón-Zygmund kernel of type ω(t) and the corresponding
bilinear Calderón-Zygmund operators.
Denote


[λ(x,d(x, ỹ))]

= min
i∈{,}

{


(λ(x,d(x, yi)))

}
.
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Definition . Let ω : [,∞) → [,∞) be a nondecreasing function and K (x, y, y) be
a locally integrable function defined away from the diagonal x = y = y in (X ). We say
that K (x, y, y) is a bilinear Calderón-Zygmund kernel of type ω(t) if it satisfies the size
condition,

∣∣K (x, y, y)
∣∣ ≤ CK


[λ(x,d(x, ỹ))]

(.)

for some CK >  and all (x, y, y) ∈ (X ) with x 
= yi for some i. We have the smoothness
estimates,∣∣K (x + h, y, y) –K (x, y, y)

∣∣ + ∣∣K (x, y + h, y) –K (x, y, y)
∣∣

+
∣∣K (x, y, y + h) –K (x, y, y)

∣∣
≤ CK


[λ(x,d(x, ỹ))]

ω
( |h|∑

i= d(x, yi)

)
, (.)

whenever |h| ≤ 
 maxi∈{,} d(x, yi).

A bilinear operator Tω : S × S → S′ is said to be associated with a bilinear Calderón-
Zygmund kernel of type ω(t), if

Tω(f, f)(x) =
∫
X

∫
X
K (x, y, y)f(y)f(y)dμ(y)dμ(y) (.)

for all fi ∈ C∞
 , and x /∈ ⋂

i= supp fi.
If the bilinear operator Tω is associated with K (x, y, y) and admits some bounded ex-

tensions

Tω : Lr (μ)× Lr (μ) → Lr,∞(μ)

for some  < ri <∞ (i = , ) and r >  with
∑

i=

ri
= 

r , or

Tω : Lr (μ)× Lr (μ) → L(μ)

for some  < ri < ∞ (i = , ) and
∑

i=

ri
= , then Tω is said to be a bilinear Calderón-

Zygmund operator of type ω(t).

Note that λ(x, r) ≈ λ(y, r) for all r > , x, y ∈ X and d(x, y) ≤ r. When ω(t) = tδ , δ ∈ (, ],
the linear Calderón-Zygmund operator of type ω(t) is the Calderón-Zygmund operator
defined by Anh and Doung [], so our results are more general.

Theorem . Consider ω ∈ Dini(), and let Tω be a bilinear Calderón-Zygmund oper-
ator of type ω(t) with K (x, y, y). Assume  < p,p,p < ∞,

∑
i=


pi

= 
p and fi ∈ Lpi (μ)

with
∫
Rd Tω(f, f)(x)dμ(x) =  if ‖μ‖ < ∞. Suppose Tω is a bounded operator from L(μ)×

L(μ)→ L/,∞(μ), then there exists a constant C such that

∥∥Tω(f, f)
∥∥
Lp(μ) ≤ C

∏
i=

‖fi‖Lpi (μ),

the constant C depends only on CK , pi, p.
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Remark  The assumption ofω in [] isω ∈Dini(/), which is stronger thanω ∈Dini(),
and it is easy to see because ω(t) is nondecreasing,∫ 


ω(t)

dt
t
=

∫ 


ω


 (t)ω


 (t)

dt
t

≤ ω

 ()

∫ 


ω


 (t)

dt
t
.

Next, we give the boundedness of the bilinear Calderón-Zygmund operator of type ω(t)
over Morrey space on (X ,d,μ) (for the Morrey space see Definition .).

Theorem . Assume that Tω is a bilinear Calderón-Zygmund operator of type ω(t), let
pi ∈ (,∞) and fi ∈ Lpi (μ) for i = , . Suppose Tω is a bounded operator from L(μ)×L(μ)
to L/,∞(μ), then there exists a constant C such that

∥∥Tω(f, f)
∥∥
Mp

q (μ)
≤ C

∏
i=

‖fi‖Mpi
qi (μ)

,

where  < qi ≤ pi and
∑

i=

pi
= 

p ,
∑

i=

qi
= 

q .

2 Proof of the result
Before we prove Theorem ., we need some notations and lemmas.

Definition . For any two balls Q⊂ R, we define

KQ,R =  +
∫
rQ≤d(x,xQ)≤rR


λ(xQ,d(x,xQ))

dμ(x). (.)

For α,β > , a ball Q⊂X is said to be (α,β)-doubling if μ(αQ)≤ βμ(Q).

Lemma . []
() If Q⊂ R ⊂ S are balls in X , then

max{KQ,R,KR,S} ≤ KQ,S ≤ {KQ,R +KR,S}.

() If Q ⊂ R are of compatible size, then KQ,R ≤ C.
() If αQ, . . . ,αN–Q are non-(α,β)-doubling balls (β > Clog α

λ ), then KQ,αNQ ≤ C.

In what follows, unless α, β are specified otherwise, by a doubling ball wemean a (,β)-
doubling with a fixed number β >max{C log

λ , n}, where n can be viewed as a geometric
dimension of the spaces.
For any fixed ball Q ⊂ X , let N ≥  be the smallest integer such that NQ is dou-

bling, we denote this ball by Q̃. Denote by mQf the mean value of f on Q, namely,
mQf = 

μ(Q)
∫
Q f (x)dμ. Let η >  be a fixed constant, we say that f ∈ Lloc(μ) is in RBMO(μ)

if there exists a constantA such that


μ(ηQ)

∫
Q

∣∣f (y) –mQ̃f
∣∣dμ(y) ≤A (.)

for any ball Q, and

|mQf –mRf | ≤AKQ,R (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/113
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for any two doubling balls Q ⊂ R. The minimal constant A is the RBMO(μ) norm of f ,
and it will be denoted by ‖f ‖∗.
We will prove Theorem . via the boundedness of sharp maximal estimates. Let f be a

function in Lloc(μ), the sharp maximal function of f is defined by

M�f (x) = sup
Q�x


μ(Q)

∫
Q

∣∣f (y) –mQ̃f
∣∣dμ(y) + sup

R⊃Q�x
Q,R doubling

|mQf –mRf |
KQ,R

, (.)

where the supremum is taking over all the ballsQ containing the point x. In order to prove
our results, we need a variant of (.)

M�
δ f (x) =

(
M�|f |δ(x)) 

δ .

For k ≥ , we denote the non-centered Hardy-Littlewood maximal operator

M(k)f (x) = sup
x∈Q⊂X


μ(kQ)

∫
Q

∣∣f (y)∣∣dμ(y),

which is bounded on Lp(X ,μ) for p > , we can find the proof in []. We also need the
following multilinear maximal operator:

M(k)(�f )(x) = sup
x∈Q⊂X

∏
i=


μ(kQ)

∫
Q

∣∣fi(yi)∣∣dμ(yi), k ≥ ,

which is introduced by Lerner [] when μ is Lebesgue measure and k = . It obvious that
the operatorMk(�f ) is strictly controlled by the -fold product ofM(k)f .
The non-centered doubling maximal operator is defined by

Nf (x) = sup
Q�x

Q doubling


μ(Q)

∫
Q

∣∣f (y)∣∣dμ(y), (.)

we denote Nδf (x) = (N |f |δ(x)) δ . By the Lebesgue differential theorem, it is easy to see that
|f (x)| ≤ Nδf (x) for any f ∈ Lloc(μ) and μ-a.e. x ∈X .

Lemma . Let f ∈ Lloc(μ) with the extra condition
∫
f dμ =  if ‖μ‖ := μ(X ) < ∞. As-

sume that for some p,  < p < ∞, inf{,Nf } ∈ Lp(X ,μ). Then we have

‖Nδf ‖Lp(μ) ≤ C
∥∥M�

δf
∥∥
Lp(μ).

The proof of Lemma . needs a slight modification of the proof of Theorem . in [],
so we omit the details.
In the following proofs we will employ several times the following simple Kolmogorov

inequality. Let (X ,d,μ) be a probability measure spaces and let  < p < q < ∞, then there

http://www.journalofinequalitiesandapplications.com/content/2014/1/113
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is a constant C = Cp,q such that for any measurable function f ,

‖f ‖Lp(μ) ≤ C‖f ‖Lq,∞(μ). (.)

Lemma . Let Tω be a bilinear Calderón-Zygmund operator of type ω(t),  < δ < 
 . Sup-

pose Tω is bounded from L(μ) × L(μ) to L/,∞(μ), then there exists a constant C such
that

M�
δ

(
Tω(�f )

)
(x)≤ CM()(�f )(x), (.)

for any fi ∈ L∞
c (μ) and for every x ∈X .

Proof In order to prove (.), we combine the techniques of Theorem . in [] with the
methods of Theorem . in [], so it suffices to prove that

(


μ(Q)

∫
Q

∣∣Tω(�f )(y) – hQ
∣∣δ dμ(y)

) 
δ ≤ CM()(�f )(x) (.)

and

|hQ – hR| ≤ CKQ,RM()(�f )(x) (.)

hold for any balls Q ⊂ R with x ∈Q, Q is an arbitrary ball,

hQ =mQ
(
Tω

(
f  , f

∞


)
+ Tω

(
f ∞
 , f 

)
+ Tω

(
f ∞
 , f ∞


))
,

hR =mR
(
Tω

(
f  , f

∞


)
+ Tω

(
f ∞
 , f 

)
+ Tω

(
f ∞
 , f ∞


))
,

where we split each fi as fi = f i + f ∞
i , f i = fiχQ and f ∞

i = fi – f i , and we have

∣∣Tω(�f )(y)
∣∣ = ∣∣Tω(f, f)(y)

∣∣
≤ ∣∣Tω

(
f  , f



)
(y)

∣∣ + ∣∣Tω
(
f  , f

∞


)
(y)

∣∣
+

∣∣Tω
(
f ∞
 , f 

)
(y)

∣∣ + ∣∣Tω
(
f ∞
 , f ∞


)
(y)

∣∣.
So we obtain


μ(Q)

∫
Q

∣∣Tω(�f )(y) – hQ
∣∣δ dμ(y)

≤ 
μ(Q)

∫
Q

∣∣Tω
(
f  , f



)
(y)

∣∣δ dμ(y)

+


μ(Q)


μ(Q)

∫
Q

∫
Q

∣∣[Tω
(
f  , f

∞


)
(y) – Tω

(
f  , f

∞


)
(z)

]
+

[
Tω

(
f ∞
 , f 

)
(y) – Tω

(
f ∞
 , f 

)
(z)

]∣∣δ dμ(z)dμ(y)

+


μ(Q)


μ(Q)

∫
Q

∫
Q

∣∣Tω
(
f ∞
 , f ∞


)
(y) – Tω

(
f ∞
 , f ∞


)
(z)

∣∣δ dμ(z)dμ(y)

:= I + II + III.

http://www.journalofinequalitiesandapplications.com/content/2014/1/113
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For the first term I , applying Kolmogorov’s inequality (.) with p = δ and q = /, we
derive

I

δ =

(


μ(Q)

∫
Q

∣∣Tω
(
f  , f



)
(y)

∣∣δ dμ(y)
) 

δ

≤ Cδ

(
μ(Q)

μ(Q)

) 
δ ∥∥Tω(fχQ, fχQ)

∥∥
L/m,∞(Q, dμ

μ(Q) )

≤ Cδ

(
μ(Q)

μ(Q)

) 
δ

∏
i=


μ(Q)

∫
Q

∣∣fi(yi)∣∣dμ(yi)

≤ Cδ

(
μ(Q)

μ(Q)

) 
δ

∏
i=

μ(× Q)
μ(Q)


μ(× Q)

∫
Q

∣∣fi(yi)∣∣dμ(yi)

≤ Cδ

(
μ(Q)

μ(Q)

) 
δ
–

M()(�f )(x)

≤ CM()(�f )(x),

since T : L(μ)× L(μ)→ L/,∞(μ).
Next we consider II . Firstly, the condition d(y, z) ≤ 

 max{d(y, y),d(y, y)} holds since
y, z ∈Q, y ∈ Q, y ∈ (Q)c, then we have the following estimates:

∣∣Tω
(
f ∞
 , f 

)
(y) – Tω

(
f ∞
 , f 

)
(z)

∣∣
≤ C

∫
Q

∫
X \Q


[λ(y,d(y, ỹ))]

ω
(

d(z, y)∑
i= d(y, yi)

)∣∣f(y)∣∣∣∣f(y)∣∣dμ(y)dμ(y)

≤ C
∫
Q

∣∣f(y)∣∣ ∫
X \Q

|f(y)|
[λ(y,d(y, y))]

ω
(
d(z, y)
d(y, y)

)
dμ(y)dμ(y)

≤ C
λ(y,d(y, y))

∫
Q

∣∣f(y)∣∣ ∞∑
k=

∫
k+Q\kQ


λ(y,d(y, y))

ω
(
d(z, y)
d(y, y)

)
dμ(y)dμ(y)

≤ C
λ(xQ, rQ)

∫
Q

∣∣f(y)∣∣dμ(y)
∞∑
k=


λ(xQ, krQ)

∫
k+Q\kQ

∣∣f(y)∣∣dμ(y)ω
(
–k

)
≤ C

μ(× Q)
λ(xQ, rQ)


μ(× Q)

∫
Q

∣∣f(y)∣∣dμ(y)

×
∞∑
k=

ω
(
–k

)μ(× k+Q)
λ(xQ, krQ)


μ(× k+Q)

∫
k+Q

∣∣f(y)∣∣dμ(y)

≤ CM()(�f )(x)
∞∑
k=

ω
(
–k

)
≤ CM()(�f )(x).

Here the series
∑∞

k= ω(–k) is equivalent to
∫ 
 ω(t) dtt , where ω ∈Dini(). We use the esti-

mate, since λ(x, r)≤ Cλλ(x, r),

μ(× Q)
λ(xQ, rQ)

≤ λ(xQ, × rQ)
λ(xQ, rQ)

≤ Clog +
λ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/113
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and

μ(× k+Q)
λ(xQ, krQ)

≤ λ(xQ, ×  × krQ)
λ(xQ, krQ)

≤ C log +
λ .

We will use the same methods several times.
Similarly, we have

∣∣Tω
(
f  , f

∞


)
(y) – Tω

(
f  , f

∞


)
(z)

∣∣ ≤ CM()(�f )(x).

By the estimates above, we have

II

δ ≤ CM()(�f )(x).

It remains to consider the term in III . For y, z ∈ Q, noting that d(y, z) ≤ 
 max{d(y, y),

d(y, y)} for yi ∈ (Q)c (i = , ), we use the condition of kernel (.) to obtain

∣∣Tω
(
f ∞
 , f ∞


)
(y) – Tω

(
f ∞
 , f ∞


)
(z)

∣∣
≤ C

∫
X \Q

∫
X \Q


[λ(y,d(y, ỹ))]

× ω
(

d(z, y)∑
i= d(y, yi)

)∣∣f(y)∣∣∣∣f(y)∣∣dμ(y)dμ(y)

≤ C
∞∑
k=

∞∑
j=k

∫
k+Q\kQ

∣∣f(y)∣∣ ∫
j+Q\jQ

|f(y)|
[λ(y,d(y, y))]

× ω
(
d(y, z)
d(y, y)

)
dμ(y)dμ(y)

+C
∞∑
k=

k–∑
j=

∫
k+Q\kQ

|f(y)|
[λ(y,d(y, y))]

ω
(

d(y, z)
d(y, y)

)

×
∫
j+Q\jQ

∣∣f(y)∣∣dμ(y)dμ(y)

≤ C
∞∑
k=

∞∑
j=k

∫
k+Q\kQ

∣∣f(y)∣∣ ∫
j+Q\jQ

|f(y)|
[λ(y,d(y, y))]

× ω
(
d(y, z)
d(y, y)

)
dμ(y)dμ(y)

+C
∞∑
k=

∫
k+Q\kQ

|f(y)|
[λ(y,d(y, y))]

× ω
(

d(y, z)
d(y, y)

)∫
kQ\Q

∣∣f(y)∣∣dμ(y)dμ(y)

:= III + III.
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A trivial computation now shows that

III ≤ C
∞∑
j=

(


[λ(xQ, jrQ)]

∫
j+Q\jQ

∣∣f(y)∣∣dμ(y)ω
(

rQ
jrQ

))

×
j∑

k=

∫
k+Q\kQ

∣∣f(y)∣∣dμ(y)

≤ C
∞∑
j=

(
Clog +

λ


[λ(xQ, × j+rQ)]

∫
j+Q

∣∣f(y)∣∣dμ(y)
)

ω
(

rQ
jrQ

)

×
∫
j+Q

∣∣f(y)∣∣dμ(y)

≤ CM()(�f )(x)
∞∑
j=

ω
(
–j

)
≤ CM()(�f )(x).

And

III ≤ C
∞∑
k=

(


[λ(xQ, krQ)]

∫
k+Q

∣∣f(y)∣∣dμ(y)
)

×
k–∑
j=

∫
k+Q\kQ

∣∣f(y)∣∣dμ(y)ω
(
–k

)

≤
∞∑
k=

(


[λ(xQ, krQ)]

∫
k+Q

∣∣f(y)∣∣dμ(y)
)∫

kQ

∣∣f(y)∣∣dμ(y)ω
(
–k

)
≤

∞∑
k=

(
Clog +

λ


λ(xQ, × k+rQ)

∫
k+Q

∣∣f(y)∣∣dμ(y)
)

×
(
Clog +

λ


λ(xQ, × krQ)

∫
kQ

∣∣f(y)∣∣dμ(y)
)

ω
(
–k

)
≤ CM()(�f )(x)

∞∑
k=

ω
(
–k

)
≤ CM()(�f )(x).

Therefore,

∣∣Tω
(
f ∞
 , f ∞


)
(y) – Tω

(
f ∞
 , f ∞


)
(z)

∣∣χQ(y) ≤ CM()(�f )(x). (.)

By the above estimate, we have

III

δ =

(


μ(Q)


μ(Q)

∫
Q

∫
Q

∣∣Tω
(
f ∞
 , f ∞


)
(y) – Tω

(
f ∞
 , f ∞


)
(z)

∣∣δ dμ(z)dμ(y)
) 

δ

≤ CM()(�f )(x).
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Fix any balls Q ⊂ R with x ∈ Q, where Q is an arbitrary ball and R is a doubling ball.
Noting that R is a doubling ball we have R = R̃. We denote NQ,R +  by N such that R ⊂
NQ. Let f i = fiχQ, f Ni = fiχNQ, f

QN
i = fiχNQ\Q, f ∞

i = fiχX \NQ, f Ri = fiχR and f RNi =
fiχNQ\R, write the difference hQ – hR in the following way:

|hQ – hR|
≤ ∣∣mQ

(
Tω

(
f  , f

QN


)
+ Tω

(
f QN
 , f 

))∣∣ + ∣∣mQ
(
Tω

(
f QN
 , f QN


))∣∣

+
∣∣mQ

(
Tω

(
f N , f N

))
–mR

(
Tω

(
f N , f N

))∣∣
+

∣∣mQ
(
Tω

(
f ∞
 , f N

))
–mR

(
Tω

(
f ∞
 , f N

))∣∣
+

∣∣mQ
(
Tω

(
f N , f ∞


))

–mR
(
Tω

(
f N , f ∞


))∣∣

+
∣∣mR

(
Tω

(
f R , f

RN


)
+ Tω

(
f RN , f N

))∣∣ + ∣∣mR
(
Tω

(
f RN , f RN

))∣∣
= A +A +A +A +A +A +A.

For the term A, we, firstly, deal with Tω(f  , f
QN
 ); it follows from the size of kernel (.),

for all y ∈Q,

∣∣Tω
(
f  , f

QN


)
(y)

∣∣
≤ C

∫
Q

∫
NQ\Q

|f(y)||f(y)|
[λ(y,d(y, ỹ))]

dμ(y)dμ(y)

≤ C
∫
Q

f(y)
λ(y,d(y, y))

dμ(y)
∫
NQ\Q

f(y)
λ(y,d(y, y))

dμ(y)

≤ C

(NQ,R∑
k=

∫
k+Q\kQ

|f(y)|
λ(y,d(y, y))

dμ(y) +
∫
Q\Q

|f(y)|
λ(y,d(y, y))

dμ(y)

)

× μ(× Q)
λ(xQ, rQ)


μ(× Q)

∫
Q

∣∣f(y)∣∣dμ(y)

≤ CKQ,RM()(�f )(x).

Using the analogous methods to deal with the term Tω(f QN
 , f  ), we have

A ≤ CKQ,RM()(�f )(x).

By an argument similar to the estimate for A, we see that

A ≤ CKQ,RM()(�f )(x).

For all y ∈Q, we have

∣∣Tω(f QN
 , f QN

 (y)
∣∣

≤ C
∫
NQ\Q

∫
NQ\Q

|f(y)||f(y)|
[λ(y,d(y, ỹ))]

dμ(y)dμ(y)

≤ C
N–∑
k=

N–∑
j=

∫
k+Q\kQ

∫
j+Q\jQ

|f(y)||f(y)|
[λ(y,d(y, ỹ))]

dμ(y)dμ(y)
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+C
∫
Q\Q

∫
Q\Q

|f(y)||f(y)|
[λ(y,d(y, ỹ))]

dμ(y)dμ(y)

=:D +D.

Firstly, for D, we note that y ∈ Q, yi ∈ Q \ Q, so rQ ≤ d(y, yi) ≤ rQ, i = , . The
properties of λ imply that


λ(y, rQ)

≤ 
λ(y,d(y, yi))

≤ 
λ(y, rQ)

,

D ≤ C
[λ(y, rQ)]

∫
Q\Q

∫
Q\Q

∣∣f(y)∣∣∣∣f(y)∣∣dμ(y)dμ(y)

≤ C
[λ(xQ, rQ)]

∫
Q\Q

∫
Q\Q

∣∣f(y)∣∣∣∣f(y)∣∣dμ(y)dμ(y)

≤
∏
i=

μ(Q)
λ(xQ, rQ)


μ(Q)

∫
Q

∣∣fi(yi)∣∣dμ(yi)

≤ CM()(�f )(x).

For D, we have

D ≤ C
N–∑
k=

N–∑
j=k

∫
k+Q\kQ

∣∣f(y)∣∣ ∫
j+Q\jQ

|f(y)|
[λ(y,d(y, y))]

dμ(y)dμ(y)

+
N–∑
k=

k–∑
j=

∫
k+Q\kQ

|f(y)|
[λ(y,d(y, y))]

∫
j+Q\jQ

∣∣f(y)∣∣dμ(y)dμ(y)

:=D +D.

In the following, we will estimate D and D, respectively:

D ≤
N–∑
j=


[λ(xQ, jrQ)]

∫
j+Q\jQ

∣∣f(y)∣∣dμ(y)
j∑

k=

∫
k+Q\kQ

∣∣f(y)∣∣dμ(y)

≤
N–∑
j=


[λ(xQ, jrQ)]

∫
j+Q

∣∣f(y)∣∣dμ(y)
∫
j+Q

∣∣f(y)∣∣dμ(y)

≤ CKQ,RM()(�f )(x),

D ≤
N–∑
k=

∫
k+Q\kQ

|f(y)|
[λ(y,d(y, y))]

dμ(y)
∫
kQ

∣∣f(y)∣∣dμ(y)

≤
N–∑
k=


[λ(xQ, krQ)]

∫
k+Q

∣∣f(y)∣∣dμ(y)
∫
kQ

∣∣f(y)∣∣dμ(y)

≤ CKQ,RM()(�f )(x).

The estimates of D and D imply that

A ≤ CKQ,RM()(�f )(x).
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Analogously,

A ≤ CKQ,RM()(�f )(x).

Some estimates similar to III yield

A ≤ CM()(�f )(x).

Finally, using a similar argument as that of II , which involves the kernel condition (.),
we obtain

A +A ≤ CM()(�f )(x).

Combining all the estimates for Ai with i ∈ {, . . . , }, we get (.).
Let us see how from (.) and (.) one gets (.). Use the definition ofM�

δ(�f )(x) and the
fact ||α|γ – |β|γ | ≤ |α – β|γ ,  < γ < , if Q is a doubling ball and x ∈Q, we have

(


μ(Q)

∫
Q

∣∣∣∣Tω(�f )
∣∣δ –mQ̃

(∣∣Tω(�f )
∣∣δ)∣∣dμ(y)

) 
δ

≤ C
(


μ(Q)

∫
Q

∣∣∣∣Tω(�f )
∣∣δ – |hQ|δ∣∣dμ

) 
δ

+C
(


μ(Q)

∫
Q

∣∣|hQ|δ – |hQ̃|δ∣∣dμ

) 
δ

+C
(


μ(Q)

∫
Q

∣∣|hQ̃|δ –mQ̃
(∣∣Tω(�f )

∣∣δ)∣∣dμ

) 
δ

≤ C
(


μ(Q)

∫
Q

∣∣Tω(�f ) – hQ
∣∣δ dμ

) 
δ

+C
(


μ(Q)

∫
Q

∣∣|hQ|δ – |hQ̃|δ∣∣dμ

) 
δ

+C
(

μ(Q)
μ(Q)

) 
δ ∣∣|hQ̃|δ –mQ̃

(∣∣Tω(�f )
∣∣δ)∣∣ 

δ

≤ C
(


μ(Q)

∫
Q

∣∣Tω(�f ) – hQ
∣∣δ dμ

) 
δ

+C
(


μ(Q)

∫
Q

|hQ – hQ̃|δ dμ

) 
δ

+C
(

μ(Q)
μ(Q)

) 
δ
(


μ(Q̃)

∫
Q̃

∣∣Tω(�f ) – hQ̃
∣∣δ dμ(y)

) 
δ

,

and for all doubling balls Q ⊂ R with x ∈Q, we have

∣∣mQ
(∣∣Tω(�f )

∣∣δ) –mR
(∣∣Tω(�f )

∣∣δ)∣∣ 
δ

≤ C
∣∣mQ

(∣∣Tω(�f )
∣∣δ) – |hQ|δ∣∣ 

δ +C
∣∣|hR|δ –mR

(∣∣Tω(�f )
∣∣δ)∣∣ 

δ +C
∣∣|hQ|δ – |hR|δ

∣∣ 
δ

≤ C
(


μ(Q)

∫
Q

∣∣∣∣Tω(�f )
∣∣δ – |hQ|δ∣∣dμ

) 
δ

+
(


μ(R)

∫
R

∣∣|hR|δ – ∣∣Tω(�f )
∣∣δ∣∣dμ

) 
δ

+C|hQ – hR|

≤ C
(


μ(Q)

∫
Q

∣∣Tω(�f ) – hQ
∣∣δ dμ

) 
δ

+
(


μ(R)

∫
R

∣∣hR – Tω(�f )
∣∣δ dμ

) 
δ

+C|hQ – hR|.

Since we proved (.) and (.), (.) holds obviously. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/113


Zheng et al. Journal of Inequalities and Applications 2014, 2014:113 Page 14 of 18
http://www.journalofinequalitiesandapplications.com/content/2014/1/113

Now we give the proof of Theorem ..

Proof Since L∞
c (μ) is dense in Lp(μ),  < p < ∞, Lemma . holds for fi ∈ Lpi (μ). Using

Lemma ., Hölder’s inequality, and the boundedness ofM(k)(f ), we get∥∥Tω(�f )
∥∥
Lp(μ) ≤

∥∥Nδ

(
Tω(�f )

)∥∥
Lp(μ) ≤ C

∥∥M�
δ

(
Tω(�f )

)∥∥
Lp(μ) ≤ C

∥∥M()(�f )
∥∥
Lp(μ)

≤ C
∥∥M()(f)

∥∥
Lp (μ)

∥∥M()(f)
∥∥
Lp (μ)

≤ C
∏
i=

‖fi‖Lpi (μ). �

3 Boundedness onMorrey spaces
We recall the definition of the Morrey space with non-doubling measure.

Definition . Let k >  and  ≤ q ≤ p <∞; the Morrey spaceMp
q(k,μ) is defined as

Mp
q(k,μ) :=

{
f ∈ Lqloc(μ);‖f ‖Mp

q (k,μ) <∞}
with the norm

‖f ‖Mp
q (k,μ) := sup

Q∈X
μ(kQ)


p–


q

(∫
Q

|f |q dμ

) 
q
.

As is easily seen, the spaceMp
q(k,μ) is a Banach space with its norm. The Morrey space

norm reflects local regularity of f more precisely than the Lebesgue space norm. It is easy
to see from Hölder’s inequality that Lp(μ) =Mp

p(k,μ) ⊂ Mp
q (k,μ) ⊂ Mp

q (k,μ) whenever
≤ q ≤ q ≤ p < ∞. Moreover, the definition of the spaces is independent of the constant
k > , and the norms for different choice of k >  are equivalent, see [–] for details. We
will denoteMp

q(,μ) byMp
q(μ).

For the proof of Theorem ., we need some lemmas.

Lemma . [] Let Q = Q(x, r), λ(x, r) satisfying conditions of definition (.), q > ,

q +


q′ = , then

[∫
X \Q


[λ(x,d(x, y))]q′

dμ(y)
] 

q′
≤ C

(
λ(x, r)

)– 
q .

Lemma . Let  < q < p < ∞ and f ∈Mp
q(μ), for x ∈ Q(x, r), we have∫

X \Q
|f (y)|

λ(x,d(x, y))
dμ(y) ≤ Cμ(Q)–


q ‖f ‖Lq(μ).

Proof Using Hölder’s inequality and Lemma ., we get

∫
X \Q

|f (y)|
λ(x,d(x, y))

dμ(y) ≤ C
(∫

X \Q

∣∣f (y)∣∣q dμ(y)
) 

q
(∫

X \Q


[λ(x,d(x, y))]q′ dμ(y)
) 

q′

≤ C‖f ‖Lq(μ)
(
λ(x, r)

)– 
q ,
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since μ(Q(x, r))≤ λ(x, r),

∫
X \Q

|f (y)|
λ(x,d(x, y))

dμ(y) ≤ Cμ(Q)–

q ‖f ‖Lq(μ). �

Now we are ready to give the proof of Theorem ..

Proof Fix a ballQ ∈X and we split each fi as fi = f i + f ∞
i , where f i = fiχQ and f ∞

i = fi – f i ,
and this yields

∣∣Tω(�f )(y)
∣∣ = ∣∣Tω(f, f)(y)

∣∣
≤ ∣∣Tω

(
f  , f



)
(y)

∣∣ + ∣∣Tω
(
f  , f

∞


)
(y)

∣∣ + ∣∣Tω
(
f ∞
 , f 

)
(y)

∣∣ + ∣∣Tω
(
f ∞
 , f ∞


)
(y)

∣∣
:=H +H +H +H.

For the first term H, using the results of Theorem ., we have

∥∥Tω
(
f  , f



)∥∥

Mp
q (μ)

≤ sup
Q∈X

μ(Q)

p–


q

(∫
Q

∣∣Tω
(
f  , f



)
(y)

∣∣q dμ(y)
) 

q

≤ sup
Q∈X

μ(Q)

p–


q
∥∥Tω

(
f  , f



)∥∥

Lq(μ)

≤ C sup
Q∈X

μ(Q)

p–


q

∏
i=

∥∥f i ∥∥
Lqi (μ)

≤ C sup
Q∈X

μ(Q)

p–


q

∏
i=

(∫
Q

|fi|qi dμ(y)
) 

qi

≤ C sup
Q∈X

∏
i=

μ(Q)

pi
– 
qi

(∫
Q

|fi|qi dμ(y)
) 

qi

≤ C
∏
i=

‖fi‖Mpi
qi (μ)

.

Considering the case H, firstly, we deal with |Tω(f ∞
 , f ∞

 )|. For y ∈ Q, we have

∣∣Tω
(
f ∞
 , f ∞


)∣∣χQ(y)

≤ C
∫
X \Q

∫
X \Q

|f(y)||f(y)|
[λ(y,d(y, ỹ))]

dμ(y)dμ(y)

≤ C
∞∑
k=

∞∑
j=k

∫
k+Q\kQ

∣∣f(y)∣∣ ∫
j+Q\jQ

|f(y)|
[λ(y,d(y, y))]

dμ(y)dμ(y)

+C
∞∑
k=

k–∑
j=

∫
k+Q\kQ

|f(y)|
[λ(y,d(y, y))]

∫
j+Q\jQ

∣∣f(y)∣∣dμ(y)dμ(y)

:= E + E.
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For the term E, it follows that

E = C
∞∑
k=

∞∑
j=k

∫
k+Q\kQ

|f(y)|
λ(y,d(y, y))

∫
j+Q\jQ

|f(y)|
λ(y,d(y, y))

dμ(y)dμ(y)

≤ C
∞∑
k=

∞∑
j=k

∫
k+Q\kQ

|f(y)|
λ(y,d(y, y))

∫
j+Q\jQ

|f(y)|
λ(y,d(y, y))

dμ(y)dμ(y)

≤ C
∞∑
j=

∫
j+Q\jQ

|f(y)|
λ(y,d(y, y))

dμ(y)
j∑

k=

∫
k+Q\kQ

|f(y)|
λ(y,d(y, y))

dμ(y)

≤ C
∞∑
j=

∫
j+Q\jQ

|f(y)|
λ(y,d(y, y))

dμ(y)
∫
j+Q\Q

|f(y)|
λ(y,d(y, y))

dμ(y)

≤ C
∏
i=

∫
X \Q

|fi(yi)|
λ(y,d(y, yi))

dμ(yi).

And

E = C
∞∑
k=

k–∑
j=

∫
k+Q\kQ

|f(y)|
λ(y,d(y, y))

∫
j+Q\jQ

|f(y)|
λ(y,d(y, y))

dμ(y)dμ(y)

≤ C
∞∑
k=

k–∑
j=

∫
k+Q\kQ

|f(y)|
λ(y,d(y, y))

∫
j+Q\jQ

|f(y)|
λ(y,d(y, y))

dμ(y)dμ(y)

≤ C
∞∑
k=

∫
k+Q\kQ

|f(y)|
λ(y,d(y, y))

dμ(y)
∫
kQ\Q

|f(y)|
λ(y,d(y, y))

dμ(y)

≤ C
∏
i=

∫
X \Q

|fi(yi)|
λ(y,d(y, yi))

dμ(yi).

For the term
∏

i=
∫
X \Q

|fi(yi)|
λ(y,d(y,yi))

dμ(yi), using Lemma ., we get

∏
i=

∫
X \Q

|fi(yi)|
λ(y,d(y, yi))

dμ(yi)≤ C
∏
i=

μ(Q)–

qi ‖fi‖Lqi (μ)

= C
∏
i=

μ(Q)–

qi μ(Q)–


pi
+ 
qi μ(Q)


pi
– 
qi ‖fi‖Lqi (μ)

≤ C
(

μ(Q)
μ(Q)

) 
q
μ(Q)–


p

∏
i=

‖fi‖Mpi
qi (μ)

.

According to the estimate above, we obtain

∥∥Tω
(
f ∞
 , f ∞


)∥∥

Mp
q (μ)

≤ sup
Q∈X

μ(Q)

p–


q

(∫
Q

∣∣Tω
(
f ∞
 , f ∞


)
(y)

∣∣q dμ(y)
) 

q
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≤ Cμ(Q)

p–


q μ(Q)


q

(
μ(Q)
μ(Q)

) 
q
μ(Q)–


p

∏
i=

‖fi‖Mpi
qi (μ)

≤ C
∏
i=

‖fi‖Mpi
qi (μ)

.

What remain to be considered are the terms in H and H. For H, we use the size con-
dition of kernel (.) and the property of λ : λ(y, r)≈ λ(x, r), d(x, y)≤ r,

∣∣Tω
(
f  , f

∞


)
(y)

∣∣ ≤ C
∫
Q

∣∣f(y)∣∣ ∫
X \Q

|f(y)|
[λ(y,d(y, y))]

dμ(y)dμ(y)

≤ C
∫
Q

∣∣f(y)∣∣ ∞∑
k=

∫
k+Q\kQ

|f(y)|
[λ(y,d(y, y))]

dμ(y)dμ(y)

≤ C
∫
Q

∣∣f(y)∣∣ 
λ(xQ, krQ)

∞∑
k=

∫
k+Q\kQ

|f(y)|
λ(y,d(y, y))

dμ(y)dμ(y)

≤ Cμ(Q)–
∫
Q

∣∣f(y)∣∣dμ(y)
∫
X \Q

|f(y)|
λ(y,d(y, y))

dμ(y)

≤ Cμ(Q)–
(
μ(Q)

)– 
q ‖f‖Lq (μ)

(
μ(Q)

)– 
q ‖f‖Lq (μ)

≤ C
(

μ(Q)
μ(Q)

) 
q
μ(Q)–


p

∏
i=

‖fi‖Mpi
qi (μ)

.

Then using the above estimate, we get

∥∥Tω
(
f  , f

∞


)∥∥
Mp

q (μ)
≤ sup

Q∈X
μ(Q)


p–


q

(∫
Q

∣∣Tω
(
f  , f

∞


)
(y)

∣∣q dμ(y)
) 

q

≤ C
∏
i=

‖fi‖Mpi
qi (μ)

.

Analogously, for H, we have

∥∥Tω
(
f ∞
 , f 

)∥∥
Mp

q (μ)
≤ sup

Q∈X
μ(Q)


p–


q

(∫
Q

∣∣Tω
(
f ∞
 , f 

)
(y)

∣∣q dμ(y)
) 

q

≤ C
∏
i=

‖fi‖Mpi
qi (μ)

. �
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