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Abstract
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1 Introduction
By ω, we denote the space of all real valued sequences. Any vector subspace of ω is called
a sequence space. We write l∞, c, and c for the spaces of all bounded, convergent and
null sequences, respectively. Also by bs, cs, l, and l∞, we denote the spaces of all bounded,
convergent, absolutely convergent and p-absolutely convergent series, respectively; where
 < p < ∞. Assume here and after that (pk) be a bounded sequence of strictly positive real
numbers with sup {pk} =H andM =max {,H}. Then, the linear space l(p) was defined by
Maddox [] (see also Simons [] and Nakano []) as follows:

l(p) =

{
x = (xk) ∈ ω :

∑
k

|xk|pk < ∞
}

( < pk ≤H < ∞)

which is complete paranormed space paranormed by

g(x) =

(∑
k

|xk|pk
) 

M

.

For simplicity in notation, here and in what follows, the summation without limits runs
from  to ∞.
In [] was introduced the following numerical sequence λ = (λk)∞k=, which is a strictly

increasing sequence of positive real numbers tending to infinity, as k → ∞, that is

 < λ < λ < · · · and λk → ∞ as k → ∞.

We will introduce the following sequence space:

N(λ,p) =

{
x = (xn) ∈ ω :

∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)xi
∣∣)pk

< ∞
}
.
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For λk = k, we obtain theCesaro sequence space ces(p) (see []). If λk = k and pk = p, then
N(λ,p) = cesp (see []). In case where pk = p for all k ∈N, then we will denoteN(λ,p) =Np.
Some results related to the geometric properties of sequence spaces are given in [–].

2 Topological properties
Theorem . The paranorm on N(λ,p) is given by the relation

h(x) =

( ∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)xi
∣∣)pk) 

M

,

where M =max {,H} and H = suppk .

3 Geometrical properties
In this section we will show some geometric properties of the N(λ,p)-spaces, such as
the (β)-property, the k-NUC property, the Banach-Saks property of type p, and the (H)-
property. It is well known that these properties are most important in Banach spaces (see
[, ] and []).

Definition . A Banach space X is said to be k-nearly uniformly convex (k-NUC) if for
any ε > , there exists a δ >  such that for any sequence (xn) ⊂ B(X) with sep(xn) ≥ ε,
there are n,n, . . . ,nk ∈N such that

∥∥∥∥xn + xn + · · · + xnk
k

∥∥∥∥ <  – δ,

where sep(xn) = inf {‖xn – xm‖ : n 	=m} > ε.

Definition . A Banach space X has property (β) if and only if for each r >  and ε > ,
there exists a δ >  such that for each element x ∈ B(X) and each sequence xn ∈ B(X) with
sep(xn) ≥ ε, there is an index k for each

∥∥∥∥x + xk


∥∥∥∥ ≤ δ.

Definition . A Banach space X is said to have the Banach-Saks property type p if every
weakly null sequence (xk) has a subsequence (xkl) such that for some C > 

∥∥∥∥∥
n∑
l=

xkl

∥∥∥∥∥ < C(n + )

p

for all n ∈N.

Definition . Let X be a real vector space. A functional σ : X → [,∞) is called a mod-
ular if
() σ (x) =  if and only if x = θ ,
() σ (αx) = σ (x) for all scalars α with |α| = ,
() σ (αx + βy) ≤ σ (x) + σ (y) for all x, y ∈ X and α,β >  with α + β = ,
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() the modular σ is called convex if σ (αx + βy) ≤ ασ (x) + βσ (y) for all x, y ∈ X and
α,β > , with α + β = .

A modular σ is called:
() right continuous if limα→+ σ (αx) = σ (x) for all x ∈ Xσ ,
() left continuous if limα→– σ (αx) = σ (x) for all x ∈ Xσ ,
() continuous if it is both right and left continuous,

where Xσ = {x ∈ X : limα→+ σ (αx) = }. We define σp on N(λ,p) as follows:

σp(x) =

( ∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)xi
∣∣)pk)

,

where λ– = .
If pk ≥ , for all k ∈N, by the convexity of the function t → |t|pk , for all k ∈ N, σp defined

above is a modular convex in the N(λ,p).

Definition . A modular σp is said to satisfy the δ-conditions if for every ε > , there
exist constantM >  andm >  such that

σp(t)≤Mσp(t) + ε (.)

for all t ∈ Xσp with σp(t)≤m.

Lemma . ([]) If σp satisfies the δ-conditions, then for any A >  and ε > , there exists
δ >  such that

∣∣σp(t +w) – σp(t)
∣∣ < ε (.)

whenever t,w ∈ Xσp with σp(t)≤ A and σp(w) ≤ δ.

Theorem . ([])
() If σp satisfies the δ-conditions, then for any x ∈ Xσp , ‖x‖ =  if and only if σp(x) = .
() If σp satisfies the δ-conditions, then for any sequence (xn) ∈ Xσp , ‖xn‖ →  if and

only if σp(xn) → .

Theorem . If σp satisfies the δ-conditions, then for any ε ∈ (, ), there exists δ ∈ (, )
such that σp(x)≤  – ε implies ‖x‖ ≤  – δ.

Proof The proof of the theorem follows directly from the above two facts. �

Theorem . For any x ∈ N(λ,p) and ε ∈ (, ), there exists δ ∈ (, ), such that σp(x) ≤
 – ε implies ‖x‖ ≤  – δ.

Proof The proof of the theorem follows directly from Theorem .. �

Proposition . If pk ≥ , for all k ∈N, then themodular function σp, on N(λ,p), satisfies
the following conditions:
() If  < α ≤ , then αMσp( xα )≤ σp(x) and σp(αx)≤ ασp(x).
() If α ≥ , then σp(x) ≤ αMσp( xα ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/112
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() If α ≥ , then σp(x) ≤ ασp( xα ).
() The modular function σp(x) is continuous on N(λ,p).

Proof The proof of the proposition is similar to Proposition . in []. �

Now we will define the following two norms (the first is known as the Luxemburg norm
and the second as the Amemiya norm) in N(λ,p):

‖x‖L = inf

{
α >  : σp

(
x
α

)
≤ 

}
(.)

and

‖x‖A = inf
α>


α

{
 + σp(α · x)}. (.)

Proposition . Let x ∈ N(λ,p). Then the following relations are satisfied:
() If ‖x‖L < , then σp(x) ≤ ‖x‖L.
() If ‖x‖L > , then σp(x) ≥ ‖x‖L.
() ‖x‖L =  if and only if σp(x) = .
() ‖x‖L <  if and only if σp(x) < .
() ‖x‖L >  if and only if σp(x) > .

Proof () Let x ∈ N(λ,p) and ‖x‖L < . Let also ε >  such that  < ε <  – ‖x‖L. On the
other hand from the definition of the norm by relation (.) we find that there exists a
α >  such that ‖x‖L + ε > α and σp( xα ) ≤ . From the above relations and property () of
Proposition ., we obtain

‖x‖L + ε

α
> 

and

σp(x)≤ ‖x‖L + ε

α
σp(x) =

‖x‖L + ε

α
σp

(
α · x

α

)
≤ ‖x‖L + ε

α
· α · σp

(
x
α

)
≤ ‖x‖L + ε.

The previous statement is valid for every ε > , from which it follows that σp(x)≤ ‖x‖L.
() In this case we will choose ε >  such that  < ε <  – 

‖x‖L , and we obtain  < ( –
ε)‖x‖L < ‖x‖L. Now using into consideration definition of the norm (.) and relation ()
of Proposition ., we get

 < σp

(
x

( – ε)‖x‖L
)

≤ 
( – ε)‖x‖L σp(x) ⇒ ( – ε)‖x‖L ≤ σp(x)

for every ε ∈ (,  – 
‖x‖L ). Finally we have proved that ‖x‖L ≤ σp(x).

() Since σp(x) is continuous function (see []), this property follows immediately.
() Follows from properties () and ().
() Follows from properties () and (). �

Theorem . N(λ,p) is a Banach space under the Luxemburg and Amemiya norms.

http://www.journalofinequalitiesandapplications.com/content/2014/1/112
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Proof Wewill prove thatN(λ,p) is a Banach space under the Luxemburg norm. In a similar
way we can prove thatN(λ,p) is a Banach space under the Amemiya norm. In what follows
we need to show that every Cauchy sequence in N(λ,p) is convergent according to the
Luxemburg norm. Let {xnk} be any Cauchy sequence in N(λ,p) and ε ∈ (, ). Thus there
exists a natural number n, such that for any n,m ≥ n we get ‖x(n) – x(m)‖L < ε. From
Proposition . we get

σp
(
x(n) – x(m)) ≤ ∥∥x(n) – x(m)∥∥

L < ε (.)

for all n,m ≥ n. This implies that

∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)
(
x(n)i – x(m)

i
)∣∣)pk

< ε. (.)

For each fixed k and for all n,m ≥ n,


λk

k∑
i=

∣∣(λi – λi–)
(
x(n)i – x(m)

i
)∣∣ < ε.

Hence (y(n)k )k = ( 
λk

∑k
i= |(λi – λi–)x(n)i |)k is a Cauchy sequence in R. Since R is a complete

normed space, there exists a (yk)k = ( 
λk

∑k
i= |(λi – λi–)xi|)k ∈ R such that (y(n)k ) → yk as

n→ ∞. Therefore, as n → ∞, by relation (.) we have

∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)
(
xi – x(m)

i
)∣∣)pk

< ε

for allm ≥ n. In the sequel we will show that (yk) is a sequence formN(λ,p). From Propo-
sition . and relation (.) we have

lim
n→∞σp

(
x(n) – x(m)) = σp

(
x – x(m)) ≤ ∥∥x – x(m)∥∥

L < ε

for all m ≥ n. This implies that (x(n)) → x as m → ∞. So we have x = x(n) – (x(n) –
x) ∈ N(λ,p). This proves that N(λ,p) is a complete normed space under the Luxemburg
norm. �

In what follows we will show results related to the Luxemburg norm, and for this reason
we will denote it just ‖ · ‖.

Theorem . The space N(λ,p) is rotund if and only if pk >  for all k ∈N.

Proof LetN(λ,p) be rotund and choose k ∈N such that pk = . Consider the two sequences
given by

x =
(
,, . . . , ,

λk

k · |λk – λk–| , , , . . .
)

and

y =
(
,, . . . , ,

λk

k · |λk – λk–| , , , . . .
)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/112
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Then obviously x 	= y and

σp(x) = σp(y) = σp

(
x + y


)
= .

Then from Proposition ., property (), it follows that x, y, x+y ∈ S[N(λ,p)], which leads
to the contradiction that the sequence space N(λ,p) is not rotund. Hence pk > , for all
k ∈N.
Conversely, let x ∈ S[N(λ,p)] and y, z ∈ S[N(λ,p)] such that x = y+z

 . By the convexity of
σp and property () from Proposition ., we have

 = σp(x)≤ σp(y) + σp(z)


≤ 

+


= ,

which gives σp(y) = σp(z) =  and

σp(x) =
σp(y) + σp(z)


. (.)

From the previous relation we obtain

∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)xi
∣∣)pk

=



( ∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)yi
∣∣)pk

+
∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)zi
∣∣)pk)

.

Since x = y+z
 , we get

∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)(yi + zi)
∣∣)pk

=



( ∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)yi
∣∣)pk

+
∞∑
k=

(

λk

k∑
i=

∣∣(λi – λi–)zi
∣∣)pk)

.

This implies that

(

λk

k∑
i=

∣∣(λi – λi–)(yi + zi)
∣∣)pk

=



((

λk

k∑
i=

∣∣(λi – λi–)yi
∣∣)pk

+

(

λk

k∑
i=

∣∣(λi – λi–)zi
∣∣)pk)

. (.)

From the previous relation we get yi = zi for all i ∈ N, respectively, z = y. That is, the
sequence space N(λ,p) is rotund. �

In what follows we will give two facts without proof because their proofs follow directly
from Proposition . and Proposition ..

Theorem . Let x ∈N(λ,p). Then the following statements hold:

http://www.journalofinequalitiesandapplications.com/content/2014/1/112
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(i) For  < α <  and ‖x‖ > α we get σp(x) > αM .
(ii) If α ≥  and ‖x‖ < α, then we have σp(x) < αM .

Theorem . Let (xn) be a sequence in N(λ,p). Then the following statements hold:
(i) limn→∞ ‖xn‖ =  implies limn→∞ σp(xn) = .
(ii) limn→∞ σp(xn) =  implies limn→∞ ‖xn‖ = .

Theorem . Let x ∈ N(λ,p) and (x(n)) ⊂ N(λ,p). If σp(x(n)) → σp(x) as n → ∞ and
x(n)k → xk as n→ ∞ for all k ∈ N, then x(n) → x as n → ∞.

Proof The proof of the theorem is similar to Theorem . in []. �

Theorem . The sequence space N(λ,p) has the Kadec-Klee property.

Proof It is enough to prove that every weakly convergent sequence on the unit sphere is
convergent in norm. Let x ∈ N(λ,p) and (x(n)) ∈ N(λ,p) such that ‖x(n)‖ →  and x(n) w→ x
be given. From the properties of Theorem . it follows that σp(x(n)) →  as n → ∞. On
the other hand, fromProposition ., we get σp(x) = . Thereforewehave σp(x(n))→ σp(x),
as n → ∞. Since x(n) w→ x and pk(x) = xk is a continuous functional, x(n)k → xk as n → ∞
and for k ∈ N. Now the proof of the theorem follows from Theorem .. �

Theorem . For any  < p <∞, the space Np has the uniform Opial property.

We omit this proof.
To prove the following theorem we will use the same technique given in [] and will

consider that limn infpn > .

Theorem . The Banach space N(λ,p) has the k-NUC property for every k ≥ .

Proof Let ε >  and (xn) ⊂ B(N(λ,p)) with sep(xn) ≥ ε. For eachm ∈ N, let

xmn =
( m–︷ ︸︸ ︷
,, . . . , ,xn(m),x(m + ), . . .

)
. (.)

Since for each i ∈ N, (xn(i))∞n= is bounded, by the diagonal method (see []), we find that
for eachm ∈N, we can find a subsequence (xnj ) of (xn) such that (xnj (i)) converges for each
i ∈ N,  ≤ i ≤ m. Therefore, there exists an increasing sequence of positive integers (tm)
such that sep((xmnj )j>tm ) ≥ ε. Hence, there is a sequence of positive integers (rm)m∈N with
r < r < r < · · · such that ‖xmrm‖ ≥ ε

 for allm ∈N. Then by Theorem ., we may assume
that there exists η >  such that

σp
(
xmrm

) ≥ η for allm ∈ N. (.)

Let α >  be such that  < α < lim infn pn. For fixed integer k ≥ , let ε = ( (k
α––)

(k–)kα ) · η

 . Then
by Lemma ., there is a δ >  such that

∣∣σp(u + v) – σp(u)
∣∣ ≤ ε, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/112
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whenever σp(u) ≤  and σp(v)≤ δ. Since by Proposition ., property (), we get σp(xn) ≤
, ∀n ∈N. Then there exist positive integersmi (i = , , . . . ,k–) withm <m < · · · <mk–

such that σp(xmi
pi ) ≤ δ and α ≤ pj for all j ≥ mk–. Define mk =mk– + . By (.), we have

σp(x
mk
rmk

) ≥ η. Let si = i for  ≤ i ≤ k –  and sk = rmk . From relations (.), (.), and the
convexity of the function fi(u) = |u|pi (i ∈N), we have

σp

(
xs + xs + · · · + xsk

k

)

=
∞∑
n=

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

=
m∑
n=

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

+
∞∑

n=m+

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

;

from (.) we get

m∑
n=

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

+
∞∑

n=m+

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

+ ε ≤

from the convexity of fi(u) = |u|pi (i ∈ N), it follows that

≤
m∑
n=


k

k∑
j=

(

λk

n∑
i=

∣∣(λi – λi–)xsj (i)
∣∣)pn

+
m∑

n=m+

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

+
∞∑

n=m+

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

+ ε

≤
m∑
n=


k

k∑
j=

(

λk

n∑
i=

∣∣(λi – λi–)xsj (i)
∣∣)pn

+
m∑

n=m+

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

+
∞∑

n=m+

(

λn

n∑
i=

∣∣∣∣(λi – λi–)
xs (i) + xs (i) + · · · + xsk (i)

k

∣∣∣∣
)pn

+ ε

≤
m∑
n=


k

k∑
j=

(

λk

n∑
i=

∣∣(λi – λi–)xsj (i)
∣∣)pn

+
m∑

n=m+


k

k∑
j=

(

λk

n∑
i=

∣∣(λi – λi–)xsj (i)
∣∣)pn

http://www.journalofinequalitiesandapplications.com/content/2014/1/112
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+
m∑

n=m+


k

k∑
j=

(

λk

n∑
i=

∣∣(λi – λi–)xsj (i)
∣∣)pn

+
m∑

n=m+


k

k∑
j=

(

λk

n∑
i=

∣∣(λi – λi–)xsj (i)
∣∣)pn

+ · · ·

+
mk∑

n=mk–+


k

k∑
j=k–

(

λk

n∑
i=

∣∣(λi – λi–)xsj (i)
∣∣)pn

+
∞∑

n=mk+

(

λk

n∑
i=

∣∣∣∣(λi – λi–)
xsk (i)
k

∣∣∣∣
)pn

+ (k – )ε

≤ σp(xs ) + σp(xs ) + · · · + σp(xsk– )
k

+

k

mk∑
n=

(

λk

n∑
i=

∣∣(λi – λi–)xsk (i)
∣∣)pn

+
∞∑

n=mk+

(

λk

n∑
i=

∣∣∣∣(λi – λi–)
xsk (i)
k

∣∣∣∣
)pn

+ (k – )ε

≤ k – 
k

+

k

mk∑
n=

(

λk

n∑
i=

∣∣(λi – λi–)xsk (i)
∣∣)pn

+

kα

·
∞∑

n=mk+

(

λk

n∑
i=

∣∣(λi – λi–)xsk (i)
∣∣)pn

+ (k – )ε

≤  –

k
+

k

[
 –

∞∑
n=mk+

(

λk

n∑
i=

∣∣∣∣(λi – λi–)
xsk (i)
k

∣∣∣∣
)pn]

+

kα

·
∞∑

n=mk+

(

λk

n∑
i=

∣∣∣∣(λi – λi–)
xsk (i)
k

∣∣∣∣
)pn

+ (k – )ε

≤  + (k – )ε –
(
kα– – 

kα

) ∞∑
n=mk+

(

λk

n∑
i=

∣∣(λi – λi–)xsk (i)
∣∣)pn

≤  + (k – )ε –
(
kα– – 

kα

)
η

=  –
(
kα– – 

kα

)
η


.

Now from Theorem ., there exists a ϑ >  such that∥∥∥∥xs + xs + · · · + xsk
k

∥∥∥∥ <  – ϑ . �

The proof of the following results we omit.

Theorem . The Banach space N(λ,p) has the (β)-property.

Theorem . The Banach space N(λ,p) has the Banach-Saks property of type p.
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