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Abstract
In this article, we construct a new matrix spectral norm Wielandt inequality. Then we
apply it to give the upper bound of a new measure of association. Finally, a new
alterative based on the spectral norm for the relative gain of the covariance adjusted
estimator of parameters vector is given.
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1 Introduction
Suppose that A is an n × n positive definite symmetric matrix, x and y are two nonnull
real vectors satisfying x′y =  such that

(x′Ay)

x′Ax · y′Ay
≤

(
λ – λn

λ + λn

)

, ()

where λ ≥ · · · ≥ λn >  are the ordered eigenvalues of A. Inequality () is usually called
Wielandt inequality in literature; see Drury et al. []. Gustafson [] gave some meaning of
this inequality.
Let the random vector h has the covariance matrix A, then the maximum of the squared

correlation is given as follows:

max
x,y:x′y=

corr
(
x′h, y′h

)
= max

x,y:x′y=

(x′Ay)

x′Ax · y′Ay
=

(
λ – λn

λ + λn

)

. ()

If we set

y = A–x –
x′A–x
x′x

x, ()

then the Wielandt inequality () becomes the Kantorovich inequality:

x′Ax · x′A–x
(x′x)

≤ (λ + λn)

λλn
. ()

Many authors have been studied the Kantorovich inequality, for more details, see Liu [,
], Rao and Rao [] and Liu and Heyde [].
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Wang and Ip [] have extended theWielandt inequality to thematrix version, which can
be expressed as follows. Suppose X and Y be n× p and n× qmatrices satisfying X ′Y = ,
then

X ′AY
(
Y ′AY

)–Y ′AX ≤
(

λ – λn

λ + λn

)

X ′AX, ()

where inequality () refers to the Loẅner partial ordering.
In inequality (), A be a positive definite matrix, Lu [] has extended A to be a non-

negative definite matrix. Drury et al. [] introduced the matrix, determinant and trace
version of the Wielandt inequality. Liu et al. [] has improved two matrix trace Wielandt
inequalities and proposed their statistical applications. Wang and Yang [] presented the
Euclidean normmatrixWielandt inequality and showed the statistical applications. In this
article, we will provide amatrix spectral normWielandt inequality and give its application
to statistics.
The rest of the article is given as follows. In Section , we present amatrix spectral norm

versions of the Wielandt inequality. In Section , a new measure of association based on
the spectral norm is proposed and its upper bound is obtained by using the results in
previous section; then we propose an alterative based on the spectral norm of the relative
gain of the covariance adjusted estimators of the parameters and its upper bound. Finally,
some concluding remarks are given in Section .

2 Matrix spectral normWielandt inequality
Westart this sectionwith somenotation. LetA≥  be an n×n nonnegative definitematrix
of ranka with a≤ n; A/ is the nonnegative definite square root of A; X is an n× pmatrix
of rankk with k ≤ p ≤ a; (·)– stands for a generalized inverse of a matrix; (·)+ represents
the Moore-Penrose inverse of a matrix; rank(·) denotes the rank of a matrix; (·)′ shows for
the transpose of a matrix; and �(·) stands for the column space of a matrix. Suppose that
PA = AA+ stands for the orthogonal projectors onto the column space of matrix A, and use
the notation

H = PX = XX+ ()

for the orthogonal projector onto �(X).
In order to prove the main results it is necessary to introduce some lemmas.

Lemma . [] Let A ≥  be an n× n matrix with ranka, and let X be an n× p matrix of
rankk satisfying �(X)⊂ �(A), with k ≤ p≤ a ≤ n. Then

tr(HA–H)+

tr(HAH)
≥

{ ∑k
i= λ

/
i λ/

a–i+∑k
i=(λi + λa–i+)

}

, ()

where λ ≥ · · · ≥ λa >  are the nonzero eigenvalues of A.

Lemma . [] If A≥ , �(X)⊂ �(A) and X ′Y = , then

HAY
(
Y ′AY

)+Y ′AH ≤HAH –
(
HA–H

)+. ()

Lemma . Let A ≥  be an n × n matrix with ranka, and let X be an n × p matrix of
rankk satisfying �(X)⊂ �(A), with k ≤ p≤ a ≤ n. Then rank(HAH) = k.
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Proof As A be a nonnegative definite matrix, we can easily get rank(HAH) = rank(HA). By
Marsaglia and Styan [], we have

rank(HA) = rank(H) – dim
[�(H)∩ �(

A⊥)]
. ()

Since �(X)⊂ �(A), so we have �(H)⊂ �(A), then we obtain dim[�(H)∩�(A⊥)] = , that
is, rank(HA) = rank(H), thus

rank(H) = rank(HAH). ()

On the other hand

rank(H) = rank
(
XX+) = rank(X) = k. ()

So we get rank(HAH) = k. �

Lemma . Let A ≥  be an n × n matrix with ranka, and let X be an n × p matrix of
rankk satisfying �(X)⊂ �(A), with k ≤ p≤ a ≤ n. Then

‖(HA–H)+‖
‖HAH‖ ≥ τ + k – 

kτ

{ ∑k
i= λ

/
i λ/

a–i+∑k
i=(λi + λa–i+)

}

, ()

where ‖G‖ = λ(G) denotes the spectral norm of the matrix G, λ(G) stands for the largest
eigenvalues of matrix G, λ ≥ · · · ≥ λa > , are the nonzero eigenvalues of A, τ = λ(HAH)

λk (HAH) is
the condition number of matrix HAH .

Proof By the definition of the spectral norm, we obtain

‖(HA–H)+‖
‖HAH‖ =

λ((HA–H)+)
λ(HAH)

. ()

By Lemma ., we have rank((HA–H)+) = rank(HAH) = k, thus we get

tr
((
HA–H

)+) = λ
((
HA–H

)+) + λ
((
HA–H

)+) + · · · + λk
((
HA–H

)+)
≤ λ

((
HA–H

)+) + λ
((
HA–H

)+) + · · · + λ
((
HA–H

)+)
= kλ

((
HA–H

)+). ()

So we have

λ
((
HA–H

)+) ≥ 
k
tr
((
HA–H

)+). ()

On the other hand, define the condition number of the matrix HAH as τ = λ(HAH)
λk (HAH) , then

we have

tr(HAH) = λ(HAH) + λ(HAH) + · · · + λk(HAH)

≥ λ(HAH) +
λ(HAH)

τ
+ · · · + λ(HAH)

τ
=

τ + k – 
τ

λ(HAH). ()
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Thus,

λ(HAH) ≤ τ

τ + k – 
tr(HAH). ()

Then, using Lemma ., we get

‖(HA–H)+‖
‖HAH‖ =

λ((HA–H)+)
λ(HAH)

≥ τ + k – 
kτ

tr((HA–H)+)
tr(HAH)

≥ τ + k – 
kτ

{ ∑k
i= λ

/
i λ/

a–i+∑k
i=(λi + λa–i+)

}

. ()
�

Now we present the first theorem of this article.

Theorem . Suppose A ≥  to be an n × n matrix of ranka, and suppose X to be an
n × p matrix of rankk, and suppose Y to be an n × q matrix such that �(X) ⊂ �(A) and
X ′PAY = X ′Y =  with k ≤ p≤ q ≤ a ≤ n. Then

‖HAY (Y ′A–Y )+Y ′AH‖
‖HAH‖

≤ τ + k – 
kτ

[
∑k

i=(λ
/
i – λ/

a–i+)][
∑k

i=(λ
/
i + λ/

a–i+)]
[
∑k

i=(λi + λa–i+)]
, ()

‖HAH –HAY (Y ′A–Y )+Y ′AH‖
‖HAH‖ ≥ τ + k – 

kτ

{ ∑k
i= λ

/
i λ/

a–i+∑k
i=(λi + λa–i+)

}

, ()

where ‖G‖ = λ(G) denotes the spectral norm of the matrix G, λ(G) stands for the largest
eigenvalues of matrix G, λ ≥ · · · ≥ λa >  are the nonzero eigenvalues of A, τ = λ(HAH)

λk (HAH) is
the condition number of the matrix HAH .

Proof () For (), using Lemma . and Lemma ., we obtain

∥∥HAY
(
Y ′A–Y

)+Y ′AH
∥∥


= λ
(
HAY

(
Y ′A–Y

)+Y ′AH
)

≤ λ
(
HAH –

(
HA+H

)+)
= λ(HAH) – λ

((
HA+H

)+)
= ‖HAH‖ –

∥∥(
HA+H

)+∥∥


≤ ‖HAH‖ – τ + k – 
kτ

{ ∑k
i= λ

/
i λ/

a–i+∑k
i=(λi + λa–i+)

}

‖HAH‖

=
kτ [

∑k
i=(λi + λa–i+)] – (τ + k – )[

∑k
i= λ

/
i λ/

a–i+]

kτ [
∑k

i=(λi + λa–i+)]
‖HAH‖. ()
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Since k ≥  and τ ≥ , then kτ – (τ + k – ) = (k – )(τ – ) ≥ . Thus we obtain

∥∥HAY
(
Y ′A–Y

)+Y ′AH
∥∥


≤ τ + k – 
kτ

[
∑k

i=(λi + λa–i+)] – [
∑k

i= λ
/
i λ/

a–i+]

[
∑k

i=(λi + λa–i+)]
‖HAH‖

=
τ + k – 

kτ
[
∑k

i=(λ
/
i – λ/

a–i+)][
∑k

i=(λ
/
i + λ/

a–i+)]
[
∑k

i=(λi + λa–i+)]
‖HAH‖. ()

Inequality () is proved.
() For (), from Lemma . and Lemma ., we can obtain

∥∥HAH –HAY
(
Y ′A–Y

)+Y ′AH
∥∥


= λ
(
HAH –HAY

(
Y ′A–Y

)+Y ′AH
)

≥ λ
((
HA+H

)+)
=

∥∥(
HA+H

)+∥∥


≥ τ + k – 
kτ

{ ∑k
i= λ

/
i λ/

a–i+∑k
i=(λi + λa–i+)

}

‖HAH‖. ()

The proof of inequality () is completed. �

Partition matrix A≥  as follows:

A =

(
A A

A A

)
, A. = A –AA–

A, ()

where A≥  of ranka, A ≥  of rankk, A is p× p and A is q× q, p + q = n.
Now we give another theorem.

Theorem . Suppose A be an n× n nonnegative definite matrix of ranka partitioned as
in () and suppose that

rank(A) = rank(A) + rank(A);

then

‖AA–
A‖

‖A‖ ≤ τ + k – 
kτ

[
∑k

i=(λ
/
i – λ/

a–i+)][
∑k

i=(λ
/
i + λ/

a–i+)]
[
∑k

i=(λi + λa–i+)]
, ()

‖A.‖
‖A‖ ≥ τ + k – 

kτ

{ ∑k
i= λ

/
i λ/

a–i+∑k
i=(λi + λa–i+)

}

, ()

where λ ≥ · · · ≥ λa >  are the nonzero eigenvalues of A, τ = λ(A)
λk (A)

is the condition number
of matrix A.

Proof () Since A > , let the n× p matrix X be
( Ip


)
and n× q matrix Y be

( 
Iq

)
, then we

obtain X ′AY = A, Y ′AY = A, Y ′AX = A, X ′AX = A, X ′X = Ip, H = XX ′, τ = λ(A)
λk (A)

,
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�(X) ⊂ �(A) and X ′PAY = . Substituting it into Theorem ., we can get the two in-
equalities involving A–

.
() As A ≥ , A can be partitioned as in () with A ≥  and A ≥ , then �(A) ⊂

�(A) and �(A) ⊂ �(A). On the other hand, using rank(A) = rank(A) + rank(A), we
get �(X)⊂ �(A), which is needed in Theorem .. �

3 Applications to statistics
In this section, we give several inequalities involving covariance matrices, an alternative
based on the spectral norm of the relative gain of the covariance adjusted estimator and
its upper bound by using the inequalities in Section .

3.1 Newmeasure of association
Suppose that μ and ν are p×  and q×  random vectors and that we have the covariance
matrix

Cov

(
μ

ν

)
=�n×n =

(
� �

� �

)
, ()

where n = p + q.
Wang and Ip [] have discussed the following measure of association for � > :

ρ =
∣∣��

–
��

–


∣∣ = |��
–
�|

|�| , ()

where | · | refers to the determinant of the concerned matrix and p ≤ q ≤ n. We can see
that ρ cannot be used when |�| = . As pointed out by Groß [], the authors may
encounter a singular covariance matrix. To solve this problem, Liu et al. [] introduced a
new measure association:

ρ =
tr(��

–
�)

tr(�)
. ()

They also gave an upper bound of ρ and they pointed out that ρ is useful in canonical
correlations and regression analysis areas as discussed by Lu [], Wang and Ip [], and
Anderson [].
Wang and Yang [] presented an alternative measure association, which is defined as

follows:

ρ =
‖��

–
�‖E

‖�‖E , ()

where ‖ · ‖E stands for the Euclidean norm of concerned matrix and they also gave an
upper bound of ρ.
As is well known, there is no measure association involving the spectral norm, so we

present a new measure of association based on the spectral norm:

ρ =
‖��

–
�‖

‖�‖ . ()
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Theorem . The upper bound of ρ is given as follows:

ρ ≤ τ + p – 
pτ

[
∑p

i=(λ
/
i – λ/

n–i+)][
∑p

i=(λ
/
i + λ/

n–i+)]
[
∑p

i=(λi + λn–i+)]
≤ , ()

where λ ≥ · · · ≥ λn >  are the ordered eigenvalues of �, τ = λ(�)
λp(�) is the condition number

of matrix �.

Proof It is easy to prove inequality () by using Theorem . and (). �

3.2 Wishart matrices
Let S be an estimator of �, partitioned S as follows:

S =

(
S S
S S

)
, S. = S – SS–S, ()

where S is a p× pmatrix.
Wang and Ip [] presented these interesting relations among these submatrices occur-

ring in much of the statistical literature, such as in linear models

SS–S ≤ (λ – λn)

(λ + λn)
S, ()

where λ and λn refer to the largest and smallest eigenvalues of S, respectively. They also
considered the concept of the relative gain of the covariance adjusted estimator of a pa-
rameter vector discussed by Rao [] andWang and Yang []. |��–

�|
|�| can be regarded

as the relative gain and it can be estimated by |SS–S|
|S| . Liu et al. [] use tr(SS–S)

tr(S)
to

estimate tr(��–
�)

tr(�)
and they also showed that

tr(SS–S)
tr(S)

≤ [
∑p

i=(λ
/
i – λ/

n–i+)][
∑p

i=(λ
/
i + λ/

n–i+)]
[
∑p

i=(λi + λn–i+)]
≤ , ()

where λ ≥ · · · ≥ λn >  are the ordered eigenvalues of S.
Wang and Yang [] also studied this problem and used ‖SS–S‖E

‖S‖E to estimate
‖��–

�‖E
‖�‖E ; they also gave an upper bound of ‖SS–S‖E

‖S‖E , which is given as follows:

‖SS–S‖E
‖S‖E ≤ l(h,p)

p

(√
λλn–p+

λpλn
+

√
λpλn

λλn–p+

) p∑
i=

λi

λn – p + i
, ()

where rank(SS–S) = h and l(h,p) = maxh
∑h

i= λi
maxp

∑p
i= λi

.
In this article we will present the spectral norm operator instead of the determinant,

trace, and Euclidean norm. The new relative gain of the covariance adjusted estimator is
denoted by

ω =
‖��

–
�‖

‖�‖
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and ω is estimated by

ω̂ =
‖SS–S‖

‖S‖ .

Now we give the upper bound of ω.

Theorem . The relative gain ω̂ is bounded as follows:

ω̂ ≤ τ + p – 
pτ

[
∑p

i=(λ
/
i – λ/

n–i+)][
∑p

i=(λ
/
i + λ/

n–i+)]
[
∑p

i=(λi + λn–i+)]
≤ , ()

where λ ≥ · · · ≥ λn >  are the ordered eigenvalues of S, τ = λ(S)
λp(S) is the condition number

of matrix S.

Proof Using Theorem ., we can easily get the proof of Theorem .. �

Remark. The result inTheorem. can be extended to the nonnegative definitematrix
S ≥ , but S 
= .

4 Concluding remarks
In this article, we have presented two matrix spectral norm Wielandt inequalities and
some applications of the spectral norm Wielandt inequalities, and we also can see that
these applications are meaningful, useful, and practical in statistics.
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