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1 Introduction
As an important direction of harmonic analysis, the theory of multilinear Calderón-
Zygmund singular integral operators has attracted more and more attention, which orig-
inated from the work of Coifman and Meyer [], and it systematically was studied by
Grafakos and Torres [, ]. The literature of the standard theory of multilinear Calderón-
Zygmund singular integrals is by now quite vast, for example see [, –]. In , the au-
thors [] introduced the new multiple weights and new maximal functions and obtained
some weighted estimates for multilinear Calderón-Zygmund singular integrals. They also
resolved some problems opened up in [] and [].
Let S(Rn) and S ′(Rn) be the Schwartz spaces of all rapidly decreasing functions and

tempered distributions, respectively. Having fixed m ∈ N, let T be a multilinear operator
initially defined on them-fold product of Schwartz spaces and taking values into the space
of tempered distributions,

T : S
(
R

n) × · · · × S
(
R

n) → S ′(
R

n).
Following [], the m-multilinear Calderón-Zygmund operator T satisfies the following
conditions:
(S) there exist qi < ∞ (i = , . . . ,m), it extends to a bounded multilinear operator from

Lq × · · · × Lqm to Lq , where 
q =


q
+ · · · + 

qm ;
(S) there exists a function K , defined off the diagonal x = y = · · · = ym in (Rn)m+, satis-

fying

T(�f )(x) = T(f, . . . , fm)(x) =
∫
(Rm)n

K (x, y, . . . , ym)f(y) · · · fm(ym)dy · · · dym ()
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for all x /∈ ⋂m
j= supp fj and f, . . . , fm ∈ S(Rn), where

∣∣K (y, y, . . . , ym)
∣∣ ≤ A

(
∑m

l,k= |yl – yk|)mn ()

and

∣∣K (y, . . . , yj, . . . , ym) –K
(
y, . . . , y′

j, . . . , ym
)∣∣ ≤ A|yj – y′

j|ε
(
∑m

l,k= |yl – yk|)mn+ε
()

for some ε >  and all  ≤ j ≤m, whenever |yj – y′
j| ≤ 

 max≤k≤m |yj – yk|.
We also use some notation following []. Given a locally integrable vector function

b = (b, . . . ,bm) ∈ (BMO)m, the commutator of b and them-linear Calderón-Zygmund op-
erator T , denoted here by T�b, was introduced by Pérez and Torres in [] and is defined
via

T�b(�f ) =
m∑
j=

Tj
bj (

�f ),

where

Tj
bj (

�f ) = bjT(�f ) – T(f, . . . ,bjfj, . . . , fN ).

The iterated commutator T�b is defined by

T�b(�f ) =
[
b, . . . ,

[
bm–, [bm,T]m

]
m– · · ·

]
(�f ).

To clarify the notations, if T is associated in the usual way with a Calderón-Zygmund
kernel K , then at a formal level

T�b(�f )(x) =
∫
(Rn)m

m∑
j=

(
bj(x) – bj(yj)

)
K (x, y, . . . , ym)f(y) · · · fm(ym)dy · · · dym

and

T�b(�f )(x) =
∫
(Rn)m

m∏
j=

(
bj(x) – bj(yj)

)
K (x, y, . . . , ym)f(y) · · · fm(ym)dy · · · dym.

It was shown in [] that if 
q =


q
+ · · ·+ 

qm , then anm-linear Calderón-Zygmund operator
T maps from Lq × · · · × Lqm to Lq, when  < qj < ∞ for all j = , . . . ,m; and from Lq ×
· · · × Lqm to Lq,∞, when  ≤ qj < ∞ for all j = , . . . ,m, and min≤j≤m qj = . The weighted
strong and weak Lq boundedness of T is also true for weights in the class A�P which will be
introduced in next section (see Corollary . []). It was proved in [] that T�b is bounded
from Lq × · · · × Lqm to Lq for all indices satisfying 

q =

q
+ · · · + 

qm with q >  and qj > ,
j = , . . . ,m. The result was extended in [] to all q > /m. In fact, the authors obtained the
weighted Lq-version bounds as follows, for all �ω ∈ A�P :

∥∥T�b(�f )
∥∥
Lq(ν �ω)

≤ C‖�b‖BMOm

m∏
j=

‖fj‖Lqj (ωj).
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As may be expected from the situation in the linear case, T�b is not bounded from L ×
· · ·×L to L,∞. However, a sharp weak-type estimate in a very general sense was obtained
in [], that is, for all �ω ∈ A(,...,),

ν �ω
{
x ∈R

n :
∣∣T�b(�f )(x)

∣∣ > tm
} ≤ C

m∏
j=

(∫
Rn

�

( |fj(x)|
t

)
ωj(x)dx

)/m

,

where �(t) = t( + log+ t). When m = , the above endpoint estimate was obtained in [].
The same as for T�b, the strong type bound and the endpoint estimate for T�b were also
established by Pérez et al. in [].
The weighted Morrey spaces Lp,k(w) was introduced by Komori and Shirai []. More-

over, they showed that some classical integral operators and corresponding commuta-
tors are bounded in weighted Morrey spaces. Some other authors have been interested
in this space for sublinear operators, see [–]. In [], Ye proved two results similar to
Pérez andTrujillo-González [] for themultilinear commutators of the normal Calderón-
Zygmundoperators onweightedMorrey spaces.Wang andYi [] considered themultilin-
ear Calderón-Zygmund operators on weighted Morrey spaces and obtained some results
similar to weighted Lebesgue spaces.
We will prove the following strong type bound for T�b on weighted Morrey spaces.

Theorem . Let T be an m-linear Calderón-Zygmund operator; �ω ∈ A�P ∩ (A∞)m with


p
=


p

+ · · · + 
pm

and  < pj < ∞, j = , . . . ,m; and b ∈ BMOm. Then, for any  < k < , there exists a constant
C such that

∥∥T�b(�f )
∥∥
Lp,k (ν �ω)

≤ C
m∏
j=

‖bj‖BMO

m∏
j=

‖fj‖Lpj ,k (ωj)
.

The following endpoint estimate will also be proved.

Theorem . Let T be an m-linear Calderón-Zygmund operator;  < k < , �ω ∈ A(,...,) ∩
(A∞)m, and b ∈ BMOm. Then, for any λ >  and cube Q, there exists a constant C such that


ν �ω(Q)k

ν �ω
{
x ∈Q :

∣∣T�b(�f )(x)
∣∣ > λ

} ≤ C
m∏
j=

[‖fj/λ‖L�(m),k (ωj)

]/m,

where �(m) =
m︷ ︸︸ ︷

� ◦ · · · ◦ �, �(t) = t( + log+ t) and ‖f ‖L�(m) ,k (ω) = ‖�(m)(|f |)‖L,k (ω).

Remark . Here we remark that the above estimate is also valid for T�b.

2 Some definitions and results
In this section, we introduce some definitions and results used later.

Definition . (Ap weights) A weight ω is a nonnegative, locally integrable function
on R

n. Let  < p < ∞, a weight function ω is said to belong to the class Ap, if there is a

http://www.journalofinequalitiesandapplications.com/content/2014/1/109
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constant C such that for any cube Q,

(


|Q|
∫
Q

ω(x)dx
)(


|Q|

∫
Q

ω(x)–p
′
dx

)p–

≤ C,

and to the class A, if there is a constant C such that for any cube Q,


|Q|

∫
Q

ω(x)dx ≤ C inf
x∈Qω(x).

We denote A∞ =
⋃

p>Ap.

Definition . (Multiple weights) For m exponents p, . . . ,pm ∈ [,∞), we often write p
for the number given by p =

∑m
j= pj and denote by �P the vector (p, . . . ,pm). A multiple

weight �ω = (ω, . . . ,ωm) is said to satisfy the A�P condition if for

ν �ω =
m∏
j=

ωp/pj ,

we have

sup
Q

(


|Q|
∫
Q

ν �ω(x)dx
)/p m∏

j=

(


|Q|
∫
Q

ωj(x)
–p′

j dx
)/p′

j
< ∞,

when pj = , ( 
|Q|

∫
Q ωj(x)

–p′
j dx)/p

′
j is understood as (infx ω(x))–. As remarked in [],∏m

j=Apj is strictly contained in A�P , moreover, in general �ω ∈ A�P does not imply ωj ∈ Lloc
for any j, but instead

�ω ∈ A�P ⇔
⎧⎨
⎩
(ν �ω)p ∈ Amp,

ω
–p′

j
j ∈ Amp′

j
, j = , . . . ,m,

where the condition ω
–p′

j
j ∈ Amp′

j
in the case pj =  is understood as ω/m

j ∈ A.

Definition . (Weighted Morrey spaces) Let  < p < ∞,  < k < , and ω be a weight
function on R

n. The weighted Morrey space is defined by

Lp,k(ω) =
{
f ∈ Lploc : ‖f ‖Lp,k (ω) < ∞}

,

where

‖f ‖Lp,k (ω) = sup
Q

(


ω(Q)k

∫
Q

∣∣f (x)∣∣pω(x)
)/p

.

The weighted weak Morrey space is defined by

WLp,k(ω) =
{
f measurable : ‖f ‖WLp,k (ω) <∞}

,

http://www.journalofinequalitiesandapplications.com/content/2014/1/109
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where

‖f ‖WLp,k (ω) = sup
Q

inf
λ>

λ

ω(Q)k/p
ω

({
x ∈Q : |f |(x) > λ

})/p.
Definition . (Maximal function) For �(t) = t( + log+ t) and a cube Q in R

n we will
consider the average ‖f ‖�,Q of a function f given by the Luxemburg norm

‖f ‖�,Q = inf

{
λ >  :


|Q|

∫
Q

�

( |f (x)|
λ

)
dx≤ 

}
,

and the corresponding maximal is naturally defined by

M�f (x) = sup
Q�x

‖f ‖�,Q,

and the multilinear maximal operatorM�,Q is given by

M�(�f )(x) = sup
Q�x

m∏
j=

‖fj‖�,Q.

The following pointwise equivalence is very useful:

M�f (x)≈Mf (x),

where M is the Hardy-Littlewood maximal function. We refer reader to [, ] and their
references for details.

We say that aweightω satisfies the doubling condition, simply denotedω ∈ 	, if there is
a constant C >  such that ω(Q)≤ Cω(Q) holds for any cubeQ. If ω ∈ Ap with ≤ p < ∞,
we know that ω(λQ) ≤ λnp[ω]Apω(Q) for all λ > ; then ω ∈ 	.

Lemma . ([]) Suppose ω ∈ 	, then there exists a constant D >  such that

ω(Q)≥Dω(Q)

for any cube.

Lemma . ([]) If ωj ∈ A∞, then for any cube Q, we have

∫
Q

m∏
j=

ω
θj
j (x)dx≥

m∏
j=

(∫
Q ωj(x)dx
[ωj]∞

)θj

,

where
∑m

j= θj = ,  ≤ θj ≤ .

Lemma . ([]) Suppose ω ∈ A∞, then ‖b‖BMO(ω) ≈ ‖b‖BMO. Here

BMO(ω) =
{
b : ‖b‖BMO(ω) = sup

Q


ω(Q)

∫
Q

∣∣b(x) – bQ,ω
∣∣ω(x)dx < ∞

}
,

and bQ,ω = 
ω(Q)

∫
Q b(x)ω(x)dx.

http://www.journalofinequalitiesandapplications.com/content/2014/1/109
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From the fact |bjQ – bQ| ≤ Cj‖b‖BMO and Lemma ., we deduce that |bjQ,ω – bQ,ω| ≤
Cj‖b‖BMO. The following lemma is the multilinear version of the Fefferman-Stein type
inequality.

Lemma . (Theorem . []) Assume that ωi is a weight in A for all i = , . . . ,m, and
set ν = (

∏m
i= ωi)/m. Then

∥∥∥∥∥
m∏
j=

M(fj)

∥∥∥∥∥
Lp,∞(ν)

≤
m∏
j=

‖fj‖L(Mωj).

Lemma . (Proposition . []) Let 
p =


p
+ · · · + 

pm . If ≤ pj ≤ ∞, j = , . . . ,m, then

∥∥M(�f )∥∥Lp,∞(ν �ω)
≤

m∏
j=

‖fj‖Lpj (Mωj).

Lemma . (Theorem . []) Let p >  and let ω be a weight in A∞. Suppose that b ∈
BMOm. Then there exist Cω (independent of b) and Cω,b such that

∫
Rn

∣∣T�b(�f )(x)
∣∣ω(x)dx ≤ Cω

m∏
j=

‖bj‖BMO

∫
Rn

M�(�f )(x)pω(x)dx

and

sup
t>


�(m)( t )

ω
({
y ∈R

n :
∣∣T�b(�f )(y)

∣∣ > tm
})

≤ Cω,b sup
t>


�(m)( t )

ω
({
y ∈R

n :
∣∣M�(�f )(y)

∣∣ > tm
})

for all �f = (f, . . . , fm) bounded with compact support.

Lemma . (Theorem . []) Let ω ∈ A(,...,). Then there exists a constant C such that

ν �ω
({
x ∈R

n :
∣∣ML logL(�f )(x)

∣∣ > tm
}) ≤ C

m∏
j=

(∫
Rn

�(m)
( |fj(x)|

t

)
ωj(x)dx

)/m

.

By the above two inequalities, Pérez and Trujillo-González obtained the following re-
sults.

Lemma. (Theorem . []) Let T be anm-linear Calderón-Zygmund operator; �ω ∈ A�P
with


p
=


p

+ · · · + 
pm

and  < pj <∞, j = , . . . ,m; and b ∈ BMOm. Then there exists a constant C such that

∥∥T�b(�f )
∥∥
Lp(ν �ω)

≤ C
m∏
j=

‖bj‖BMO

m∏
j=

‖fj‖Lpj (ωj).

http://www.journalofinequalitiesandapplications.com/content/2014/1/109
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Lemma . (Theorem . []) Let T be an m-linear Calderón-Zygmund operator; �ω ∈
A(,...,), and b ∈ BMOm. Then, for any λ >  and cube Q, there exists a constant C such that

ν �ω
{
x ∈R

n :
∣∣T�b(�f )(x)

∣∣ > λ
} ≤ C

m∏
j=

(∫
Rn

�(m)
( |fj(x)|

t

)
ωj(x)dx

)/m

,

where �(t) = t( + log+ t) and �(m) =
m︷ ︸︸ ︷

� ◦ · · · ◦ �.

3 Proofs of theorems
We only present the casem =  for simplicity, but, as the reader will immediately notice, a
complicated notation and a similar procedure can be followed to obtain the general case.
Our arguments will be standard.

Proof of Theorem . For any cube Q, we split fj into f j + f ∞
j , where f j = fjχQ and f ∞

j =
fj – f j , j = , . Then we only need to verify the following inequalities:

I =
(


ν �ω(Q)k

∫
Q

∣∣T�b
(
f  , f



)
(x)

∣∣pν �ω(x)dx
)/p

≤ C
∏
j=

‖bj‖BMO

∏
j=

‖fj‖Lpj ,k (ωj)
,

II =
(


ν �ω(Q)k

∫
Q

∣∣T�b
(
f  , f

∞


)
(x)

∣∣pν �ω(x)dx
)/p

≤ C
∏
j=

‖bj‖BMO

∏
j=

‖fj‖Lpj ,k (ωj)
,

III =
(


ν �ω(Q)k

∫
Q

∣∣T�b
(
f ∞
 , f 

)
(x)

∣∣pν �ω(x)dx
)/p

≤ C
∏
j=

‖bj‖BMO

∏
j=

‖fj‖Lpj ,k (ωj)
,

IV =
(


ν �ω(Q)k

∫
Q

∣∣T�b
(
f ∞
 , f ∞


)
(x)

∣∣pν �ω(x)dx
)/p

≤ C
∏
j=

‖bj‖BMO

∏
j=

‖fj‖Lpj ,k (ωj)
.

From Lemma . and Lemma ., we get

I ≤ C


ν �ω(Q)k/p

∏
j=

‖bj‖BMO

(∫
Rn

∣∣f j (x)∣∣pjωj(x)dx
)/pj

≤ C


ν �ω(Q)k/p

∏
j=

[‖bj‖BMOωj(Q)k/pj‖fj‖Lpj ,k (ωj)

]

≤ C
∏
j=

[‖bj‖BMO‖fj‖Lpj ,k (ωj)

]
.

Since II and III are symmetric we only estimate II . Taking λj = (bj)Q,ωj , the operator T�b

can be divided into four parts:

T�b
(
f  , f

∞


)
(x)

=
(
b(x) – λ

)(
b(x) – λ

)
T

(
f  , f

∞


)
(x) –

(
b(x) – λ

)
T

(
f  , (b – λ)f ∞


)
(x)

–
(
b(x) – λ

)
T

(
(b – λ)f  , f

∞


)
(x) + T

(
(b – λ)f  , (b – λ)f ∞


)
(x)

= II + II + II + II.

http://www.journalofinequalitiesandapplications.com/content/2014/1/109
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Using the size condition () of K , Definition ., and Lemma ., we deduce that for any
x ∈Q,

∣∣T(
f  , f

∞


)
(x)

∣∣
≤ C

∫
Q

∫
Rn\Q

|f(y)f(y)|
(|x – y| + |x – y|)n dy dy

≤ C
∫
Q

∣∣f(y)∣∣dy
∞∑
l=


|lQ|

∫
l+Q\lQ

∣∣f(y)∣∣dy

≤ C
∞∑
l=

∏
j=


|l+Q|

∫
l+Q

∣∣fj(yj)∣∣dyj

≤ C
∞∑
l=

∏
j=


|l+Q|

(∫
l+Q

∣∣fj(yj)∣∣pjωj(yj)dyj
)/pj

×
(∫

l+Q
ωj(yj)

–p′
j dyj

)/p′
j

≤ C
∞∑
l=


|l+Q|

|l+Q|

p+


p′

+ 
p′

ν �ω(l+Q)

∏
j=

‖fj‖Lpj ,k (ωj)
ωj

(
l+Q

)k/pj

≤ C
∏
j=

‖fj‖Lpj ,k (ωj)

∞∑
l=

ν �ω
(
l+Q

)(k–)/p.

Taking the above estimate together with Hölder’s inequality and Lemma ., we have

(


ν �ω(Q)k

∫
Q

|II|pν �ω(x)dx
)/p

≤ 
ν �ω(Q)k/p

(∫
Q

∣∣(b(x) – λ
)(
b(x) – λ

)∣∣pν �ω(x)dx
)/p

×
∏
j=

‖fj‖Lpj ,k
∞∑
l=

ν �ω
(
l+Q

)(k–)/p

≤ ν �ω(Q)/p

ν �ω(Q)k/p

∏
j=

(


ν �ω(Q)

∫
Q

∣∣(bj(x) – λ
)∣∣pν �ω(x)dx

)/p

×
∏
j=

‖fj‖Lpj ,k
∞∑
l=

ν �ω
(
l+Q

)(k–)/p

≤
∏
j=

‖bj‖BMO‖fj‖Lpj ,k (ωj)
,

where the last inequality is obtained by the property of A∞: there is a constant δ >  such
that

ν �ω(Q)
ν �ω(l+Q)

≤ C
( |Q|

|l+Q|
)δ

.

http://www.journalofinequalitiesandapplications.com/content/2014/1/109
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For II, from the size condition () of K , the A�P condition, Lemma ., and Lemma ., it
follows that

∣∣T(
f  , (b – λ)f ∞


)
(x)

∣∣
≤ C

∫
Q

∣∣f(y)∣∣dy
∞∑
l=


|lQ|

∫
l+Q\lQ

∣∣(b(y) – λ
)
f(y)

∣∣dy

≤ C
∞∑
l=


|l+Q|

(∫
l+Q

∣∣f(y)∣∣pωj(y)dy
)/p(∫

l+Q
ω(y)–p

′
 dyj

)/p′


×
(∫

l+Q

∣∣f(y)∣∣pω(y)dy
)/p

×
(∫

l+Q

∣∣b(y) – λ
∣∣p′

ω(y)–p
′
/p dy

)/p′


≤ C
∞∑
l=

l
∏
j=


|l+Q|

(∫
l+Q

∣∣fj(yj)∣∣pjωj(yj)dyj
)/pj(∫

l+Q
ωj(yj)

–p′
j dyj

)/p′
j

≤ C
∏
j=

‖fj‖Lpj ,k (ωj)

∞∑
l=

lν �ω
(
l+Q

)(k–)/p.

The third inequality can be deduced by the fact that

(


ω(j+Q)

∫
l+Q

∣∣b(y) – bQ,ω
∣∣pω(y)dy

)/p

≤ Cl‖b‖BMO(ω).

Hölder’s inequality and Lemma . tell us

(


ν �ω(Q)k

∫
Q

|II|pν �ω(x)dx
)/p

≤ C


ν �ω(Q)k/p

(∫
Q

∣∣(b(x) – λ
)∣∣pν �ω(x)dx

)/p ∏
j=

‖fj‖Lpj ,k
∞∑
l=

lν �ω
(
l+Q

)(k–)/p

≤ C
ν �ω(Q)/p

ν �ω(Q)k/p

∏
j=

‖fj‖Lpj ,k
∞∑
l=

lν �ω
(
l+Q

)(k–)/p

≤ C
∏
j=

‖bj‖BMO‖fj‖Lpj ,k (ωj)
.

Similarly, we get

∣∣T(
f  , (b – λ)f ∞


)
(x)

∣∣
≤ C

∞∑
l=


|l+Q|

(∫
l+Q

∣∣f(y)∣∣pωj(y)dy
)/p

×
(∫

l+Q

∣∣b(y) – λ
∣∣p′

ω(y)–p
′
 dyj

)/p′
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×
(∫

l+Q

∣∣f(y)∣∣pω(y)dy
)/p(∫

l+Q
ω(y)–p

′
/p dy

)/p′


≤ C
∏
j=

‖fj‖Lpj ,k (ωj)

∞∑
l=

lν �ω
(
l+Q

)(k–)/p,

and so

(


ν �ω(Q)k

∫
Q

|II|pν �ω(x)dx
)/p

≤ C
∏
j=

‖bj‖BMO‖fj‖Lpj ,k (ωj)
.

The term II is estimated in a similar way and we deduce

∣∣T(
(b – λ)f  , (b – λ)f ∞


)
(x)

∣∣
≤ C

∞∑
l=


|l+Q|

∏
j=

(∫
l+Q

∣∣fj(yj)∣∣pjωj(yj)dyj
)/pj

×
(∫

l+Q

∣∣bj(yj) – λj
∣∣p′

jωj(yj)
–p′

j/pj dyj
)/p′

j

≤ C
∏
j=

‖fj‖Lpj ,k (ωj)

∞∑
l=

lν �ω
(
l+Q

)(k–)/p.

So,

(


ν �ω(Q)k

∫
Q

|II|pν �ω(x)dx
)/p

≤ C
∏
j=

‖bj‖BMO‖fj‖Lpj ,k (ωj)
.

Finally, we still split T�b(f ∞
 , f ∞

 )(x) into four terms:

T�b
(
f ∞
 , f ∞


)
(x)

=
(
b(x) – λ

)(
b(x) – λ

)
T

(
f ∞
 , f ∞


)
(x) –

(
b(x) – λ

)
T

(
f ∞
 , (b – λ)f ∞


)
(x)

–
(
b(x) – λ

)
T

(
(b – λ)f ∞

 , f ∞
 + T

(
(b – λ)f ∞

 , (b – λ)f ∞


)
(x)

)
(x)

= IV  + IV  + IV  + IV .

Because each term of IV j is completely analogous to IIj, j = , , ,  with a small difference,
we only estimate IV :

∣∣T(
f ∞
 , f ∞


)
(x)

∣∣ ≤ C
∫
(Rn)\(Q)

|f(y)f(y)|
(|x – y| + |x – y|)n dy dy

≤ C
∞∑
l=

∫
(l+Q)\(lQ)

|f(y)f(y)|
(|x – y| + |x – y|)n dy dy

≤ C
∞∑
l=


|l+Q|

∫
(l+Q)

∏
j=

∣∣fj(yj)∣∣dyj

≤ C
∏
j=

‖fj‖Lpj ,k (ωj)

∞∑
l=

ν �ω
(
l+Q

)(k–)/p.
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Hence,

(


ν �ω(Q)k

∫
Q

|IV |pν �ω(x)dx
)/p

≤ C
∏
j=

‖bj‖BMO‖fj‖Lpj ,k (ωj)
.

Combining all estimates, we complete the proof of Theorem .. �

We now turn to the proof of Theorem ..

Proof of Theorem . By homogeneity, we may assume that λ = ‖b‖BMO = ‖b‖BMO = 
and we only need to prove that

ν �ω
{
x ∈Q :

∣∣T�b(f, f)(x)
∣∣ > 

} ≤ Cν �ω(Q)k
∏
j=

(‖fj‖L�(),k (ωj)

)/.

To prove the above inequality, we can write

ν �ω
{
x ∈Q :

∣∣T�b(f, f)(x)
∣∣ > 

}
≤ ν �ω

{
x ∈Q :

∣∣T�b
(
f  , f



)
(x)

∣∣ > /
}
+ ν �ω

{
x ∈Q :

∣∣T�b
(
f  , f

∞


)
(x)

∣∣ > /
}

+ ν �ω
{
x ∈ Q :

∣∣T�b
(
f ∞
 , f 

)
(x)

∣∣ > /
}
+ ν �ω

{
x ∈Q :

∣∣T�b
(
f ∞
 , f ∞


)
(x)

∣∣ > /
}

= V +VI +VII +VIII

for any cube Q. Employing Lemma . and Lemma ., we have

V ≤ C
∏
j=

(∫
Rn

�(m)(∣∣fj(x)∣∣)ωj(x)dx
)/

≤ C
∏
j=

[
ωj(Q)k‖fj‖L�(m) ,k (ωj)

]/

≤ Cν �ω(Q)k
∏
j=

[‖fj‖L�(m) ,k (ωj)

]/.

From Lemma . and Lemma ., we deduce that

ν �ω
{
x ∈Q :

∣∣T�b
(
f  , f

∞


)
(x)

∣∣ > /
}

≤ sup
t>


�(m)( t )

ν �ω
{
x ∈ Q :

∣∣T�b
(
f  , f

∞


)
(x)

∣∣ > t
}

≤ Cν �ω ,b sup
t>


�(m)( t )

ν �ω
({
y ∈ Q :

∣∣M�

(
f  , f

∞


)
(y)

∣∣ > t
})

≤ Cν �ω ,b sup
t>


�(m)( t )

ν �ω
({
y ∈ Q :

∣∣M�

(
f 

)
(y)M�

(
f ∞


)
(y)

∣∣ > t
})

≤ Cν �ω ,b
t

(∫
Rn

�
(∣∣f  ∣∣)(y)M(χQω)(y)dy

∫
Rn

�
(∣∣f ∞


∣∣)(y)M(χQω)(y)dy

)/

≤ Cν �ω ,b
t

[
ωj(Q)k‖fj‖L�,k (ωj)

]/,
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where the last inequality holds by the (.) and (.) in []. Then from Lemma . and
the fact that t�( t ) > , we have

VI ≤ Cν �ω(Q)
[
ωj(Q)k‖fj‖L�,k (ωj)

]/.
A similar statement follows:

VII ≤ Cν �ω(Q)
[
ωj(Q)k‖fj‖L�,k (ωj)

]/;
VIII ≤ Cν �ω(Q)

[
ωj(Q)k‖fj‖L�,k (ωj)

]/.
Thus we complete the proof of Theorem .. �

4 A problem
Fix N ∈N. Letm ∈ CL(RNn\{}), for some positive integer L, satisfying the following con-
dition:

∣∣∂α
ξ

· · · ∂αN
ξN

m(ξ, . . . , ξN )
∣∣ ≤ Cα,...,αN

(|ξ| + · · · + |ξN |)|α| ()

for all |α| ≤ s and ξ ∈ R
Nn\{}, where α = (α, . . . ,αN ) and ξ = (ξ, . . . , ξN ). The multilinear

Fourier multiplier operator TN is defined by

Tm(�f )(x) = 
(π )Nn

∫
(RNn)

eix(ξ+···+ξN )m(ξ, . . . , ξN )f̂(ξ) · · · f̂N (ξN )dξ · · · dξN ()

for all f, . . . , fN ∈ S(Rn), where �f = (f, . . . , fN ). If F–m is an integrable function, then this
can also be written as

Tm(�f )(x) =
∫
(RNn)

F–m(x – y, . . . ,x – yN )f (y) · · · f (yN )dy · · · dyN .

In [], Fujita and Tomita obtained the following theorem.

Theorem . Let  < p, . . . ,pN < ∞, 
p
+ · · ·+ 

pN
= 

p and
n
 < sj ≤ n for ≤ j ≤N .Assume

pj > n/sj and wj ∈ Apjsj/n for ≤ j ≤N . If m ∈ L∞(RNn) satisfies

‖mk‖W (s,...,sN ) =
(∫

RNn

(
 + |ξ|

)/ · · · ∣∣( + |ξN |)/m̂(ξ )
∣∣ dξ

)/

<∞,

then TN is bounded from Lp (ω)× · · · × LpN (ωN ) to Lp(ν �ω), where

mj(ξ ) =m
(
jξ, . . . , jξN

)
�(ξ, . . . ξN ),

where � is the Schwarz function and satisfies

supp� ⊂ {
ξ ∈R

Nn : / ≤ |ξ | ≤ 
}
,

∑
k∈Z

�
(
ξ /k

)
=  for all ξ ∈R

Nn\{}.
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A natural problem is whether the Lebesgue spaces Lpj (ωj) and Lp(ν �ω) can be replaced by
Lpj ,k(ω) and Lp,k(ν �ω). It should be pointed out that the method in this paper may not be
suitable to address this problem.
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