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Abstract

In this paper, we establish the sharp maximal function estimates for the commutator
associated with the singular integral operator with general kernel. As an application,
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1 Introduction and preliminaries
As the development of singular integral operators (see [1-3]), their commutators have
been well studied. In [4—6], the authors prove that the commutators generated by the sin-
gular integral operators and BMO functions are bounded on L?(R") for 1 < p < co. Chanillo
(see [7]) proves a similar result when singular integral operators are replaced by the frac-
tional integral operators. In [8—10], the boundedness for the commutators generated by
the singular integral operators and Lipschitz functions on Triebel-Lizorkin and L?(R")
(1 < p < 00) spaces are obtained. In [11, 12], the boundedness for the commutators gen-
erated by the singular integral operators and the weighted BMO and Lipschitz functions
on L?(R") (1 < p < 00) spaces are obtained. In [13], some singular integral operators with
general kernel are introduced, and the boundedness for the operators and their commu-
tators generated by BMO and Lipschitz functions are obtained (see [13, 14]). In this paper,
we will study the commutators generated by the singular integral operators with general
kernel and the weighted Lipschitz functions.

First, let us introduce some notation. Throughout this paper, Q will denote a cube of
R" with sides parallel to the axes. For any locally integrable function f, the sharp maximal
function of f is defined by

M) = sup o / 1) —fol

where fg = |Q|™! fo(x) dx. It is well known that (see [1, 2])

M*(f)(x) ~sup1n£@/b‘(y —c| y.
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Let

MW@-gmj/wm@

For n > 0, let M, (f)(x) = M(|f|")""(x).
ForO<n<landl <r<oo,set

1 , 1/r
M"’r(f)(x):gc)(W/;v(m d)’) .

The A, weight is defined by (see [1])

-1
Ap:{weLlloc(R") sup(laf (x)dx) (ﬁ/(;w(x)‘l/(”_”dx>p <oo},

l<p<oo,
and

A={well

loc

(R") : M(w)(x) < Cw(x), a.e.}.

The A(p,r) weight is defined by (see [15]), for 1 < p,r < 00,

1/r (p-1)/
A(p,r):{w>0 sup<|Q|/w(x)’dx> (|é|/w(x) 2/~ l)dx) p<oo}.

Given a non-negative weight function w. For 1 < p < 0o, the weighted Lebesgue space
L?(w) is the space of functions f such that

1/p
I llzrw) = </Rn If )| w(x) dx> < 00.

For 8 > 0, p > 1, and the non-negative weight function w, let Ff °(w) be the weighted
homogeneous Triebel-Lizorkin space (see [10]).

For 0 < 8 <1 and the non-negative weight function w, the weighted Lipschitz space
Lips(w) is the space of functions b such that

1611Lip ) SUP

(Q)1+ﬁ/n / |b(y) —bQidy < 00.

Remark

(1) Itis well known that, for b € Lipg(w), w € Aj, and x € Q,
1bq — byl < CklbllLip, ew®)w(25Q)™".

(2) Let b € Lipg(w) and w € A;. By [16], we know that spaces Lip,(w) coincide and the
norms ”b”Lipﬁ(w) are equivalent with respect to different values 1 < p < oo.
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In this paper, we will study some singular integral operators as follows (see [13]).

Definition 1 Let 7 : S — S’ be a linear operator such that T is bounded on L2(R") and
there exists a locally integrable function K(x,y) on R” x R" \ {(x,y) € R" x R" : x = y} such
that

T(F)(x) = /R K@) 0)dy

for every bounded and compactly supported function f, where K satisfies the following:
there is a sequence of positive constant numbers {Cy} such that for any k > 1,

f (|K(x,y) = K(x,2)| + |[K(3,%) = K(z,%)|) dx < C
2|y-z|<|x-y|

and

1/q
</ (|K(x,9) = K(x,2)| + [K(y,%) —K(z,x)|)qdy>
2k|Z—y\§|x—y|<2k+1|Z_y|
-nlq

< Cr(251z-y1)

wherel<g <2and1l/qg+1/q =1.
Let b be a locally integrable function on R”. The commutator related to T is defined by

Tp()x) = [ (bx) —b())K(x,9)f () dy.
R"

Note that the classical Calderén-Zygmund singular integral operator satisfies Defini-
tion 1 with C; = 27 (see [4]).

Definition 2 Let ¢ be a positive, increasing function on R* and there exists a constant
D > 0 such that

¢(2t) < Dg(t) fort=>0.

Let w be a non-negative weight function on R” and f be a locally integrable function on R".

Set, for 1 <p < oo,

1 » J 1/p
fllzzewy = sup <M /(;(xrd)[f()fﬂ w(y) y) )

x€R", d>0
where Q(x,d) = {y € R" : |x — y| < d}. The generalized weighted Morrey space is defined by
LP2(R",w) = {f € Lige(R") : If lpowy < 00}
If (d) = d°, 8 > 0, then LP¢(R", w) = LP%(R", w), which is the classical Morrey spaces (see

[17, 18]). If ¢(d) = 1, then LP?(R",w) = LP(R",w), which is the weighted Lebesgue spaces
(see [19]).
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As the Morrey space may be considered as an extension of the Lebesgue space, it is
natural and important to study the boundedness of the operator on the Morrey spaces
(see [19-23]).

It is well known that commutators are of great interest in harmonic analysis and have
been widely studied by many authors (see [5, 6]). In [6], Pérez and Trujillo-Gonzalez prove
a sharp estimate for the multilinear commutator. The main purpose of this paper is to
prove the sharp maximal inequalities for the commutator. As the application, we obtain
the weighted L”-norm inequality, and Morrey and Triebel-Lizorkin spaces’ boundedness
for the commutator.

2 Theorems
We shall prove the following theorems.

Theorem 1 Let T be the singular integral operator as Definition 1, the sequence {kCi} € I,
weA,0<B<1l,qd <s<oo,andb e Lipﬂ(w). Then there exists a constant C > 0 such that,
forany f € C°(R") and x € R”,

M*(Ty()) (&) < ClIblILipg o0 wE) 7™ (Mps()E) + Mps(T()) ().

Theorem 2 Let T be the singular integral operator as Definition 1, the sequence {k2P*Cy} e
MweA,0<B<l,qd <s<oo,andb e Lipﬂ(w). Then there exists a constant C > 0 such
that, for any f € C°(R") and x € R",

sup int ot | U = el = Cllblgy " (MG + Mi(T()E).

Theorem 3 Let T be the singular integral operator as Definition 1, the sequence {kCy} € I,
we A, 0<p<min(l,n/q), g <p<nlp, 1/r=1/p - B/n, and b € Lipg(w). Then Ty, is
bounded from L (w) to L™ (w"P—7(+8m),

Theorem 4 Let T be the singular integral operator as Definition 1, the sequence {kCi} € I,
0<D<2",weA;,0<pB<min(l,n/q),q <p<nlB,1/r=1/p-B/n,andb € Lipg(w). Then
Ty, is bounded from LP¢(w) to L™¢ (w'P="1+8/m),

Theorem 5 Let T be the singular integral operator as Definition 1, the sequence {k2P*Cy} e
LweA,0<B<min(l,n/q),q <p<n/B,1/r=1/p— B/n,and b € Lipg(w). Then T}, is

bounded from LF (w) to EP™ (wrlp-r(+B1m),

3 Proofs of theorems
To prove the theorems, we need the following lemmas.

Lemma 1 (see [13]) Let T be the singular integral operator as Definition 1, the sequence
{Ck} € 1. Then T is bounded on LP(w) for w € Ao, with 1 < p < c0.

Lemma 2 (see [12, 16]) For any cube Q, b € Lipg(w), 0 < B <1, and w € Ay, we have

sug|b(x) ~bg| < C”b”Lipﬁ(W)W(Q)Hﬁ/n|Q|_1'
X€E
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Lemma 3 (see [10]) For0< B8 <1,1<p <00, and w € Aw, we have

1
Il 2800, = ||su 7/ (x) —foldx
lf EFy' ™ (w) QBP |Q|1+ﬂ/n QV fQ|

1P (w)

~
=~

. 1
supmfw /(;[f(x) —c|dx

Q> ¢ LP (w)

Lemma 4 (see [1]) Let 0 <p < o0 and w € |, .o, Ar. Then, for any smooth function f for
which the left-hand side is finite,

/ M) () w(x) dx < C/ M*(f) (x)P w(x) dx.
R” RV[

Lemma 5 (see [15, 24]) Suppose that 0 <n<n,1<s<p<n/n,1/r=1/p—n/n, and w €
A(p,r). Then

||Mn,s(f)||Lr(Wr) = Clif llzogur).-
Lemma 6 (see [1, 25]) Ifw € A,, then wxq € A, for 1 < p < oo and any cube Q.

Lemma7 Letl<r<oo,0<n<o00,0<D<2" weAu, and L"?(R",w) be the weighted
Morrey space as Definition 2. Then, for any smooth function f for which the left-hand side
is finite,

| M)

, < Cla*(f)

L (w Lo (w)’

Proof Notice that wxg € Ay for any cube Q = Q(x,d) by [19] and Lemma 6; thus, for
f €L"(R",w) and any cube Q, we have, by Lemma 4,

/Q M()(x) w(x) dx = RnM(f)(x)’W(x)xQ(x)deC RWM#(f)(x)rW(x)xQ(x)dx
= C/M#(f)(x)’w(x)dx,
Q

thus

1 1/r 1
- M r d C - M# r d )
<¢(d) /Q(x,d) e wia) x) = <<0(d) /Q(x,d) V)t d

1/r

and

| M(f)

) < C[aM*(f)

Lo (w Lre(w)’
This finishes the proof. O

Lemma8 Letl<p<o00,0<D<2", weA;, T be the singular integral operator as Defini-
tion 1 and LP*(R",w) be the weighted Morrey space as Definition 2. Then

” T(f)”mw(w) < Clf oo wy-
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Lemma9 Letl <s<p<n/n,1/r=1/p—nin, we A(p,r), and LP?(R",w) be the weighted
Morrey space as Definition 2. Then

[ M57)

vy < Clflpeqr).

The proofs of the two lemmas are similar to that of Lemma 7 by Lemmas 1 and 5, we
omit the details.

Proof of Theorem 1 1t suffices to prove, for f € C5°(R") and some constant Cj, that the
following inequality holds:

ﬁ /Q |T4(£)(x) = o dax = CllbllLiny W@ (Mo ()E) + M (T()) R).

Fix a cube Q = Q(x¢,d) and X € Q. Write, for fi = f x20 and f5 = f x(2q)¢»
Tp(F)(x) = (blx) = bag) T(F)(x) = T((b - b2)fi) (%) = T((b - bao)fo) ().
Then
|la /Q|Tb(f)(x) — T((bag - b)) (x0) | dx

! 1

IQI /|T (b sz)fg)(x ((b—sz)fz)(xO)|dx

211 +12 +13.

For I;, by Holder’s inequality and Lemma 2, we obtain

1/s
I < — sup|b(x) - bag| Q' (/ {T(f)(x)rdx)
|Q| %€2Q Q

w(2 )1+/3/n s i 1 . s
< Clbligy ™1 1QI <| = fQ 7)) dx)

1+B/n
< Clbllu, W>< S)) M (T() )
< C||b||Lip,3(w)W(ﬁ?)Hﬂ/nMﬁ,s(T(f))(fc)'

For I, by the boundedness of T, we get

1/s

= Lo st
1/s

: C(I_(12I /R (o) - bzo)fl(x)|sdx)

1 1/s
<C —1/s b -b 2 l/s—ﬂ/n( / Sd )
<ClQl :euz%i (x) — bagl12Q| D 2Qlf(x)l x

Page 6 of 11
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< C||b||Lip/3(w)<%Q|)

< C”b”Lipﬂ(W)W(ic)hﬂ/nMﬁ,s(f)(;c)'

1+B/n
) Mps(f)(x)

For I3, recalling that s > g/, we have

3<@ / f |b0) = bao| [ )| |K (x,5) - K (x0,)| dydx

|Q|/Q '/kdl ot d|1<(x,y) K(x0,)||bO) = borsig| [f )| dy dix
k=1 <|y—xo|<2k+1

Ql Q%;/deswxodkﬂJ 0:9)|Ibysiq = bagl[f )]
¢ - 1/q
=1Ql Z(/ |K(x:y)—1<(xo,y)|qdy)
QI Jo 47 \Vaka<py-xpl<2k+1a

, 1/q
X sup \b@)—b2k+1Q|</2k+1QV(y)|q dy) dx

y€2k+1Q

C [} g 1/q
+ — [boksry — ba |</ K(x,y) - K(xo,y)|" d )
0] /QkXﬂ: 7 Q des\y—xo|<2k*1d| ) | i’

([ pora) e

k+1 \1+B/n
k n-nlqd w(2Q) kel ~1VG s | Aks1 ~|1s=BIn
< c§ Ci(2d) g 1BllLipsn |2 Q| 121Q]
k=1

1 s 1/s
(g [0 )

2k+1Q

+C Y KlbllLin wow@w(24Q)"" C(2kd) ™7 |24+ Q|1 21
k=1

1 s 1/s
X (7&“1@15&” 2k+1QV(y)| dy)

00 2k+1Q) 1+B/n
< ClBllLipg tw ZC( 2510 ) Mp(f)(®)
k=1

o 2k+1 Bin
+cnbnup,j(w)w(fc)Zka(%) My
k=1

< ClBllLipy W@ " Mp o (£)®) D (k + 1)Ci
k=1

< ClIbllLipy W) " Mp () )

These complete the proof of Theorem 1. d
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Proofof Theorem 2 It suffices to prove for f € C3°(R") and some constant Cy, the following
inequality holds:

TR / ITy(f)@) - Col dx

< CIIbIILipﬁ<w)W(9~C)1+’3/" (M, (f)(x) + My(T(f)) (%)).
Fix a cube Q = Q(x¢,d) and X € Q. Write, for fi = f x20 and f5 = f x(2q)¢»
T(f)(x) = (b(x) — bag) T(F)(x) — T((b - bag)fs) (%) — T((b — ba)f2) (%)

Then

T /Q I TP6) ~ T((bag - b)) (o) | d
< |Q|+f‘/ f |(b(x) = bao) T(f)(x)| dx
|Q|]|T (b= b)) (x)| dx

+ |Q|1+/3/n /(;| T((b - b2Q)f2)(x) - T((b - sz)fz)(xo){ dx

=11 +12 +13.

By using the same argument as in the proof of Theorem 1, we get

/s
|Q|W sup [b(x) ~bao1 Q1" 1“( / TH@[ dx)

2 1+B/n 1/s
scnbuupﬁw)%|Q|-”S|Q|”S-ﬂ’"<| o / | T(F))|° dx)

Q|
< CllbllLipyw W& " M(T(f)) %),

1+B/n
< ClIbllLipyow ( (Q)> M,(T(f))(%)

L < ;|Q|l—l/s</ |T((b—b )f)(x)rdx)l/s
2= |Qiihin e 201
1 s 1/s
< CW@P—M </Rn|(b(x) - by)fi(x)| dx)

< Cogem Q17 s b6 b 120 155 [ Vol w)

< C”b”Lipﬁ(w) (%

< ClIblLipsn W@ " M () (),

1+B/n
) M@
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@5@//2 [20) = bao| ) |K (. ) - Ko, )|y

|Q|1+,3/n /Q /kd<|y—x0|<2k+1d K(x,y) - K(xo,y)| |b(y) - b2k+1Q| [f(y)| dydx

|Q|l+ﬁ/n /Q k=1 /kd<y—xo|<2k+1d|K %y) =Koy ||b2k+lQ - szHf(y)i dydi

C 00 1/q
<— K(x,y) — K(x ,y)qdy>
|Q|1+A/n v/Qk§</zkd§yxo|<2k+ld| o)

, 1/q
X sup |b@)—b2k+1Q|<£k+lQV@)|q dy) dx

yeZk*lQ

C / o0 1/q
b byt~ b |( / K(x,y) -K(x ,y>"dy)
Q1+ Q; e 2kdsly—xo\<2k+1d| 9|

<( [, Jror dy) dx

_ _al ,W(2k+lQ)1+ﬁ/n U
yeifo] ﬁ’"ZCk(zkd) " Wnbnmﬂ(mpk”m !
k=1

1 . 1/s
) (|2’”1Q| /O & )

+ ClQIP™ Y Klbllipy ow@w(24 Q)" C(28d) ™ |21 Q|
k=1

1 s 1/s
8 (|2k”Q| /2k+1QW)| @ )

o W(2k+1Q) 1+B/n _
= ity 220y ) - MO®
k=1

00 9k+1 Bin
+cnbnupﬁ(w)w(x)Zsz‘kck(%) MAPE

k=1

< ClIblLipyn W@ "My () @) Y (k +1)2°*Cy
k=1

< ClIblLipyon W& " M () ().
This completes the proof of Theorem 2.
Proof of Theorem 3 Choose q' < s < p in Theorem 1, notice that w/?~"1+#/" ¢ A

w'? € A(p,r); we have, by Lemmas 1, 4, and 5,

” Tb (f) HLq Wr/p—r(1+ﬁ/n))
= |mM(Tp(f)

= M (To(h)

r Wr/p V(Hﬂ/n))

L Wr/p— (1+;3/n))

Page 9 of 11
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+ ”Mﬁ,s(f)whﬂ/n

< C”b”Llpﬁ(w)(”Mﬂ,S(T(f)) W1+ﬂ/n L (wrp=r(1+/n)
= CllblILipyon (|Mps(TE) | iy + | Mps(F)
< ClIbllLipgon (|| T(f)HLp(W> + 1 lerewy)

= ClIblILipy o) If 122wy

Lr(wr/pfr(hﬁ/n)))

L’(w’/P))

This completes the proof of Theorem 3. O

Proof of Theorem 4 Choose ¢’ < s < p in Theorem 1, notice that w?~"1+#/" ¢ A and
w'? € A(p,r); we have, by Lemmas 7-9,

|| Tb(f) Lr,w(wr/p—r(1+ﬁ/n))
= ”M(Tb(f)) ”Lw (wrlp=r(1+B/n))

= C|M'(To(h)

L Wr/p r(1+fi/n))

+ ||Mﬂ,s (f)wl+/3/n

=< C”b”Lipﬁ(w)(||Mﬁ,s(T(f))W1+ﬁ/n LS9 (wrlp-rQ+pin))
= ClBlLipg o0 ([Mp5(TEN oy + [ Mps(F)
< ClblIipg 0 (| TO [ ooy + W llzren)

= CllbllLipy o f loe ow)

Lr,(p(wr/p—r(lﬂﬂ/n)))

Ly (wr/p))

This completes the proof of Theorem 4. O

Proof Theorem 5 Choose ¢’ < s < p in Theorem 2, notice that w/7~"1+#/" ¢ A and w'? ¢

A(p,r). By using Lemma 3, we obtain

|| Tb(f) ||Ffv°°(wr/p—r(1+ﬁ/n))

= C|sup ez [ [T - T((aa - D) )

r (Wr/p—r(l +ﬂ/n))

=< C”b”Lipﬁ(w)(||MS(T(f))W1+ﬂ/n L7 (wrlp-r(+pin) ||M (f e Lr(wr/p—r(1+/3/n)))
= ClIblILipg o0 (IMs (T | vy + 1M 1)
< ClBlILipgon (| T 1oy + 1 o)
= ClIBlILipgm 1 N ow-
This completes the proof of the theorem. O
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