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Abstract
By using arbitrary volume forms, we establish Laplacian comparison theorems for
Finsler manifolds under certain curvature conditions. As applications, some volume
comparison theorems and Mckean type eigenvalue estimates of Finsler manifolds are
obtained. Moreover, we also generalize Calabi-Yau’s linear volume growth theorem,
and Milnor’s results on curvature and the fundamental group to the Finsler setting.
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1 Introduction
In recent years, Finsler geometry has developed rapidly in its global and analytic aspects.
The present main work is to generalize and improve some famous theorems of the Rie-
mann geometry to the Finsler setting. Among these issues, the Finsler-Laplacian is one of
themost important and interesting projects. As is well known, there are several definitions
of the Finsler-Laplacian, including the nonlinear Laplacian, themean-value Laplacian and
so on, in Finsler geometry.With regard to the nonlinear Finsler-Laplacian, some Laplacian
comparison theorems, volume comparison theorems, and various estimations on the first
eigenvalue have been established [–].
In [], Shen first generalized comparison theorems to the Finsler geometry. Afterwards,

Wu and Xin [] proved Laplacian comparison theorems, volume comparison theorems
under various flags, and Ricci and S-curvature conditions. Recently, using the Ricci cur-
vature condition, and the distortion τ instead of S-curvature, Wu [] and Zhao and Shen
[] further generalized volume comparison theorems in [] and [], respectively. It should
be noted here that by utilizing the weighted Ricci curvature condition RicN ≥ c, Ohta and
Sturm [] and Ohta [] gave another version of these theorems, which are more concise
than the corresponding ones in [] and [].
In the Riemannian case, Ding [] obtained a new Laplacian comparison theorem by the

Ricci curvature condition Ric ≤ c < . Later, this result was generalized to Finsler mani-
folds in []. For a Finsler n-manifold with nonpositive flag curvature, if its Ricci curvature
satisfies Ric≤ c < , then the following holds whenever the distance function ρ is smooth:

�ρ ≥ ctc(ρ) – ‖S‖.
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Here

ctc(ρ) =

⎧⎪⎨
⎪⎩

√
c · cot(√cρ) c > ,


ρ

c = ,√
–c · coth(√–cρ) c < ,

‖S‖x := sup
X∈TxM\

|S(X)|
F(X)

. (.)

In this paper, we shall further improve this theorem by using the weighted Ricci cur-
vature condition and remove the term of the S-curvature. To be precise, we will give the
following result.

Theorem . Let (M,F ,dμ) be a Finsler n-manifold with nonpositive flag curvature and
nonpositive S-curvature. If the weighted Ricci curvature satisfies Ricn+ ≤ c, then the fol-
lowing holds whenever the distance function ρ is smooth:

�ρ ≥ ctc(ρ),

where ctc(ρ) is defined by (.).

In addition to this, the Laplacian comparison theorem under the flag curvature and S-
curvature condition is also obtained. As applications, we give some volume comparison
theorems under the above-described conditions. It is worthmentioning that all the results
we obtained are more concise than those in the related literature [, ] and more similar
to the Riemannian case in form.
In [, ], Calabi and Yau stated that the volume of any complete noncompact Rieman-

nian manifold with nonnegative Ricci curvature has at least linear growth. In [], Wu has
established the Finsler version of Calabi-Yau’s linear volume growth theorem by using an
extreme volume form. His result is

volmax
(
Bp(R)

) ≥ C(p)R,

where volmax denotes the volume with respect to themaximal volume form. In the present
paper, wewill further claim that for an arbitrary volume formCalabi-Yau’s result still holds.

Theorem . Let (M,F ,dμ) be a complete noncompact Finsler n-manifold with finite re-
versibility λ. If the weighted Ricci curvature satisfies RicN ≥ , N ∈ (n,∞), then

voldμ
F

(
B+
p(R)

) ≥ C
(
N ,λ,voldμ

F
(
B+
p()

))
R,

voldμ
F

(
B–
p (R)

) ≥ C
(
N ,λ,voldμ

F
(
B–
p ()

))
R,

where B+
p(R) (resp. B–

p (R)) denotes the forward (resp. backward) geodesic ball of radius
R centered at p and C denotes the constant depending on N , λ, and voldμ

F (B+
p()) (resp.

voldμ
F (B–

p ())).

In Riemannian geometry, Mckean [] proved that if (M, g) is a complete and simply
connected Riemannian n-manifold with sectional curvature K ≤ –a, then the first eigen-
value λ(M) ≥ (n–)a

 . Afterwards, this result was extended by Ding in [], stating that
for a complete noncompact and simply connected Cartan-Hadamard manifold satisfying
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Ric ≤ –a the first eigenvalue λ can be estimated below by a
 . A few years ago, these

results were generalized to the Finsler setting by Wu and Xin []. In their paper, some
conditions such as ‘finite reversibility’ and some restrictions on S-curvature should be
satisfied, which are natural conditions in Finsler geometry and satisfied automatically in
the Riemannian case.
In the present paper, we further generalize theMckean type estimations to Finsler man-

ifolds. We note that our results are as neat and simple as in the Riemannian case.

Theorem . Let (M,F ,dμ) be a complete noncompact and simply connected Finsler n-
manifold with finite reversibility λ and nonpositive S-curvature. If the flag curvature satis-
fies K ≤ –a, then

λ(M) ≥ (n – )a

λ .

Theorem . Let (M,F ,dμ) be a complete noncompact and simply connected Finsler n-
manifold with finite reversibility λ, nonpositive flag curvature and nonpositive S-curvature.
If the weighted Ricci curvature satisfies Ricn+ ≤ –a, then

λ(M) ≥ a

λ .

Remark . In Theorem ., the condition ‘nonpositive flag curvature’ is necessary and it
is a substitute for the condition ‘Cartan-Hadamard manifold’ in []. Since in the Rieman-
nian case flag curvature is just sectional curvature, this condition is a natural condition.

Remark . The definitions of the reversibility λ and S-curvature will be given in Sec-
tions ,  below. When (M,F) is a Riemannian manifold, λ = , S = , and the above two
results coincide with [] and [], respectively. Further, when (M,F) is a Finsler man-
ifold, the corresponding lower bounds obtained in [] are λ(M) ≥ ((n–)a–supM ‖S‖)

λ
and

λ(M) ≥ (a–supM ‖S‖)
λ

, respectively.

This paper is organized as follows. In Section , the related fundamentals of Finsler
geometry such as Finsler metric, weighted Ricci curvature, gradient vector, Finsler-
Laplacian, and some lemmas are briefly introduced. The main results will be proved in
Sections , , , respectively.

2 Preliminaries
Let M be an n-dimensional smooth manifold and π : TM → M be the natural projection
from the tangent bundle TM. Let (x, y) be a point of TM with x ∈ M, y ∈ TxM, and let
(xi, yi) be the local coordinates on TM with y = yi ∂

∂xi . A Finsler metric on M is a function
F : TM → [, +∞) satisfying the following properties:

(i) Regularity: F(x, y) is smooth in TM \ .
(ii) Positive homogeneity: F(x,λy) = λF(x, y) for λ > .
(iii) Strong convexity: The fundamental quadratic form

g := gij(x, y)dxi ⊗ dxj, gij :=


[
F]

yiyj

is positively definite.

http://www.journalofinequalitiesandapplications.com/content/2014/1/107
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Let U ⊂M be an open set and V = vi ∂

∂xi be a nonzero vector field on U . Define

gV (X,Y ) := XiY jgij(x,V ), ∀X = Xi ∂

∂xi
,Y = Y i ∂

∂xi
,

DV
∂

∂xi

∂

∂xj
:= �k

ij(x,V )
∂

∂xk
,

where �k
ij(x,V ) are Chern connection coefficients. Then

DV
XY –DV

Y X = [X,Y ], (.)

XgV (Y ,Z) = gV
(
DV

XY ,Z
)
+ gV

(
Y ,DV

XZ
)
+ CV

(
DV

XV ,Y ,Z
)
, (.)

where CV satisfies

CV (V ,X,Y ) = . (.)

Given two linearly independent vectors V ,W ∈ TxM\, the flag curvature is defined by

K (V ,W ) :=
gV (RV (V ,W )W ,V )

gV (V ,V )gV (W ,W ) – gV (V ,W )
,

where RV is the Chern curvature

RV (X,Y )Z =DV
XD

V
Y Z –DV

Y D
V
XZ –DV

[X,Y ]Z.

Then the Ricci curvature for (M,F) is defined as

Ric(V ) =
n–∑
i=

K (V , ei),

where e, . . . , en–, V
F(V ) form an orthonormal basis of TxM with respect to gV .

For a given volume form dμ = σ (x)dx and a vector y ∈ TxM\, the distortion of
(M,F ,dμ) is defined by

τ (y) := ln

√
det(gij(y))

σ
.

To measure the rate of changes of the distortion along geodesics, we define

S(y) :=
d
dt

[
τ
(
ċ(t)

)]
t=,

where c(t) is the geodesic with ċ() = y. S is called the S-curvature.
Nowwe can introduce the weighted Ricci curvature on the Finsler manifolds, which was

defined by Ohta in []. In the present paper, we reform it as follows.

Definition . [] Let (M,F ,dμ) be a Finsler n-manifold. Given a vector V ∈ TxM, let
γ : (–ε, ε) →M be a geodesic with γ () = x, γ̇ () = V . Define

Ṡ(V ) := F–(V )
∂

∂t
[
S
(
γ (t), γ̇ (t)

)]
t=,
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where S(V ) denotes the S-curvature at (x,V ). The weighted Ricci curvature of (M,F ,dμ)
is defined by

⎧⎪⎨
⎪⎩
Ricn(V ) :=

{Ric(V ) + Ṡ(V ), for S(V ) = ,
–∞, otherwise,

RicN (V ) := Ric(V ) + Ṡ(V ) – S(V )
(N–n)F(V ) , ∀N ∈ (n,∞),

Ric∞(V ) := Ric(V ) + Ṡ(V ).

Here we will spend some words about the assumption of the nonpositive S-curvature
in this paper. If the Finsler metric F is reversible, then the S-curvature is homogeneous
S(–y) = –S(y) and hence S ≤  only if S = . If S = , thenRicN = Ric for allN . For instance,
the Busemann-Hausdorffmeasures onBerwald spaces satisfy S = . Express a Randermet-
ric F = α + β in terms of a Riemannian metric h =

√
hijyiyj and a vectorW =Wi ∂

∂xi by

F =

√
λh +W 



λ
–
W

λ
, W :=Wiyi,

whereWi := hijW j and λ :=  –WiWi =  – h(x,W ). Set

h = |y| =
√√√√ n∑

i=

(
yi

), W = –cx + xQ + b,

where c <  is a constant, Q = (qij) is an anti-symmetric matrix and b ∈ Rn is a constant
vector. In [], we know that F has constant flag curvature K = –c and W; = –ch.
From [], we further get S = (n + )cF <  by using the Busemann-Hausdorff measures.
For more examples, we can refer to [].
For a smooth function u and a smooth vector field V onM, we setMu := {x ∈M|du(x) �=

} andMV := {x ∈ M|V (x) �= }. If V �=  onMu, then the weighted gradient vector of u on
the weighted Riemannian manifold (M, gV ) is defined by

∇Vu :=

{
gij(V ) ∂u

∂xj
∂

∂xi onMV ,
 onM\MV .

The divergence of V = Vi ∂

∂xi on M with respect to an arbitrary volume form dμ = e�dx
and the Finsler weighted Laplacian of u on (M, gV ) are defined by

divV :=
n∑
i=

(
∂Vi

∂xi
+Vi ∂�

∂xi

)
, �Vu := div

(∇Vu
)
,

respectively.
Let L : TM → T∗M be the Legendre transform. For a smooth function u on M, the

gradient vector and the Finsler-Laplacian of u is defined by

∇u :=L–(du), �u := div(∇u).

In particular, onMu we have

∇u =∇∇uu, �u =�∇uu.

http://www.journalofinequalitiesandapplications.com/content/2014/1/107
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LetX = Xi ∂

∂xi be a differential vector field. Then the covariant derivative ofX by v ∈ TxM
with reference vector w ∈ TxM\ is defined by

Dw
v X(x) :=

{
vj

∂Xi

∂xj
(x) + �i

jk(w)v
jXk(x)

}
∂

∂xi
,

where �i
jk denotes the coefficients of the Chern connection.

For a smooth vector field V onM and x ∈MV , we define ∇V (x) ∈ T∗
xM⊗TxM by using

the covariant derivative as

∇V (v) :=DV
v V (x) ∈ TxM, v ∈ TxM.

We also set ∇u(x) := ∇(∇u)(x) for the smooth function u and x ∈Mu. Then

∇u(X,Y ) = XY (u) –D∇u
X Y (u) = g∇u

(
D∇u

X ∇u,Y
)
, ∀X,Y ∈ TM|Mu . (.)

Let {ea}na= be a local orthonormal basis with respect to g∇u on Mu. Write uab :=
g∇u(∇u(ea), eb), then we have

uab = uba.

Let (M,F) be a Finsler manifold. Define the distance function by

d(p,q) := inf
γ

∫ 


F
(
γ , γ̇ (t)

)
dt,

where the infimum is taken over all differentiable curves γ : [, ] →M with γ () = p and
γ () = q.

Lemma . [] Let (M,F) be a Finsler n-manifold and u :M → R a smooth function. Then
on Mu we have

�u = trg∇u

(∇u
)
– S(∇u) =

∑
a

uaa – S(∇u),

where uaa = g∇u(∇u(ea), ea) and {ea}na= is a local g∇u-orthonormal basis on Mu.

Lemma . [] Assume that RicN ≥  for N ∈ (n,∞). Then the Laplacian of the distance
function ρ(x) = d(p,x) from any given point p ∈M can be estimated as follows:

�ρ ≤ N – 
ρ

in the sense of distributions on M\{p}.

Lemma . [] Let (M,F) be a Finsler n-manifold and ρ = d(p, ·) be the distance function
from a fixed point p. Suppose that the flag curvature of M satisfies K ≤ c. Then for any
vector X on M, the following inequality holds whenever ρ is smooth:

∇ρ(X,X)≥ ctc(ρ)
(
g∇ρ(X,X) – g∇ρ(∇ρ,X)

)
,

where ctc(ρ) is defined by (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/107
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3 Laplacian comparison theorems
Theorem . Let (M,F ,dμ) be a Finsler n-manifold with nonpositive flag curvature and
nonpositive S-curvature. If the weighted Ricci curvature satisfies Ricn+ ≤ c, then the fol-
lowing holds whenever the distance function ρ is smooth:

�ρ ≥ ctc(ρ).

Proof Let ρ(x) = d(p,x) be the distance function. If ρ is smooth at q ∈ M, then it is also
smooth near q. Let Sp(ρ(q)) be the forward geodesic sphere of radius ρ(q) centered at p.
Choosing the local g∇ρ-orthonormal frame E, . . . ,En– of Sp(ρ(q)) near q, we get local
vector fields E, . . . ,En–, En = ∇ρ by parallel transport along geodesic rays. Using (.)-
(.), we have

d
dρ

[∇ρ(Ei,Ej)
]
=

d
dρ

g∇ρ

(
D∇ρ

Ei ∇ρ,Ej
)
= g∇ρ

(
D∇ρ

∇ρD
∇ρ
Ei ∇ρ,Ej

)
= g∇ρ

(
R∇ρ(∇ρ,Ei)∇ρ,Ej

)
+ g∇ρ

(
D∇ρ

[∇ρ,Ei]∇ρ,Ej
)

= –g∇ρ

(
R∇ρ(Ei,∇ρ)∇ρ,Ej

)
– g∇ρ

(
D∇ρ

D∇ρ
Ei

∇ρ
∇ρ,Ej

)
= –g∇ρ

(
R∇ρ(Ei,∇ρ)∇ρ,Ej

)
–

∑
k

g∇ρ

(
D∇ρ

Ei ∇ρ,Ek
)
g∇ρ

(
D∇ρ

Ek ∇ρ,Ej
)
.

Consequently,

d
dρ

(
tr∇ρ

(∇ρ
))

= –Ric(∇ρ) –
∥∥∇ρ

∥∥
HS(∇ρ). (.)

Here ‖ · ‖HS(∇ρ) denotes the Hilbert-Schmidt norm with respect to g∇ρ . We refer to []
for details.
SinceM has nonpositive flag curvature, from Lemma . we see that the eigenvalues of

∇ρ are nonnegative. This yields

∥∥∇ρ
∥∥
HS(∇ρ) ≤

(
tr∇ρ

(∇ρ
)). (.)

Note that RicN = Ric+ Ṡ – S
N–n and RicN ≤ c for N ≥ n + , from (.) and (.) we have

d
dρ

(
tr∇ρ

(∇ρ
))

= –RicN (∇ρ) + Ṡ(∇ρ) –
S(∇ρ)

N – n
–

∥∥∇ρ
∥∥
HS(∇ρ)

≥ –c + Ṡ(∇ρ) –
S(∇ρ)

N – n
–

(
tr∇ρ

(∇ρ
)). (.)

Notice that S ≤  and ∇ρ has nonnegative eigenvalues; from Lemma . we have

(�ρ) =
(
tr∇ρ

(∇ρ
)
– S

)
=

(
tr∇ρ

(∇ρ
)) + S – S tr∇ρ

(∇ρ
)

≥ (
tr∇ρ

(∇ρ
)) + S

≥ (
tr∇ρ

(∇ρ
)) + S

N – n
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/107
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forN –n≥ . On the other hand, it is easy to see that d
dρ
S = Ṡ since F(∇ρ) = . Combining

(.) and (.), and using Lemma . again, we obtain

d
dρ

(�ρ)≥ –(�ρ) – c. (.)

By a simple argument, (.) can be rewritten as

d
dρ

(
�ρ – ctc(ρ)

) ≥ (
ctc(ρ)

) – (�ρ). (.)

Set A =�ρ – ctc(ρ), B =�ρ + ctc(ρ), then (.) becomes

dA
dρ

+AB ≥ . (.)

SinceM has nonpositive flag curvature and nonpositive S-curvature, from Lemma . we
get

�ρ ≥ �ρ + S = tr∇ρ

(∇ρ
) ≥ n – 

ρ
,

which implies that there exists ε >  such that

A(ρ)≥ n – 
ρ

– ctc(ρ)≥ , ∀ρ ∈ (, ε].

From (.) we have

d
dρ

(
A(ρ) exp

(∫ ρ

ε

B(t)dt
))

≥ ,

which yields A(ρ)≥ , i.e., �ρ ≥ ctc(ρ). �

IfM has nonpositive S-curvature, then

�ρ = tr∇ρ

(∇ρ
)
– S ≥ tr∇ρ

(∇ρ
)
.

Thus from Lemma ., we get the following.

Proposition . Let (M,F ,dμ) be a Finsler n-manifold with nonpositive S-curvature. If
the flag curvature satisfies K ≤ c, then the following holds whenever the distance function
ρ is smooth:

�ρ ≥ (n – ) ctc(ρ).

4 Volume comparison theorems
Let (M,F ,dμ) be a Finsler n-manifold. For a fixed point p ∈M, define

Ip :=
{
v ∈ TpM|F(v) = 

}
, c(v) := sup

{
t > |dF

(
p, exp(tv)

)
= t

}
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/107
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C(p) :=
{
c(v)v|c(v) <∞, v ∈ Ip

}
, C(p) := expC(p), ip := inf

{
c(v)|v ∈ Ip

}
,

D(p) :=
{
tv|≤ t < c(v), v ∈ Ip

}
, D(p) := expD(p).

Then D(p) = M\C(p). Let {θα|α = , . . . ,n – } be the local coordinates that are in-
trinsic to Ip. For any q ∈ D(p), the polar coordinates of q are defined by (ρ, θ ) =
(ρ(q), θ (q), . . . , θn–(q)), where ρ(q) = F(v), θα(q) = θα( v

F(v) ) and v = exp–p (q). Since ∂
∂ρ

=
∇ρ , we conclude

g∇ρ

(
∂

∂ρ
,

∂

∂θα

)
= , ∀α, g∇ρ

(
∂

∂ρ
,

∂

∂ρ

)
= 

in view of the Gauss lemma. Therefore, if dμ = σ (ρ, θ )dρ ∧ dθ , then from the definition
of the Finsler-Laplacian of a function we have

�ρ =
∂

∂ρ
logσ . (.)

Proposition . Let (M,F ,dμ) be a complete Finsler n-manifold with nonpositive S-
curvature. If the flag curvature satisfies K ≤ c, then the function

voldμ
F (B+

p(ρ))
vol(Bn

c (ρ))

ismonotone increasing for  < ρ < ip,where ip is the injectivity radius of p andBn
c (ρ) denotes

the geodesic ball of radius ρ in a space form of constant sectional curvature c. In particular,
for the Busemann-Hausdorff volume form dμ = σBH dx, one has

voldμ
F

(
B+
p(ρ)

) ≥ vol
(
Bn
c (ρ)

)
, ρ ≤ ip. (.)

Proof By (.), Proposition . and the assumption of Proposition ., we have

∂

∂ρ
logσ ≥ (n – ) ctc(ρ) =

d
dρ

log
(
sc(ρ)n–

)
,

which implies that the function

σ (ρ, θ )
sc(ρ)n–

is monotone increasing with respect to ρ , where

sc(ρ) :=

⎧⎪⎨
⎪⎩

sin(
√
cρ)√
c , c > ;

ρ, c = ;
sinh(

√
–cρ)√

–c , c < .
(.)

Let Dp(ρ) := {v ∈ Ip|ρv ∈Dp}. It is easy to see that Dp(ρ) = Ip for ρ < ip. Set

σp(ρ) :=
∫
Dp(ρ)

σ (ρ, θ )dθ , σc,n(ρ) := vol
(
Sn–()

)
sc(ρ)n–.

http://www.journalofinequalitiesandapplications.com/content/2014/1/107
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Then for ρ < ip,

voldμ
F

(
B+
p(ρ)

)
=

∫ ρ


σp(ρ)dρ, vol

(
Bn
c (ρ)

)
=

∫ ρ


σc,n(ρ)dρ.

For two positive integrable functions f and g , if f
g is monotone increasing, then the func-

tion
∫ r
 f (t)dt∫ r
 g(t)dt

is also monotone increasing (see Lemma . in [] for details). From this statement, one
finds that σp(ρ)

σc,n(ρ) is monotone increasing, and also the function

∫ ρ


∫
Dp(ρ) σ (ρ, θ )dθ dρ

vol(Sn–())
∫ ρ

 sc(ρ)n– dρ
=
voldμ

F (B+
p(ρ))

vol(Bn
c (ρ))

is monotone increasing for ρ < ip.
To prove (.), we only need to show

lim
ρ→

voldμ
F (B+

p(ρ))
vol(Bn

c (ρ))
= 

when dμ = σBH dx. Since

lim
ρ→

vol(Bn
c (ρ))

vol(Bn
(ρ))

= lim
ρ→

∫ ρ

 sc(t)n– dt∫ ρ

 tn– dt
= ,

it is sufficient to prove

lim
ρ→

voldμ
F (B+

p(ρ))
vol(Bn

(ρ))
= ,

which can be directly obtained from []. �

By using Theorem ., we can get the following result similarly.

Proposition . Let (M,F ,dμ) be a complete and simply connected Finsler n-manifold
with nonpositive flag curvature and nonpositive S-curvature. If the weighted Ricci curva-
ture satisfies Ricn+ ≤ c < , then the function

voldμ
F (B+

p(ρ))
vol(B

c (ρ))

is monotone increasing. In particular, for the Busemann-Hausdorff volume form dμ =
σBH dx, one has

voldμ
F

(
B+
p(ρ)

) ≥ voldμ
F (B+

p())

voldμ
F (B

c ())
vol

(
B
c (ρ)

)
, ∀ρ ≥ .
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Define reversibility λ = λ(M,F) as follows:

λ := sup
X∈TM\

F(–X)
F(X)

.

Obviously, λ ∈ [,∞], and λ =  if and only if (M,F) is reversible.
In what follows, we shall generalize Calabi-Yau’s linear volume growth theorem to

Finsler manifolds with an arbitrary volume form.

Theorem . Let (M,F ,dμ) be a complete noncompact Finsler n-manifold with finite re-
versibility λ. If the weighted Ricci curvature satisfies RicN ≥ , N ∈ (n,∞), then

voldμ
F

(
B+
p(R)

) ≥ C
(
N ,λ,voldμ

F
(
B+
p()

))
R,

voldμ
F

(
B–
p (R)

) ≥ C
(
N ,λ,voldμ

F
(
B–
p ()

))
R,

where B+
p(R) (resp. B–

p (R)) denotes the forward (resp. backward) geodesic ball of radius
R centered at p and C denotes the constant depending on N , λ, and voldμ

F (B+
p()) (resp.

voldμ
F (B–

p ())).

Proof Let x ∈ ∂B–
p (R) be a given point. Namely, d(x,p) = R. Let ρ be the distance function

ρ(x) = d(x,x). Then F(∇ρ) := ‖∇ρ‖ = . From Lemma . we have

�ρ ≤ N – 
ρ

,

which yields

�∇ρρ = ρ�ρ + ‖∇ρ‖ ≤ (N – ) +  = N .

Therefore, for any nonnegative function ϕ ∈ C∞
 (M), one obtains

∫
M

ϕ�∇ρρ dμ ≤ N
∫
M

ϕ dμ. (.)

Set

ψ(t) :=

⎧⎪⎨
⎪⎩
, ≤ t ≤ R – λ;
R+–t
+λ

, R – λ ≤ t ≤ R + ;
, t ≥ R + ,

(.)

for any R > λ. If ϕ(x) =ψ(ρ(x)), then ϕ(x) is a Lipschitz continuous function and suppϕ ⊂
B+
x (R+). Since the Stokes formula still holds for Lipschitz continuous functions, we have

∫
M

ϕ�∇ρρ dμ = –
∫
B+x (R+)

g∇ρ

(∇∇ρϕ,∇∇ρρ)dμ

= –
∫
B+x (R+)

ψ ′(ρ(x))ρ‖∇ρ‖ dμ
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=


 + λ

∫
B+x (R+)\B+x (R–λ)

ρ dμ

≥ (R – λ)
 + λ

voldμ
F

(
B+
x (R + )\B+

x (R – λ)
)
. (.)

It follows from (.) that

(R – λ)
 + λ

voldμ
F

(
B+
x (R + )\B+

x (R – λ)
)

≤ N
∫
M

ϕ dμ = N
∫
B+x (R+)

ϕ dμ

≤ N
∫
B+x (R+)

dμ = N voldμ
F

(
B+
x (R + )

)
. (.)

Notice that d(p,q) ≤ λd(q,p), ∀p,q ∈ M, it is easy to find from the triangle inequality that

B+
p() ⊂ B+

x (R + )\B+
x (R – λ), ∀R > λ. (.)

Therefore, from (.) and (.) we have

N voldμ
F

(
B+
x (R + )

) ≥ (R – λ)
 + λ

voldμ
F

(
B+
x (R + )\B+

x (R – λ)
)

≥ (R – λ)
 + λ

voldμ
F B+

p(). (.)

On the other hand, it is not hard to see that B+
x (R+ )⊂ B+

p((λ+ )(R+ )). Combining this
and (.) one obtains

voldμ
F

(
B+
p
(
(λ + )(R + )

)) ≥ (R – λ)
N( + λ)

voldμ
F B+

p().

Replacing (λ + )(R + ) by R, we have

voldμ
F

(
B+
p(R)

) ≥ ( R
λ+ – ( + λ))
N( + λ)

voldμ
F B+

p()

≥ C
(
N ,λ,voldμ

F
(
B+
p()

))
R.

Next, we consider the second part of Theorem.. Let←–F (v) := F(–v) be the reverse Finsler
metric of F . If F reversible, then←–F = F .We put an arrow← on those quantities associated
with ←–F . For example,

←–
d (x, y) = d(y,x), ←–∇u = –∇(–u), ←–

�u = –�(–u),
←––
RicN (v) = RicN (–v).

If the weighted Ricci curvature of F satisfies RicN ≥ , then for the reverse Finsler metric←–F ,
←––
RicN ≥ . Moreover, the corresponding Laplacian comparison theorem still holds [].

Since the curvature condition is common between F and ←–F , the assertion for B– w.r.t. F
follows from that for B+ w.r.t. ←–F . So the proof is omitted here. �
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Corollary . A complete noncompact Finsler n-manifold with nonnegative weighted
Ricci curvature and finite reversibility must have infinite volume.

Theorem . Let (M,F ,dμ) be a complete and simply connected Finsler n-manifold, with
nonpositive flag curvature and nonpositive S-curvature. If the weighted Ricci curvature sat-
isfies Ricn+ ≤ –(n – )b (b > ), then for any fixed ε > , there exists a positive constant
c(n,b, ε) such that when ρ ≥ ε, one has

voldμ
F

(
B+
p(ρ)

) ≥ c(n,b, ε)ebρ ,

where voldμ
F (B+

p(ρ)) is the volume of the forward geodesic ball centered at p ∈ M with ra-
dius ρ .

Proof Using (.), Lemma ., and Definition ., we have

d
dρ

(�ρ) = –Ric∞(∇ρ) –
∥∥∇ρ

∥∥
HS(∇ρ).

Combining (.) one gets

∂σ (ρ, θ )
∂ρ = σ (�ρ) – σ Ric∞(∇ρ) – σ

∥∥∇ρ
∥∥
HS(∇ρ), (.)

which together with (.) and (.) yields

∂σ

∂ρ ≥ –σ RicN (∇ρ) (.)

for N ∈ [n + ,∞].
On the other hand, for a Riemannian manifold (M̄, ḡ) with constant sectional curvature

–b, we have σ̄ =
√
ḡ and

(�̄ρ) = (n – )
∥∥∇̄ρ

∥∥, (.)

∂σ̄

∂ρ = –σ̄Ric(∇̄ρ) +
n – 
n – 

σ̄ ′

σ̄

(
σ̄ ′ :=

∂σ̄

∂ρ

)
. (.)

Set � =: σ σ̄ – 
n– . Then

�′ =�

(
σ ′

σ
–


n – 

σ̄ ′

σ̄

)
=�

(
�ρ –


n – 

�̄ρ

)
. (.)

By (.) and (.), and the assumption of Theorem ., we have

�′′ = �

(
σ ′

σ
–


n – 

σ̄ ′

σ̄

)

+�

[
σ ′′

σ
–

(
σ ′

σ

)

–


n – 
σ̄ ′′

σ̄
+


n – 

(
σ̄ ′

σ̄

)]

≥ �

(
σ ′

σ
–


n – 

σ̄ ′

σ̄

)

+�

[
–RicN (∇ρ) –

(
σ ′

σ

)

+


n – 
Ric(∇̄ρ) +


(n – )

(
σ̄ ′

σ̄

)]
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≥ –


n – 
σ̄ ′

σ̄
�

(
σ ′

σ
–


n – 

σ̄ ′

σ̄

)

= –


n – 
σ̄ ′

σ̄
�′, (.)

which implies

(
σ̄


n– �′)′ = σ̄


n–

(
�′′ +


n – 

σ̄ ′

σ̄
�′

)
≥ .

Therefore σ̄


n– �′ is increasing in ρ . Hence when ρ ≥ ε,

�′(ρ) ≥ σ̄ – 
n– (ρ)σ̄


n– (ε)�′(ε)

≥ lim
ε→

σ̄ – 
n– (ρ)σ̄


n– (ε)σ (ε)σ̄ – 

n– (ε)
(

σ ′

σ
(ε) –


n – 

σ̄ ′

σ̄
(ε)

)
.

Notice that σ (ε, θ ) ∼ εn–, σ̄ (ε, θ ) ∼ εn– (ε → ). We obtain �′(ρ) ≥ , which means that
� = σ σ̄ – 

n– is also increasing in ρ . It is well known that

σ̄ (ρ) =
(
sinh(bρ)

b

)n–

.

Thus when ρ ≥ ε, one has

bσ (ρ, θ )
sinh(bρ)

≥ bσ (ε, θ )
sinh(bε)

∼ εn–

as ε → , which shows that there exists c = c(n,b) such that

σ (ρ, θ )≥ cεn– sinh(bρ).

Consequently,

voldμ
F

(
B+
p(ρ)

)
=

∫ ρ


dt

∫
Dp(ρ)

σ (t, θ )dθ

≥ cωn–εn–
∫ ρ


sinh(bt)dt

≥ c(n,b, ε)ebρ ,

where ωn– denotes the volume of the unit sphere Sn–. �

By similar argument, we also have the following result.

Proposition . Let (M,F ,dμ) be a complete and simply connected Finsler n-manifold
with nonpositive S-curvature. If the flag curvature satisfies K ≤ –b < , then the volume
of the forward geodesic ball of M grows at least exponentially.

Remark . Theorem . and Proposition . can also be deduced from Proposition .
and Proposition ..
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In [], Milnor proved that the fundamental group of a compact Riemannian manifold
of negative sectional curvature has exponential growth. Then this result was generalized
to the case of negative Ricci curvature and nonpositive sectional curvature in [] and [].
The key point of the proof is to give a lower bound estimate for the volume of the geodesic
balls of the universal covering space. In [] and [], the results were also generalized to the
Finsler setting. By using the same method, we get another version of Milnor’s results in
Finsler geometry.

Theorem . Let (M,F ,dμ) be a compact Finsler n-manifold with nonpositive S-curva-
ture. Suppose that one of the following two conditions holds:

(i) the flag curvature satisfies K ≤ –b < ;
(ii) M has nonpositive flag curvature and Ricn+ ≤ –(n – )b < .

Then the fundamental group of M grows at least exponentially.

5 Mckean type eigenvalue estimates
Let (M,F ,dμ) be a Finsler manifold, � ⊂ M be a domain with compact closure and
nonempty boundary ∂�. The first eigenvalue λ(�) is defined by

λ(�) = inf
u∈W ,

 (�)\{}

{∫
�
(F∗(du)) dμ∫

�
u dμ

}
,

where W ,
 (�) is the completion of C∞

 (�). If � ⊂ � are bounded domains, then
λ(�) ≥ λ(�) ≥ . Thus, if � ⊂ � ⊂ · · · ⊂ M are bounded domains such that

⋃
�i =

M, then the limit

λ(M) = lim
i→∞λ,p(�i) ≥ 

exists, and it is independent of the choice of {�i}.

Theorem . Let (M,F ,dμ) be a complete noncompact and simply connected Finsler n-
manifold with finite reversibility λ and nonpositive S-curvature. If the flag curvature satis-
fies K ≤ –a (a > ), then

λ(M) ≥ (n – )a

λ .

Proof For R > δ > , set �δ = Bp(R)\Bp(δ), where Bp(R) denotes the forward geodesic ball
of radius R centered at p. Then ρ(x) = d(p,x) is differentiable in �δ and ∇ρ is a smooth
vector field in �δ . Let f ∈ C∞

 (�δ). Notice that F(∇ρ) = , and we have

div
(
f ∇ρ

)
= f �ρ + f∇ρ(f )

≥ f �ρ – λ|f |F∗(df )F(∇ρ)

= f �ρ – λ|f |F∗(df ),
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where F∗ is the dual Finsler metric of F . Since K ≤ –a, it is known from Proposition .
that �ρ ≥ (n – )a coth(aρ). Hence

div
(
f ∇ρ

) ≥ f (n – )a coth(aρ) – λ|f |F∗(df )

≥ f (n – )a coth(aR) – λ

(
εf  +


ε
F∗(df )

)
(.)

holds for any ε > . Integrating both sides of (.) over �δ and using the divergence theo-
rem, we obtain

 =
∫

�δ

div
(
f ∇ρ

)
dμ ≥ (n – )a coth(aR)

∫
�δ

f  dμ

– λ

∫
�δ

(
εf  +


ε
F∗(df )

)
dμ.

Therefore,
∫

�δ

F∗(df ) dμ ≥ ε

λ

(
(n – )a coth(aR) – ελ

) ∫
�δ

f  dμ.

Choosing ε = (n–)a coth(aR)
λ , one has

∫
�δ

F∗(df ) dμ ≥
[
(n – )a coth(aR)

λ

] ∫
�δ

f  dμ.

Letting δ → , we get

∫
Bp(R)

F∗(df ) dμ ≥
[
(n – )a coth(aR)

λ

] ∫
Bp(R)

f  dμ.

Since f is arbitrary, the formula above means

λ
(
Bp(R)

) ≥
[
(n – )a coth(aR)

λ

]

.

Note that (M,F ,dμ) is a complete noncompact and simply connected Finsler manifold.
Letting R → ∞, we have

λ(M) ≥
[
(n – )a

λ

]

. �

By using Theorem . and a similar argument, we can also prove the following result.

Theorem . Let (M,F ,dμ) be a complete noncompact and simply connected Finsler n-
manifold with finite reversibility λ, nonpositive flag curvature and nonpositive S-curvature.
If the weighted Ricci curvature satisfies Ricn+ ≤ –a (a > ), then

λ(M) ≥ a

λ .
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