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Abstract
Besov-type interpolation spaces and appropriate Bernstein-Jackson inequalities,
generated by unbounded linear operators in a Banach space, are considered. In the
case of the operator of differentiation these spaces and inequalities exactly coincide
with the classical ones. Inequalities are applied to a best approximation problem in a
Banach space, particularly, to spectral approximations of regular elliptic operators.
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1 Introduction and preliminaries
The classical Jackson and Bernstein inequalities express a relation between smoothness
modules of functions and properties of their best approximations by polynomials or entire
functions of exponential type that can be characterized with the help of Besov norms [,
Sections ., .]. These results are extended to approximations of smooth functions by
wavelets (see e.g. [–]), and to approximations of linear operators in Banach spaces by
operators with finite ranks [], and other similar approximations.
The motivation of our work is to extend the Bernstein-Jackson inequalities to cases of

best spectral approximations in a Banach space. An analog of Bernstein-Jackson inequal-
ities in the case of approximations in the space Lp(G) on a Lie group G by spectral sub-
spaces Mp(h) = {f ∈ Lp(G) : E(λ)f = f if λ ≥ h > } of the group sublaplacian �G, where
�G =

∫ ∞
 λdE(λ) is its spectral resolution, is established in [, ]. Spectral subspaces are

analogous subspaces of entire functions of exponential type. The appropriate Besov space
is characterized by the functional of best approximation Ep(h, f ) = infg∈Mp(h) ‖f – g‖Lp(G).
This approach is a prototype of our generalizations.We consider a closed operatorA in a

Banach spaceX instead of �G and replace the spectral subspacesMp(h) by invariant sub-
spaces of exponential type entire vectors of A. Note that similar subspaces of exponential
type entire vectors have appeared in [–].
Our goal is to investigate a best approximation problem by invariant subspaces of expo-

nential type entire vectors of an arbitrary unbounded closed linear operatorA in a Banach
space X. As a basic tool, we use an analog of approximate Bernstein and Jackson inequali-
ties and an abstract quasi-normed Besov-type interpolation spaceBα

p,τ (A), associated with
exponential type entire vectors of A, which sharply characterizes the behavior of the best
spectral approximation.

©2014Dmytryshyn and Lopushansky; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and re-
production in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/105
mailto:ovlopusz@ur.edu.pl
http://creativecommons.org/licenses/by/2.0


Dmytryshyn and Lopushansky Journal of Inequalities and Applications 2014, 2014:105 Page 2 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/105

Using the quasi-norm of Bα
p,τ (A), the main result is formulated in Theorem  as two

inequalities, estimating the minimal distance from a given element to a subspace of ex-
ponential type vectors with fixed indices. In the case of the operator of differentiation
in Lp(R), the spaces Bα

p,τ (A) coincide with the classical Besov-type spaces (Theorem )
and the estimations reduce to the known Bernstein and Jackson inequalities (Theorem ).
A new application to spectral approximations of elliptic operators is shown in Section 
(see also Theorem ).
In a Banach complex space (X,‖ · ‖) we consider a closed unbounded linear operator

with the norm dense domain C(A),

A : C(A) ⊂X−→X.

Let Ck+(A) = {x ∈ Ck(A) : Akx ∈ Ck(A)} and C∞(A) =
⋂ {Ck(A) : k ∈ N}. We call the ele-

ments

E(A) =
⋃
t>

⋂
k∈Z+

{
x ∈ C∞(A) :

∥∥Akx
∥∥ ≤ ctk

}

exponential type entire vectors of A, where the constant c = c(x,A) is independent on k ∈
Z+ and A is the unit operator on X. Clearly, every exponential type entire vector also is
an analytic vector of A in the well-known Nelson sense.
Throughout this article we assume that the norm density condition E(A) =X holds and

that the operators Ak (k ∈ N) are closed in X. In many important cases for applications
these assumptions hold. Particularly, we have the cases:

(i) if A has a real spectrum and ∀ε >  the integral
∫ ε

 ln lnM(r)dr with
M(r) = sup|
λ|≥r ‖(λ –A)–‖ is convergent (see []);

(ii) if A generates we have an one-parameter group etA with the convergent integral∫
R

‖etA‖( + |t|)– dt [];
(iii) if A generates we have a bounded C-group etA on X (see []).
If X = Lp(R) (≤ p≤ ∞) and A =D is the differentiation operator on R then E(A) is the

space of entire functions of exponential type, belonging to Lp(R). In this case the inequality
‖Akx‖ ≤ ctk reduces to the Bernstein inequality. If the spectrum σ (A) of an operator A is
discrete then the subspace E(A) exactly coincides with the linear span of all its spectral
subspaces in X (see []).
Recall the real interpolation method (for more details see [, ]). Let (X, | · |X) and

(Y , | · |Y ) be a quasi-normed complex spaces. Given the pair positive numbers { < ϑ <
,  ≤ p ≤ ∞} or { < ϑ ≤ ,p = ∞} the interpolation vector space can be defined as the
set (X,Y )ϑ ,p = {a ∈ X + Y : |a|(X,Y )ϑ ,p < ∞} endowed with the quasi-norm

|a|(X,Y )ϑ ,p =
{
(
∫ ∞
 [τ–ϑK (τ ,a;X,Y )]p dτ

τ
)/p, p < ∞,

sup<τ<∞ τ–ϑK (τ ,a;X,Y ), p =∞,
()

whereK (τ ,a;X,Y ) := infa=x+y(|x|X +τ |y|Y ) is called aK-functional [, Section .]. Clearly,
X ∩ Y ⊂ (X,Y )ϑ ,p ⊂ X + Y .
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2 Scales of invariant subspaces
Let  < t <∞ and  ≤ p ≤ ∞. Consider the mapping

C∞(A) � x −→ {
(A/t)kx : k ∈ Z+

}
which image is formed by sequences of elements of a Banach space X. For any pair of
indices t, p we define the normed spaces E t

p(A) = {x ∈ C∞(A) : ‖x‖E t
p < ∞}, where

‖x‖E t
p =

{
(
∑

k∈Z+ ‖(A/t)kx‖p)/p, ≤ p < ∞,
supk∈Z+ ‖(A/t)kx‖, p =∞.

Theorem  (i) The contractive inclusions E t
p(A)� E τ

p (A)� E τ∞(A)�X with τ > t hold.
(ii) Every space E t

p(A) is A-invariant and the restriction A|E t
p is a bounded operator over

E t
p(A) with the norm ‖A|E t

p‖E t
p ≤ t.

(iii) The spectrum of A has the property σ (A|E t
p ) ⊂ σ (A).

(iv) Every space E t
p(A) is complete.

Proof (i) The inequalities ‖x‖ ≤ ‖x‖E t∞ and ‖x‖pE t∞
≤ ‖x‖pE t

p
yield the contractive inclusions

E t∞(A) � X and E t
p(A) � E t∞(A), respectively. If x ∈ E t

p(A) then ‖Akx‖p ≤ tpk‖x‖pE t
p
and

‖Akx‖p/k ≤ tp‖x‖p/kE t
p
for all k ∈ Z+. It follows that lim supk→∞ ‖Akx‖p/k ≤ tp. Therefore, for

any τ > t the series ‖x‖pEτ
p
=

∑
k ‖(A/τ )kx‖p is convergent. As a result, x ∈ E τ

p (A). Moreover,
‖x‖pEτ

p
≤ ‖x‖pE t

p
for all x ∈ E t

p(A) and τ > t.
(ii) Using A(A/t)kx = t(A/t)k+x, we obtain ‖Ax‖E t∞ ≤ t‖x‖E t∞ and ‖Ax‖pE t

p
≤ tp‖x‖pE t

p
when  ≤ p <∞.
(iii) For any λ ∈ ρ(A) and x ∈ E t

p(A) the equality (A/t)k(λ –A)–x = (λ –A)–(A/t)kx
holds. It follows that ‖(λ – A)–x‖E t

p ≤ ‖(λ – A)–‖‖x‖E t
p for all x ∈ E t

p. Hence, λ belongs
to the resolvent set ρ(A|E t

p ).
(iv) Let us use the inequality ‖x‖E t

p ≥ ‖(A/t)kx‖ with x ∈ E t
p(A), k ∈ Z+. It follows that

if (xn)n∈N is a Cauchy sequence in the space E t
p(A) then (xn)n∈N and {(A/t)kxn : n ∈N} are

Cauchy sequences in the space X for all k ∈ Z+. The completeness of X implies that there
exist x, y ∈ X such that xn → x and (A/t)kxn → y by norm of X. The graph of Ak is closed
in X × X, therefore y = (A/t)kx and x ∈ Ck(A). It is true for all k ∈ Z+, so x ∈ C∞(A) and
(A/t)kxn → (A/t)kx by norm of X for all k ∈ Z+.
We reason standardly: ∀ε >  ∃nε ∈N : ‖xn – xm‖E t

p < ε, ∀n,m≥ nε . It follows that
‖(A/t)k(xn – xm)‖ < ε, ∀n,m≥ nε , k ∈ Z+. So, ∀k ∈ Z+ ∃mε,k ≥ nε : ‖(A/t)k(xm – xn)‖ <
ε/k and ‖(A/t)k(xm – x)‖ < ε/k for m ≥mε,k . Hence, from ‖(A/t)kx‖ ≤ ‖(A/t)kxnε‖ +
‖(A/t)k(xm – xnε )‖ + ‖(A/t)k(xm – x)‖ it follows that ‖(A/t)kx‖ ≤ ‖(A/t)kxnε‖ + ε/k for
all k ∈ Z+. We may use the fact that the scalar sequences a = (ak)k∈N with ak = ‖(A/t)kxnε‖
and b = (–k)k∈N belong to the Banach space 
p. Calculating 
p-norms of these elements
and applying the previous inequality, we obtain

‖x‖E t
p ≤ ‖a + b‖
p ≤ ‖a‖
p + ‖b‖
p = ‖xnε‖E t

p + ε.

Hence, x ∈ E t
p(A). Moreover, ‖(A/t)k(xn – x)‖ ≤ ‖(A/t)k(xmε,k – x)‖ + ‖(A/t)k(xn – xmε,k )‖,

where in this inequality all sequences by k belong to 
p. We obtain ‖xn –x‖E t
p ≤ ε, n≥ nε .

So, E t
p(A) is complete. �
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On the subspace Ep(A) :=
⋃

t> E t
p(A) we define the function

|x|p := ‖x‖ + inf
{
t > : x ∈ E t

p(A)
}
. ()

Theorem  (i) For every p ( ≤ p ≤ ∞) the embedding E t∞(A) ⊂ E τ
p (A) with τ > t and the

equality E(A) = Ep(A) hold.
(ii) The function () is a quasi-norm satisfying the inequality |x + y|p ≤ |x|p + |y|p for all

x, y ∈ E(A).Moreover, the contractive embedding Ep(A)�X is true.

Proof (i) Let x ∈ E t∞(A). We reason similarly to the above. For every k ∈ Z+ we have
‖Akx‖p ≤ tpk‖x‖pE t∞

. So ‖Akx‖p/k ≤ tp‖x‖p/kE t∞
. It follows that lim supk→∞ ‖Akx‖p/k ≤ tp.

Therefore, for every τ > t the series ‖x‖pEτ
p
=

∑
k ‖(A/τ )kx‖p is convergent, i.e. x ∈ E τ

p (A).
Hence, E t∞(A) ⊂ E τ

p (A).
The constant c in the definition E(A) is independent on the index k ∈ Z+. It yields the

equality E t∞(A) =
⋂

k∈Z+{x ∈ C∞(A) : ‖Akx‖ ≤ ctk}. Hence, E(A) =
⋃

t> E t∞(A). Therefore,
the embedding E t∞(A) ⊂ E τ

p (A) from Theorem (i) yields the embedding E(A) ⊂ Ep(A) for
any index p. The inverse embedding Ep(A) ⊂ E(A) follows from Theorem (i).
(ii) Use that E(A) = Ep(A) and set r(x) = inf{t > : x ∈ E t

p(A)}. For each x, y ∈ E(A) and
ε >  the values ‖x‖Er(x)+ε

p
, ‖y‖Er(y)+ε

p
are finite and the inequalities

‖x + y‖Er+ε
p ≤ ‖x‖Er+ε

p + ‖y‖Er+ε
p ≤ ‖x‖Er(x)+ε

p
+ ‖y‖Er(y)+ε

p

with r = max{r(x), r(y)} hold. It follows that r(x + y) ≤ r + ε ≤ r(x) + r(y) + ε. Since ε is
arbitrary, r(x + y) ≤ r(x) + r(y) for all x, y ∈ E(A). Evidently, r(x) = r(–x) for all x ∈ E(A). So
| · |p is a quasi-norm. The contractility of Ep(A) ⊂X is a direct consequence of (). �

3 Besov-type scales of approximation spaces
Let  ≤ p ≤ ∞. In what follows we denote by Ep(A) the subspace E(A) endowed with the
quasi-norm | · |p. Consider the auxiliary functional

Ep(t,x) = inf
{∥∥x – x

∥∥ : x ∈ Ep(A),
∣∣x∣∣p < t

}
, x ∈X.

Given a pair of numbers { < α < ∞,  < τ ≤ ∞} and { ≤ α < ∞, τ = ∞} we consider the
scale of spaces Bα

p,τ (A) = {x ∈ X : |x|Bα
p,τ < ∞},

|x|Bα
p,τ =

{
(
∫ ∞
 [tαEp(t,x)]τ dt

t )
/τ ,  < τ <∞,

supt> tαEp(t,x), τ =∞,

where by [, Lemma ..] the function |x|Bα
p,τ is a quasi-norm on Bα

p,τ (A).
We can call the space Bα

p,τ (A) endowed with the quasi-norm | · |Bα
p,τ an abstract Besov-

type space, determined by an operator A. The following properties of Bα
p,τ (A) are deduced

from well-known interpolation theorems.

Theorem  (i) If [Bα
p,τ (A)]ϑ is the space Bα

p,τ (A) endowed with the quasi-norm |x|ϑBα
p,τ

with
x ∈ Bα

p,τ (A) then the equality

[
Bα
p,τ (A)

]ϑ =
(
Ep(A),X

)
ϑ ,g , ϑ = /(α + ), τ = gϑ ()

(up to a quasi-norm equivalence) holds.

http://www.journalofinequalitiesandapplications.com/content/2014/1/105
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(ii) The spaces Bα
p,τ (A) are complete.

(iii) If  < τ < ∞,  < ϑ < , α = ( – ϑ)α + ϑα with α �= α then

(
Bα
p,τ (A),B

α
p,τ (A)

)
ϑ ,τ = Bα

p,τ (A) ()

and there exist constants c, c such that

|x|Bα
p,τ ≤ c|x|–ϑ

Bα
p,τ

|x|ϑBα
p,τ

, x ∈ Bα
p,τ (A)∩Bα

p,τ (A), ()

K
(
t,x;Bα

p,τ ,B
α
p,τ

) ≤ ctϑ |x|Bα
p,τ , x ∈ Bα

p,τ (A), t > . ()

(iv) If  < τ ≤ � <∞ then the following continuous embedding holds:

Bα
p,τ (A)� Bα

p,�(A). ()

Proof (i) The equality () is a direct consequence of the definition and [, Theorem ..].
(ii) To prove the completeness of Bα

p,τ (A), we equip the sum Ep + X (which is equal to
X, because Ep ⊂ X) with the norm ‖x‖Ep+X = infx=x+x (|x|p + ‖x‖) with x ∈ Ep and
x ∈ X. Since |x|p ≥ ‖x‖, we have ‖x‖Ep+X = ‖x‖. Hence, the space X with the norm
‖ · ‖Ep+X is complete. Consequently, every series

∑
n∈N xn with xn ∈ (Ep(A),X)ϑ ,g such that∑

n∈N ‖xn‖(Ep(A),X)ϑ ,g < ∞ is convergent to an element x ∈ Ep +X =X. Using the inequality
‖∑

n∈N xn‖(Ep(A),X)ϑ ,g ≤ ∑
n∈N ‖xn‖(Ep(A),X)ϑ ,g , we obtain x ∈ (Ep(A),X)ϑ ,g . So (Ep(A),X)ϑ ,g

is complete. The isomorphism () implies that the space [Bα
p,τ (A)]ϑ is complete. Thus,

Bα
p,τ (A) is complete as well.
(iii) Applying the reiteration property of the real interpolation [, Theorem..] for the

indices ϑ = ( – η)ϑ + ηϑ with ϑi = /(αi + ) (i = , ), ϑ = /(α + ), τ = gϑ and  < η < ,
we obtain

([
Bα
p,τ (A)

]ϑ ,
[
Bα
p,τ (A)

]ϑ)
η,g =

[
Bα
p,τ (A)

]ϑ . ()

Applying the interpolation degree property [, Theorem ..], we obtain

([
Bα
p,τ (A)

]ϑ ,
[
Bα
p,τ (A)

]ϑ)
η,g =

(
Bα
p,τ (A),B

α
p,τ (A)

)ϑ

�,τ , � = ηϑ/ϑ . ()

The equalities () and () for α = ( – �)α + �α yield () with � = ϑ . The inequalities
(), () are a consequence of () and the well-known interpolation properties [, Theo-
rem ..].
(iv) For every x ∈ (Bα

p,τ (A),B
α
p,τ (A))ϑ ,τ there exists c >  such that

|x|(Bα
p,τ ,B

α
p,τ )ϑ ,�

≤
(
sup
t>

t–ϑK (t,x; ·)
)–τ /�

(∫ ∞



[
t–ϑK (t,x; ·)]τ dt

t

)/�

≤ c|x|(Bα
p,τ ,B

α
p,τ )ϑ ,τ

.

Hence, the embedding (Bα
p,τ (A),B

α
p,τ (A))ϑ ,τ � (Bα

p,τ (A),B
α
p,τ (A))ϑ ,� is continuous. Finally

using (), we obtain (). �

Corollary  If E(A) is norm dense in X then Bα
p,τ (A) is as well.

http://www.journalofinequalitiesandapplications.com/content/2014/1/105
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4 Bernstein-Jackson-type inequalities
Let  ≤ p≤ ∞ and let the space Ep(A) be endowed with the quasi-norm | · |p. Consider the
problem of the approximation of a given element in a Banach space X by elements of an
A-invariant subspace E t

p(A) with a fixed index p. The distance between x ∈X and E t
p(A)

we denote by

dp(t,x) = inf
{∥∥x – x

∥∥ : x ∈ E t
p(A)

}
, t > .

To investigate this problem, we will use spaces Bα
p,τ (A) defined for pair indices { < α <

∞,  < τ ≤ ∞} or { ≤ α < ∞, τ =∞}.

Theorem  There are constants c and c such that the following inequalities hold:

|x|Bα
p,τ ≤ c|x|αp‖x‖, x ∈ Ep(A), ()

dp(t,x)≤ ct–α|x|Bα
p,τ , x ∈ Bα

p,τ (A). ()

Proof Via Theorem (i) the space [Bα
p,τ (A)]ϑ is interpolating between Ep(A) and X for any

ϑ = /(α +) and τ = gϑ . As a consequence, Ep(A)⊂ [Bα
p,τ (A)]ϑ = (Ep(A),X)ϑ ,g ⊂X. Hence,

by [, Theorem ..(b)] for some constant c(ϑ , g) we obtain

|x|(Ep ,X)ϑ ,g ≤ c|x|–ϑ
p ‖x‖ϑ , x ∈ Ep(A).

This inequality and the isomorphism () imply that there is a constant c(α, τ ) such that
the inequality () is true. By [, Theorem ..(a)] for some constant c′(ϑ , g) we have

K
(
t,x;Ep(A),X

) ≤ c′tϑ |x|(Ep ,X)ϑ ,g , x ∈ (
Ep(A),X

)
ϑ ,g .

Hence, by virtue of the isomorphism () there is a constant c(α, τ ) such that

K
(
t,x;Ep(A),X

) ≤ ctϑ |x|ϑBα
p,τ
, x ∈ Bα

p,τ (A).

Following [, Section .], we introduce the function

K∞
(
t,x;Ep(A),X

)
= inf

x=x+x
max

{∣∣x∣∣p, t∥∥x∥∥}
, x ∈ Ep(A),x ∈X.

From the inequality K∞(t,x;Ep(A),X) ≤ K (t,x;Ep(A),X) it follows that

t–ϑK∞
(
t,x;Ep(A),X

) ≤ c|x|ϑBα
p,τ
, x ∈ Bα

p,τ (A). ()

By [, Lemma ..] for every t >  there exists s >  such that

K∞
(
t,x;Ep(A),X

)
= s, lim

v↓s Ep(v,x) = Ep(s + ,x)≤ s/t.

So, for every s >  there is t >  such that s ≤ K∞(t,x;Ep(A),X) = s. For any fixed x the
function Ep(s,x) is decreasing, so Ep(s,x)≤ Ep(s + ,x) ≤ s/t. Hence, we have [Ep(s,x)]ϑ ≤

http://www.journalofinequalitiesandapplications.com/content/2014/1/105
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t–ϑ sϑ ≤ t–ϑ sϑ–s. As a result,

s–ϑ
[
Ep(s,x)

]ϑ ≤ t–ϑK∞
(
t,x;Ep(A),X

)
.

Using (), we have s–ϑ [Ep(s,x)]ϑ ≤ c|x|ϑBα
p,τ
. Putting α = ( – ϑ)/ϑ , we obtain

sαEp(s,x)≤ c/ϑ |x|Bα
p,τ , x ∈ Bα

p,τ (A). ()

If |x|p = r(x) + ‖x‖ < s, then r(x) < s – ‖x‖, where r(x) = inf{t > : x ∈ E t
p(A)}.

Therefore, x ∈ E t
p(A) for all numbers t >  such that r(x) < t < s – ‖x‖. By Theorem (i),

we have E t
p(A) ⊂ E s

p(A). Therefore, x ∈ E s
p(A). Hence, the inequality

dp(s,x)≤ Ep(s,x), x ∈X, s >  ()

holds. Taking c = c/ϑ in () and using (), we obtain (). �

Theorem  Let A be an operator with the discrete spectrum σ (A) = {λn ∈ C}, n ∈ N and
letRt be the complex linear span of all {R(λn) : |λn| < t}, whereR(λn) is the root subspace
of A corresponding to λn. Then for every α, τ there is a constant c such that

inf
{∥∥x – x

∥∥ : x ∈Rt} ≤ ct–α|x|Bα
,τ
, x ∈ Bα

,τ (A). ()

Proof In [] it is proven that for operatorsA, having discrete spectra, the equality E t
 (A) =

Rt holds. Hence, the inequality () directly implies the estimation () for the distance
from an element x ∈ Bα

,τ (A) to the spectral subspaceRt . �

5 Connections with classical results
Let us put A = Dq, where Dq is the closure in X = Lq(R) ( < q ≤ ∞) of the operator of
differentiation. In the considered casewe have E t∞(Dq) = {u ∈ C∞(Dq) : ‖u‖E t∞ <∞}, where
‖u‖E t∞ = supk∈Z+ ‖(Dq/t)ku‖Lq (t > ). Thus, E∞(Dq) =

⋃
t> E t∞(Dq).

Consider the space Mt
q of entire complex functions U : C � ξ + iη −→ U(ξ + iη) of ex-

ponential type t > , belonging to Lq(R) for η = . Denote Mq =
⋃

t>Mt
q. Following [,

Section .], we can define onMq the quasi-norm

|u|Mq = ‖u‖Lq + sup
{|ζ | : ζ ∈ suppFu

}
, u ∈Mq,

where suppFu is a support of the Fourier-image Fu of a function u ∈Mq.
For any pair { < α < ∞,  < τ ≤ ∞} or { ≤ α < ∞, τ =∞} and  < q ≤ ∞ we define the

classical Besov space Bα
q,τ (R) with the norm ‖ · ‖Bα

q,τ (see e.g. [, Section .]). Let us show
a relationship between the spaces Bα

p,τ (Dq) and Bα
q,τ (R).

Theorem  The following isomorphism holds:

Bα
∞,τ (Dq) = Bα

q,τ (R).
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Proof Let us denote u(ξ ) = U(ξ + i) for any U ∈ Mt
q, where ξ ∈R, t > . For every such

entire function u the Bernstein inequality ‖Dk
qu‖Lq ≤ tk‖u‖Lq for all k ∈ Z+ holds (see [,

Section .]). It follows that

‖u‖E t∞ = sup
k∈Z+

∥∥(Dq/t)ku
∥∥
Lq

≤ ‖u‖Lq .

Hence, if U ∈Mt
q then u ∈ E t∞(Dq).

Vice versa, let u ∈ E t∞(Dq) with a fixed t > . The norm definition in E t∞(Dq) implies that
‖Dk

qu‖Lq ≤ tk‖u‖E t∞ for all k ∈ Z+. It follows that

∥∥U(· + iη)
∥∥
Lq

≤
∑
k∈Z+

∥∥Dk
qu

∥∥
Lq

|η|k
k!

≤ ‖u‖E t∞ exp
(
t|η|), η ∈R

for any functionU : C � ξ + iη −→U(ξ + iη) such that u(ξ ) =U(ξ + i) for all ξ ∈R. Hence,
U(· + iη) ∈ Lq(R) for all η ∈R. The above inequality implies that if q =∞ than U(· + iη) ∈
Mt∞.
Show that U(· + iη) ∈ Mt

q for  < q < ∞. From Sobolev’s embedding theorem (see [,
Chapter I, Section , Theorem ] or [, Theorem ..]) we have

‖u‖L∞ ≤ c‖u‖W 
q
, u ∈W 

q (R),  < q ≤ ∞.

Consequently, ‖Dk
qu‖L∞ ≤ c‖Dk

qu‖W 
q
for all k ∈ Z+. Now using the inequality ‖Dk

qu‖qW 
q
=

‖Dk
qu‖qLq + ‖Dk+

q u‖qLq ≤ ( + tq)tkq‖u‖qE t∞
, we have

∥∥U(· + iη)
∥∥
L∞ ≤

∑
k∈Z+

∥∥Dk
qu

∥∥
L∞

|η|k
k!

≤ c
(
 + tq

)/q
exp

(
t|η|)‖u‖E t∞

for all η ∈ R. Hence, U ∈ Mt
q for all  < q ≤ ∞. So, up to the restriction Mt

q � U −→ u ∈
E t∞(Dq), we have

Mt
q = E t

∞(Dq), Mq = E∞(Dq). ()

Now applying (), () and the well-known interpolation properties of Besov spaces (see
[, Theorem ..]), we obtain the required equality:

Bα
∞,τ (Dq) =

(
E∞(Dq),Lq(R)

)/ϑ
ϑ ,r =

(
Mq,Lq(R)

)/ϑ
ϑ ,r = Bα

q,τ (R)

with ϑ = /(α + ) and τ = rϑ . �

Theorem  There exist constants c and c such that

‖u‖Bα
q,τ ≤ c|u|αMq‖u‖Lq , u ∈Mq, ()

d∞(t,u) ≤ ct–α‖u‖Bα
q,τ , u ∈ Bα

q,τ (R), ()

where d∞(t,u) = inf{‖u – v‖Lq : v ∈ E t∞(Dq)} = inf {‖u – v‖Lq : v ∈Mt
q}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/105
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Proof Using the first equality () and the Paley-Wiener theorem, we obtain

sup
{|ζ | : ζ ∈ suppFu

}
= inf

{
t > : u ∈ E t

∞(Dq)
}
, u ∈Mq.

Hence, the quasi-norms |u|∞ and |u|Mq are equal on Mq. Now the above claims is a
consequence of Theorems , . �

Note that the equalities () and () exactly coincide with the well-known Bernstein
and Jackson inequalities in the form given in [, Section .].

6 An application to regular elliptic operators
Let � ⊂R

n be an open bounded domain with the infinitely smooth boundary ∂� and the
system of operators

(Lu)(ξ ) =
∑

|s|≤m

asDsu(ξ ), as ∈C,

(Bju)(ξ ) =
∑

|s|≤mj

bj,s(ξ )Dsu(ξ ), bj,s(ξ ) ∈ C∞(∂�), j = , . . . ,m

is regular elliptic (see e.g. [, Section ..]). DenoteDsu = ∂ |s|u
∂ξ

s
 ...∂ξ

sn
n
, where ξ = (ξ, . . . , ξn) ∈

� and |s| = s + · · · + sn for all s = (s, . . . , sn) ∈ Z
n
+, �̄ =� ∪ ∂�.

In the complex space Lq(�) ( < q < ∞) we consider the closed linear operator

Au = Lu with the domain C(A) =W m
q,{Bj}(�), ()

where W m
q,{Bj}(�) := {u ∈ W m

q (�) : Bju|∂� = , j = , . . . ,m} and W m
q (�) is the classical

Sobolev space. As is well known [, Section ..], A has a discrete spectrum σ (A) and
the corresponding root subspaces are independent of q. The subspaces of the root vectors
belong to the closed subspaces in C∞(�̄),

C∞
A,{Bj}(�̄) =

{
u ∈ C∞(�̄) : BjAku|∂� = , j = , . . . ,m, k ∈ Z+

}
,

endowed with the seminorms supξ∈� |Dsu(ξ )|, ≤ |s| <∞.

Theorem  The following topological isomorphism holds:

Bα
q,τ (A) = Bα

q,τ ,{Bj}(�), ()

where Bα
q,τ ,{Bj}(�) = {u ∈ Bα

q,τ (�) : BjAku|∂� = , j = , . . . ,m,k ∈ Z+} and Bα
q,τ (�) is the Besov

space.

Proof Consider the space E t
q(D) = {u ∈ C∞(�̄) : Dsu ∈ Lq(�), |s| = k ∈ Z+} endowed with

the norm

‖u‖E t
q(D) =

(∑
k∈Z+

∑
|s|=k

t–qk
∥∥Dsu

∥∥q
Lq(�)

)/q

, t > .

http://www.journalofinequalitiesandapplications.com/content/2014/1/105
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Check that the union Eq(D) =
⋃

t> E t
q(D) coincides with the space of all entire analytic

functions of exponential type, which restrictions to � belong to Lq(�). The space Eq(D)
we endow with the quasi-norm

|u|Eq(D) := ‖u‖Lq(�) + inf
{
t > : u ∈ E t

q(D)
}
.

For simplicity we put  ∈ �. If l > n/q and u ∈ E t
q(D) then the Sobolev embedding theorem

yields

sup
ξ∈�

∣∣Dsu(ξ )
∣∣ ≤ cmax

{
, t, . . . , tl

}
tk‖u‖E t

q(D) ≤ ctk , |s| = k ∈ Z+, ()

where the constants c, c are independent of k. It follows that (see [])

∣∣u(ξ + iη)
∣∣ ≤

∑
k∈Z+

∑
|s|=k

∣∣Dsu(ξ )
∣∣ |η|k
k!

≤ cet|η| ()

for all ξ ∈ � and η ∈ R
n, where the constant c is independent of k ∈ Z+. Hence, u has an

entire analytic extension onto C
n of exponential type.

Conversely, let an entire function u satisfy (). Then the inequality |Dsu(ξ )| ≤
c(nt)ket|ξ | for all ξ ∈ R

n and |s| = k ∈ Z+ holds. Here the constant c is independent
of k. By boundedness of � we have

sup
ξ∈�

∣∣Dsu(ξ )
∣∣ ≤ c(nt)k and

∑
|s|=k

∥∥Dsu
∥∥
Lq(�) ≤ c

(
nt

)k .

It follows that u ∈ Ent
q (D) and consequently u ∈ Eq(D), because

∑
k∈Z+

∑
|s|=k

(
nt

)–qk∥∥Dsu
∥∥q
Lq(�) ≤

q

q – 
sup
k∈Z+

∑
|s|=k ‖Dsu‖qLq(�)

(nt)qk
. ()

Using the inequality (), (), and the Paley-Wiener theorem, we obtain the quasi-norm
equivalence

|u|Eq(D) ∼ inf
v|�=u,v∈Lq(Rn)

{
‖v‖Lq(Rn) + sup

ζ∈suppFv
|ζ |

}
,

where suppFv denotes the support of the Fourier-image Fv of a function v ∈ Lq(Rn).
Applying [, Theorem ..], [, Theorem ..] and the Bernstein-Jackson inequalities

from [, Section .], we find that for any l ∈ N there exists a constant cl such that

‖u‖/(l+)
Wl

q(�)
≤ cl|u|–/(l+)Eq(D) ‖u‖/(l+)Lq(�) , u ∈ Eq(D),

K
(
t,u;Eq(D),Lq(�)

) ≤ clt/(l+)‖u‖/(l+)
Wl

q(�)
, u ∈Wl

q(�).
()

Following Section , we define the space

Bα
q,τ (D) :=

{
u ∈ Lq(�) : |u|Bα

q,τ (D) :=
(∫ ∞



(
tαEq(t,u)

)τ dt
t

)/τ

< ∞
}
,
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where Eq(t,u) = inf{‖u – u‖Lq(�) : u ∈ Eq(D), |u|Eq(D) < t}. Using the inequality () and
well-known theorems [, Theorems .., .., ..], [, Theorem ../], we obtain

Bα
q,τ (D) =

((
Eq(D),Lq(�)

)
/(α+),τ (α+)

)α+

=
(
Lq(�),Wl

q(�)
)
α/l,τ = Bα

q,τ (�). ()

Now let us prove the equality

Eq(A) =
{
u ∈ Eq(D) : BjAku|∂� = , j = , . . . ,m,k ∈ Z+

}
. ()

By [, Theorem ..] for any k ∈N there exist positive numbers c and C such that

ck‖u‖Wmk
q (�) ≤

∥∥Aku
∥∥
Lq(�) ≤ Ck‖u‖Wmk

q (�), u ∈ Ck(A).

It follows that we have the inequalities

∑
k∈Z+

(
C(nt)m

)–kq∥∥Aku
∥∥q
Lq(�) ≤ C

∑
k∈Z+

∑
|s|=mk

t–mkq∥∥Dsu
∥∥q
Lq(�)

≤ C‖u‖qE t
q(D)

()

with a constant C. Thus, the embedding {u ∈ E t
q(D) : BjAku|∂� = , j = , . . . ,m,k ∈ Z+} ⊂

E τ
q (A) with τ = C(nt)m holds. Conversely, let u ∈ E t

q(A). Then

‖u‖qE t
q(A)

=
∑
k∈Z+

t–kq
∥∥Aku

∥∥q
Lq(�) ≥

∑
k∈Z+

∑
|s|=k

(
c–t

)–kq∥∥Dsu
∥∥q
Lq(�). ()

It follows that E t
q(A) ⊂ {u ∈ E c–t

q (D) : BjAku|∂� = , j = , . . . ,m,k ∈ Z+}. Using () and
(), we obtain the required equality (). �

Corollary  There exist constants c and c such that

‖u‖Bα
q,τ (�) ≤ c|u|αEq(D)‖u‖Lq(�), u ∈ Eq(A),

dq(t,u) ≤ ct–α‖u‖Bα
q,τ (�), u ∈ Bα

q,τ ,{Bj}(�),

where dq(t,u) = inf{‖u– v‖Lq(�) : v ∈ E t
q(A)}. In particular, for every α, τ there is a constant

c such that

inf
{∥∥u – u

∥∥
Lq(�) : u

 ∈Rt} ≤ ct–α‖u‖Bα
,τ (�), u ∈ Bα

,τ ,{Bj}(�),

whereRt is the complex linear span of root subspaces {R(λn) : |λn| < t} of the operator ().

Proof From the inequality ()-() and the Paley-Wiener theorem it follows that we have
the quasi-norm equivalence |u|Eq(D) ∼ |u|q on Eq(A). It remains to apply Theorems , ,
and . �
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