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Abstract
Let p be a fixed prime and r be a fixed positive integer. Further let N(p2r) denote the
number of pairs of integer points (x,±y) on the elliptic curve E : y2 = x3 + p2rx with
y > 0. Using some properties of Diophantine equations, we give a sharper upper
bound estimate for N(p2r). That is, we prove that N(p2r)≤ 1, except with
N(172(2s+1)) = 2, where s is a nonnegative integer.
MSC: 11G05; 11Y50
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1 Introduction
Let Z,N be the sets of all integers and positive integers, respectively. Let p be a fixed prime
and k be a fixed positive integer. Recently, the integer points (x, y) on the elliptic curve

y = x + pkx (.)

have been investigated in many papers (see [, ] and []). In this paper we deal with the
number of integer points on (.) for even k. Then (.) can be rewritten as

y = x + prx, (.)

where r is a positive integer.
An integer point (x, y) on (.) is called trivial or non-trivial according to whether y = 

or not. Obviously, (.) has only the trivial integer point (x, y) = (, ). Notice that if (x, y) is
a non-trivial integer point on (.), then (x, –y) is also. Therefore, (x, y) along with (x, –y)
are called by a pair of non-trivial integer points and denoted by (x,±y), where y > . For
any positive integer n, let

u(n) =


(
αn + βn), v(n) =



√

(
αn – βn), (.)

where

α =  + 
√
, β =  – 

√
. (.)

Using some properties of Diophantine equations, we give a sharper upper bound estimate
for N(pr), the number of pairs of non-trivial integer points (x,±y) on (.). That is, we
shall prove the following results.
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Theorem . All non-trivial integer points on (.) are given as follows.
(i) p = u(m), r = s + , (x,±y) = (psv(m),±psv(m)(v(m) + )), where m, s are

nonnegative integers.
(ii) p≡ (mod ), r = s + , (x,±y) = (ps+X,±ps+XY ), where s is a nonnegative

integer, (X,Y ) is a solution of the equation

X – pY  = , X,Y ∈ N. (.)

Theorem . Let p be an odd prime, r be a positive integer. Then for any nonnegative
integer s, we have N(pr) ≤ , except with N((s+)) = . Moreover, if p �≡ (mod ), then
N(pr) = , except with N((s+)) = .

2 Lemmas
Lemma . ([, Theorem ]) Every solution (u, v) of the equation

u – v = , u, v ∈N (.)

can be expressed as (u, v) = (u(n), v(n)), where n is a positive integer.

Lemma . If p = u(n), then n = m, where m is a nonnegative integer.

Proof Assume that n has an odd divisor d with d > . Then we have either u()|u(n) and
 < u() < u(n) or u(n/d)|u(n) and  < u(n/d) < u(n). Therefore, since p is a prime, it is
impossible. Thus, we get n = m. The lemma is proved. �

Any fixed positive integer a can be uniquely expressed as a = bc, where b, c are positive
integers with b is square free. Then b is called the quadratfrei of a and denoted by Q(a).

Lemma . For any positive integer m, we have |Q(v(m)).

Proof By (.) and (.), we get

v
(
m

)
= m+

m–∏

i=

u
(
i

)
(.)

and

u
(
i

)
= u

(
i–

)
– , i ∈N. (.)

Since (/) = –, where (/) is the Legendre symbol, we see from (.) that  � u(i) for
i ≥ . Therefore, since u() = , by (.), we obtain  ‖ v(m). It implies that |Q(v(m)).
The lemma is proved. �

Let D be a non-square positive integer. It is a well known fact that if the equation

U –DV  = –, U ,V ∈N (.)
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has solutions (U ,V ), then it has a unique solution (U,V) such that U + V
√
D ≤ U +

V
√
D, where (U ,V ) through all solutions of (.). For any odd positive integer l, let

U(l) +V (l)
√
D = (U +V

√
D)l.

Then (U ,V ) = (U(l),V (l)) (l = , , . . .) are all solutions of (.).

Lemma . ([, Theorem ]) The equation

X –DY  = –, X,Y ∈N (.)

has at most one solution (X,Y ). Moreover, if the solution (X,Y ) exists, then (X,Y ) =
(U(l),V (l)), where l =Q(U).

Lemma . ([, Theorem ]) If |Q(U), then (.) has no solutions (X,Y ).

Lemma. If p = u(m),wherem is a positive integer withm > , then (.) has no solutions
(X,Y ).

Proof Since p = u(m) with m > , by (.), we have

p = u
(
m–) –  = v

(
m–) + . (.)

We see from (.) that the equation

U – pV  = –, U ,V ∈N (.)

has solution (U ,V ) and its fundamental solution is (U,V) = (v(m–), ). Further, since
m –  ≥ , by Lemma ., we have |Q(v(m–)). Hence, we get |Q(U) = Q(v(m–)).
Therefore, by Lemma ., the lemma is proved. �

Lemma . ([]) The equation

X +  = Yn, X,Y ,n ∈N,n >  (.)

has no solutions (X,Y ,n).

Lemma . The equation

X – Y  = pn, X,Y ,n ∈N,gcd(X,Y ) =  (.)

has only the solutions (p,X,Y ,n) = (u(m), v(m) + , v(m), ), where m is a nonnegative
integer.

Proof Assume that (p,X,Y ,n) is a solution of (.). If p = , since gcd(X,Y ) = , then we
have  � XY , gcd(X + Y ,X – Y ) = , X + Y  = n–, X – Y  =  and Y  = n– – . But
since Y  +  is not a square, it is impossible.
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If p is an odd prime, then we have gcd(X + Y ,X – Y ) = , and by (.), we get X + Y  =
pn, X – Y  = ,

X = pn +  (.)

and

Y  = pn – . (.)

By Lemma ., we get from (.) that n =  and

p – Y  = . (.)

Further, applying Lemma . to (.) yields

p = u(n), Y = v(n), n ∈ N. (.)

Further, by Lemma ., we see from the first equality of (.) that n = m. Thus, by (.)
and (.), the lemma is proved. �

3 Proof of Theorem 1.1
Assume that (x,±y) is a pair of non-trivial integer points on (.). Since y > , we have
x >  and x can be expressed as

x = ptz, t ∈ Z, t ≥ , z ∈N,p � z. (.)

Substituting (.) into (.) yields

ptz
(
ptz + pr

)
= y. (.)

We first consider the case that r > t. By (.), we have

ptz
(
z + pr–t

)
= y. (.)

Since p � z, we have p � z + pr–t and gcd(z, z + pk–r) = . Hence by (.), we get

t = s, z = f , z + pr–t = g, y = psfg,

s ∈ Z, s ≥ , f , g ∈ N,gcd(f , g) = , (.)

whence we obtain

g – f  = pr–s. (.)

Applying Lemma . to (.) yields

p = u
(
m

)
, r – s = , f = v

(
m

)
, g = v

(
m

)
+ , m ∈ Z,m ≥ . (.)

Therefore, by (.), (.), and (.), the integer points of type (i) are given.
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We next consider the case that r = t. Then we have

prz
(
z + 

)
= y. (.)

Since p � z, gcd(z, z + ) =  and z +  is not a square, we see from (.) that

r = s + , z = f , z +  = pg, y = ps+fg,

s ∈ Z, s ≥ , f , g ∈ N,gcd(f , g) = . (.)

By (.), we get

f  – pg = –. (.)

It implies that (X,Y ) = (f , g) is a solution of (.). Therefore, by (.) and (.), we obtain
the integer points of type (ii).
We finally consider the case that r < t. Then we have

pt+rz
(
pt–rz + 

)
= y. (.)

Since p � z(pt–rz + ) and gcd(z,pt–rz + ) = , we see from (.) that pt–rz +  is a
square, a contradiction.
To sum up, the theorem is proved.

4 Proof of Theorem 1.2
By (.), if p = u(m) with m ≥ , then p ≡ (mod ). Therefore, by Theorem ., if p �≡
(mod ), then (.) has only the non-trivial integer point

p = , r = s + , (x,±y) =
(
s · ,±s · )

. (.)

It implies that the theorem is true for p �≡ (mod ).
For p≡ (mod ), letN andN denote the number of pairs of non-trivial integer points

of types (i) and (ii) in Theorem ., respectively. Obviously, we have

N
(
pr

)
=N +N (.)

and N ≤ . By Lemma ., we get N ≤ . Hence, by (.), we have N(pr) ≤  for
p ≡ (mod ). Since u() =  and (.) has the solution (X,Y ) = (, ) for p = , by Theo-
rem ., we get

p = , r = s + , (x,±y) =
(
s · ,±s · ,)

and
(
s+ · ,±s+ · ) (.)

and N((s+)) = . However, by Lemma ., if p = u(m) with m > , then N = . There-
fore, by (.), if p ≡ (mod ), then N(pr) ≤ , except with N((s+)) = . The theorem
is proved.
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