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1 Introduction
Assuming that f , g ∈ L(R+), ‖f ‖ = {∫ ∞

 f (x)dx} 
 > , ‖g‖ > , we have the following

Hilbert integral inequality (cf. []):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dxdy < π‖f ‖‖g‖, ()

where the constant factor π is best possible. If a = {an}∞n=,b = {bn}∞n= ∈ l, ‖a‖ =
{∑∞

n= an}

 > , ‖b‖ > , then we still have the following discrete Hilbert inequality:

∞∑
m=

∞∑
n=

ambn
m + n

< π‖a‖‖b‖, ()

with the same best constant factor π . Inequalities () and () are important in analysis
and its applications (cf. [–]). Also we have the followingMulholland inequality with the
same best constant factor π (cf. [, ]):

∞∑
m=

∞∑
n=

ambn
lnmn

< π

{ ∞∑
m=

mam
∞∑
n=

nbn

} 


. ()

In , by introducing an independent parameter λ ∈ (, ], Yang [] gave an exten-
sion of (). For generalizing the results from [], Yang [] gave some best extensions of
() and () as follows. If p > , 

p + 
q = , λ + λ = λ, kλ(x, y) is a non-negative homo-

geneous function of degree –λ, k(λ) =
∫ ∞
 kλ(t, )tλ– dt ∈ R+, φ(x) = xp(–λ)–, ψ(x) =

xq(–λ)–, f (≥ ) ∈ Lp,φ(R+) = {f |‖f ‖p,φ := {∫ ∞
 φ(x)|f (x)|p dx} 

p < ∞}, g(≥ ) ∈ Lq,ψ (R+),
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‖f ‖p,φ ,‖g‖q,ψ > , then

∫ ∞



∫ ∞


kλ(x, y)f (x)g(y)dxdy < k(λ)‖f ‖p,φ‖g‖q,ψ , ()

where the constant factor k(λ) is best possible. Moreover, if kλ(x, y) is finite and
kλ(x, y)xλ–(kλ(x, y)yλ–) is strict decreasing for x >  (y > ), then for am,bn ≥ , a =
{am}∞m= ∈ lp,φ = {a|‖a‖p,φ := {∑∞

n= φ(n)|an|p}

p < ∞}, b = {bn}∞n= ∈ lq,ψ , ‖a‖p,φ ,‖b‖q,ψ > ,

we have

∞∑
m=

∞∑
n=

kλ(m,n)ambn < k(λ)‖a‖p,φ‖b‖q,ψ , ()

with the same best constant factor k(λ). Clearly, for p = q = , λ = , k(x, y) = 
x+y , λ =

λ = 
 , () reduces to (), while () reduces to ().

Some other results including the reverse Hilbert-type inequalities are provided by [–
]. On half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy
et al. provided a few results in Theorem  of []. But they did not prove that the constant
factors in the inequalities are best possible. However, Yang [] gave a result by introducing
an interval variable and proved that the constant factor is best possible. Recently, Yang []
gave a half-discrete Hilbert inequality with multi-parameters, and [] gave the following
half-discrete reverse Hilbert-type inequality with the best constant factor : For  < p < ,

p +


q = , we have θ(x) ∈ (, ), and

∫ ∞


f (x)

∞∑
n=

min{x,n}an dx

> 
{∫ ∞



 – θ(x)

x–
p


f p(x)dx
} 

p
{ ∞∑

n=

aqn
n–

q


} 
q

. ()

In this paper, by using the way of weight functions and the Hermite-Hadamard inequal-
ity, a half-discrete reverse Mulholland-type inequality similar to () is given as follows:

∫ ∞


f (x)

∞∑
n=

an
ln e(n + 

 )x
dx

> π

{∫ ∞



 – θ(x)
x–

p


f p(x)dx
} 

p
{ ∞∑

n=

(n + 
 )

q–aqn
ln–

q
 (n + 

 )

} 
q

. ()

Moreover, a best extension of () with multi-parameters, the equivalent forms and the
relating homogeneous inequalities are considered.

2 Some lemmas
Lemma  If  < λ ≤ , α ≥ 

 , setting weight functions ω(n) and 	 (x) as follows:

ω(n) := ln
λ
 (n + α)

∫ ∞




lnλ e(n + α)x

x
λ
 – dx, n ∈ N, ()
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	 (x) := x
λ


∞∑
n=

ln
λ
 –(n + α)

(n + α) lnλ e(n + α)x
, x ∈ (,∞), ()

we have

B
(

λ


,
λ



)(
 – θλ(x)

)
< 	 (x) < ω(n) = B

(
λ


,
λ



)
, ()

where

θλ(x) =


B( λ
 ,

λ
 )

∫ x ln(+α)



t(λ/)–

( + t)λ
dt ∈ (, ),

satisfying θλ(x) =O(x λ
 ).

Proof Substituting of t = x ln(n + α) in (), by calculation, we have

ω(n) =
∫ ∞




( + t)λ

t
λ
 – dt = B

(
λ


,
λ



)
.

Since by the conditions and for fixed x > 

h(x, y) :=
ln

λ
 –(y + α)

(y + α) lnλ e(y + α)x
=

ln
λ
 –(y + α)

(y + α)[ + x ln(y + α)]λ

is strictly decreasing and strictly convex in y ∈ (  ,∞), then by the Hermite-Hadamard
inequality (cf. []), we find

	 (x) < x
λ


∫ ∞




ln
λ
 –(y + α)

(y + α)[ + x ln(y + α)]λ
dy t=x ln(y+α)=

∫ ∞

x ln(  +α)

t λ
 –

( + t)λ
dt ≤ B

(
λ


,
λ



)
,

	 (x) > x
λ


∫ ∞



ln
λ
 –(y + α)

(y + α)[ + x ln(y + α)]λ
dy

t=x ln(y+α)=
∫ ∞

x ln(+α)

t λ
 – dt

( + t)λ
= B

(
λ


,
λ



)(
 – θλ(x)

)
> ,

 < θλ(x) :=


B( λ
 ,

λ
 )

∫ x ln(+α)



t λ
 –

( + t)λ
dt <


B( λ

 ,
λ
 )

∫ x ln(+α)


t

λ
 – dt =

[x ln( + α)] λ


λB( λ
 ,

λ
 )

,

that is, () is valid. �

Lemma  Let the assumptions of Lemma  be fulfilled and, additionally,  < p < , 
p +


q =

, an ≥ , n ∈ N, f (x) is a non-negative measurable function in (,∞). Then we have the
following inequalities:

J :=

{ ∞∑
n=

ln
pλ
 –(n + α)
n + α

[∫ ∞



f (x)
lnλ e(n + α)x

dx
]p

} 
p

≥
[
B
(

λ


,
λ



)] 
q
{∫ ∞


	 (x)xp(–

λ
 )–f p(x)dx

} 
p
, ()
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L :=

{∫ ∞



x
qλ
 –

[	 (x)]q–

[ ∞∑
n=

an
lnλ e(n + α)x

]q

dx

} 
q

≥
{
B
(

λ


,
λ



) ∞∑
n=

(n + α)q– lnq(–
λ
 )–(n + α)aqn

} 
q

. ()

Proof By the reverse Hölder inequality (cf. []) and (), it follows that

[∫ ∞



f (x)dx
lnλ e(n + α)x

]p

=
{∫ ∞




lnλ e(n + α)x

[
x(– λ

 )/q

ln(–
λ
 )/p(n + α)

f (x)

(n + α)

p

]

·
[
ln(–

λ
 )/p(n + α)
x(– λ

 )/q
(n + α)


p

]
dx

}p

≥
∫ ∞




lnλ e(n + α)x

x(– λ
 )(p–)

(n + α) ln–
λ
 (n + α)

f p(x)dx

·
{∫ ∞



(n + α)q–

lnλ e(n + α)x
ln(–

λ
 )(q–)(n + α)
x– λ


dx

}p–

=
{
ω(n)(n + α)q– lnq(–

λ
 )–(n + α)

}p–
·
∫ ∞




lnλ e(n + α)x

x(– λ
 )(p–)

(n + α) ln–
λ
 (n + α)

f p(x)dx

=
[
B
(

λ


,
λ



)]p–

(n + α) ln–
pλ
 (n + α)

·
∫ ∞




lnλ e(n + α)x

x(– λ
 )(p–)

(n + α) ln–
λ
 (n + α)

f p(x)dx.

Then, by the Lebesgue term-by-term integration theorem (cf. []), we have

J ≥
[
B
(

λ


,
λ



)] 
q
{ ∞∑

n=

∫ ∞




lnλ e(n + α)x

x(– λ
 )(p–)f p(x)dx

(n + α) ln–
λ
 (n + α)

} 
p

=
[
B
(

λ


,
λ



)] 
q
{∫ ∞



∞∑
n=

x λ


lnλ e((n + α))x
xp(– λ

 )–f p(x)dx

(n + α) ln–
λ
 (n + α)

} 
p

=
[
B
(

λ


,
λ



)] 
q
{∫ ∞


	 (x)xp(–

λ
 )–f p(x)dx

} 
p
,

and () follows. Still, by the reverse Hölder inequality, we have

[ ∞∑
n=

an
lnλ e(n + α)x

]q

=

{ ∞∑
n=


lnλ e(n + α)x

[
x(– λ

 )/q

ln(–
λ
 )/p(n + α)

· 

(n + α)

p

][
ln(–

λ
 )/p(n + α)
x(– λ

 )/q
(n + α)


p an

]}q
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≤
{ ∞∑

n=


lnλ e(n + α)x

x(– λ
 )(p–)

(n + α) ln–
λ
 (n + α)

}q–

·
∞∑
n=

(n + α)q–

lnλ e(n + α)x
ln(–

λ
 )(q–)(n + α)
x– λ


aqn

=
[	 (x)]q–

x
qλ
 –

∞∑
n=

(n + α)q–

lnλ e(n + α)x
x

λ
 – ln(–

λ
 )(q–)(n + α)aqn.

Then, by the Lebesgue term-by-term integration theorem, we have

L ≥
{∫ ∞



∞∑
n=

(n + α)q–

lnλ e(n + α)x
x

λ
 – ln(–

λ
 )(q–)(n + α)aqn dx

} 
q

=

{ ∞∑
n=

[
ln

λ
 (n + α)

∫ ∞



x λ
 – dx

lnλ e(n + α)x

]
(n + α)q– lnq(–

λ
 )–(n + α)aqn

} 
q

=

{ ∞∑
n=

ω(n)(n + α)q– lnq(–
λ
 )–(n + α)aqn

} 
q

,

and then in view of (), inequality () follows. �

3 Main results
In this paper, for  < p <  (q < ), we still use the normal expressions ‖f ‖p,
 and ‖a‖q,� .
We also introduce two functions


(x) :=
(
 – θλ(x)

)
xp(–

λ
 )– (x > ) and

�(n) := (n + α)q– lnq(–
λ
 )–(n + α) (n ∈N),

wherefrom [
(x)]–q = ( – θλ(x))–qx
qλ
 – and [�(n)]–p = ln

pλ
 –(n+α)
n+α

.

Theorem  If  < λ ≤ , α ≥ 
 ,  < p < , 

p + 
q = , f (x),an ≥ ,  < ‖f ‖p,
 < ∞ and

 < ‖a‖q,� < ∞, then we have the following equivalent inequalities:

I :=
∞∑
n=

an
∫ ∞



f (x)
lnλ e(n + α)x

dx

=
∫ ∞


f (x)

∞∑
n=

an
lnλ e(n + α)x

dx > B
(

λ


,
λ



)
‖f ‖p,
‖a‖q,� , ()

J =

{ ∞∑
n=

[
�(n)

]–p[∫ ∞



f (x)
lnλ e(n + α)x

dx
]p

} 
p

> B
(

λ


,
λ



)
‖f ‖p,
, ()

L :=

{∫ ∞



[

(x)

]–q[ ∞∑
n=

an
lnλ e(n + α)x

]q

dx

} 
q

> B
(

λ


,
λ



)
‖a‖q,� , ()

where the constant B( λ
 ,

λ
 ) is best possible.
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Proof By the Lebesgue term-by-term integration theorem, there are two expressions for
I in (). In view of (), for 	 (x) > B( λ

 ,
λ
 )( – θλ(x)), we have (). By the reverse Hölder

inequality, we have

I =
∞∑
n=

[
�

–
q (n)

∫ ∞




lnλ e(n + α)x

f (x)dx
][

�

q (n)an

] ≥ J‖a‖q,� . ()

Then by () we have (). On the other hand, assuming that () is valid, setting

an :=
[
�(n)

]–p[∫ ∞




lnλ e(n + α)x

f (x)dx
]p–

, n ∈N,

we obtain that Jp– = ‖a‖q,� . By (), we find J > . If J = ∞, then () is trivially valid; if
J < ∞, then by () we have

‖a‖qq,� = Jp = I > B
(

λ


,
λ



)
‖f ‖p,
‖a‖q,� , i.e.,

‖a‖q–q,� = J > B
(

λ


,
λ



)
‖f ‖p,
,

that is, () is equivalent to (). In view of (), for

[
	 (x)

]–q > [
B
(

λ


,
λ



)(
 – θλ(x)

)]–q

,

we have (). By the reverse Hölder inequality, we find

I =
∫ ∞



[




p (x)f (x)

][



–
p (x)

∞∑
n=


lnλ e(n + α)x

an

]
dx ≥ ‖f ‖p,
L. ()

Then by () we have (). On the other hand, assuming that () is valid, setting

f (x) :=
[

(x)

]–q[ ∞∑
n=


lnλ e(n + α)x

an

]q–

, x ∈ (,∞),

we obtain that Lq– = ‖f ‖p,
. By (), we find L > . If L = ∞, then () is trivially valid; if
L < ∞, then by () we have

‖f ‖pp,
 = Lq = I > B
(

λ


,
λ



)
‖f ‖p,
‖a‖q,� , i.e.,

‖f ‖p–p,
 = L > B
(

λ


,
λ



)
‖a‖q,� ,

that is, () is equivalent to (). Hence, inequalities (), () and () are equivalent.
For  < ε < pλ

 , set f̃ (x) = x
λ
 +

ε
p–, x ∈ (, ); f̃ (x) = , x ∈ [,∞), and

ãn =


n + α
ln

λ
 –

ε
q–(n + α), n ∈N.
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If there exists a positive number k (≥ B( λ
 ,

λ
 )) such that () is valid when replacing B(

λ
 ,

λ
 )

with k, then, in particular, it follows that

Ĩ :=
∞∑
n=

∫ ∞




lnλ e(n + α)x

ãñf (x)dx > k‖̃f ‖p,
‖̃a‖q,�

= k
{∫ 



(
 –O

(
x

λ

)) dx
x–ε+

} 
p
{


( + α) lnε+( + α)

+
∞∑
n=


(n + α) lnε+(n + α)

} 
q

> k
{

ε
–O()

} 
p
{


( + α) lnε+( + α)

+
∫ ∞



dx
(x + α) lnε+(x + α)

} 
q

=
k
ε

{
 – εO()

} 
p

{
ε

( + α) lnε+( + α)
+


lnε( + α)

} 
q
, ()

Ĩ =
∞∑
n=


n + α

ln
λ
 –

ε
q–(n + α)

∫ 




lnλ e(n + α)x

x
λ
 +

ε
p– dx

t=x ln(n+α)=
∞∑
n=


(n + α) lnε+(n + α)

∫ ln(n+α)




(t + )λ

t
λ
 +

ε
p– dt

≤ B
(

λ


+

ε

p
,
λ


–

ε

p

)[


( + α) lnε+( + α)
+

∞∑
n=


(n + α) lnε+(n + α)

]

< B
(

λ


+

ε

p
,
λ


–

ε

p

)[


( + α) lnε+( + α)
+

∫ ∞




(y + α) lnε+(y + α)

dy
]

=

ε
B
(

λ


+

ε

p
,
λ


–

ε

p

)[
ε

( + α) lnε+( + α)
+


lnε( + α)

]
. ()

Hence by () and () it follows that

B
(

λ


+

ε

p
,
λ


–

ε

p

)[
ε

( + α) lnε+( + α)
+


lnε( + α)

]

> k
{
 – εO()

} 
p

{
ε

( + α) lnε+( + α)
+


lnε( + α)

} 
q
,

and B( λ
 ,

λ
 ) ≥ k(ε → +). Hence k = B( λ

 ,
λ
 ) is the best value of ().

By the equivalence, the constant factorB( λ
 ,

λ
 ) in () and () is best possible. Otherwise

we would reach a contradiction by () and () that the constant factor in () is not best
possible. �

Remark  (i) For λ = , λ = λ = 
 , α = 

 in (), () and (), we have () and the fol-
lowing equivalent inequalities:

∞∑
n=

ln
p
 –(n + 

 )
n + 



[∫ ∞



f (x)
ln e(n + 

 )x
dx

]p

> πp
∫ ∞



 – θ(x)
x–

p


f p(x)dx, ()
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∫ ∞



( – θ(x))–q

x–
q


[ ∞∑
n=

an
ln e(n + 

 )x

]q

dx

< πq
∞∑
n=

(n + 
 )

q–

ln–
q
 (n + 

 )
aqn. ()

(ii) Setting x = 
ln y , g(y) :=


y (ln y)

λ–f ( 
ln y ) and

φ(y) :=
(
 – θλ

(

ln y

))
yp–(ln y)p(–

λ
 )–

(
y ∈ (,∞)

)
in (), by simplifications, we find the following inequality with the homogeneous kernel:

∞∑
n=

an
∫ ∞



g(y)
lnλ y(n + α)

dy

=
∫ ∞


g(y)

∞∑
n=

an
lnλ y(n + α)

dx > B
(

λ


,
λ



)
‖g‖p,φ‖a‖q,� . ()

It is evident that () is equivalent to (), and then the constant factor B( λ
 ,

λ
 ) in () is

still best possible. In the same way as in () and (), we have the following inequalities
equivalent to () with the best constant factor B( λ

 ,
λ
 ):

{ ∞∑
n=

[
�(n)

]–p[∫ ∞



g(y)
lnλ y(n + α)

dy
]p

} 
p

> B
(

λ


,
λ



)
‖g‖p,φ , ()

{∫ ∞



[
φ(y)

]–q[ ∞∑
n=

an
lnλ y(n + α)

]q

dy

} 
q

> B
(

λ


,
λ



)
‖a‖q,� . ()
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