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Abstract

The main purpose of this paper is using the analytic methods and the properties of
Gauss sums to study the computational problem of a new sum analogous to
quadratic Gauss sums, and to give an interesting asymptotic formula for its 2kth
power mean.
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1 Introduction
Let g > 3 be an integer, and let x be a Dirichlet character mod q. Then for any integer n,
the famous Gauss sums G(x, #) and quadratic Gauss sums G,(x, #) are defined as follows:
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where e(y) = 29,

These two sums play a very important role in the study of analytic number theory, and
many famous number theoretic problems are closely related to them. The distribution of
primes, the Goldbach problem, and the properties of Dirichlet L-functions are some good
examples. The arithmetic properties of G(x, 7) and G»(x, n) can be found in [1, 2], and [3].

The upper bound estimate of G,(x,7) has been studied by some authors, and one ob-
tained many important results. For example, if g = p is a prime and (p, m) =1, then from
Weil’s work [4] we can obtain the estimate
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where f(x) is a polynomial. Related work can also be found in [5-7], and [8].
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In this paper, we introduce a new sum G(x, m, 1, ¢; q), analogous to quadratic Gauss sums
Gy (x, n), as follows:
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where ¢, m, and # are any integers, x is a non-principal Dirichlet character mod g.
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In this paper, we shall study the asymptotic properties of G(x,m, n, ¢; q). As regards this
problem, it seems that none has studied it yet, at least we have not seen any related results
before. The problem is interesting, because it has a close relation with the Gauss sums,
and it is also analogous to quadratic Gauss sums. Of course, it can also help us to further
understand and study the quadratic Gauss sums.

The main purpose of this paper is using the analytic method and the properties of Gauss
sums to study the 2kth power mean of G(x,m, 1, ¢; p), and to give a sharp asymptotic for-
mula for it. That is, we shall prove the following two conclusions.

Theorem 1 Let p be an odd prime, x be any non-principal character mod p. Then for any
integers ¢, m and n with (cmn, p) = 1, we have the estimate
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Theorem 2 Let p be an odd prime, x be any non-principal character mod p, k be any fixed

positive integer. Then for any integers m and n with (mn,p) = 1, we have the asymptotic

formula
1]p-1 p-1 2k
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N % p* 4+ O(pZ"‘ll), if x is the Legendre symbol mod p;
Pt 2522 2% 4 O(p**2),  if x is a complex character mod p.

From Theorem 2 we can also deduce the following two corollaries.

Corollary 1 Let p be an odd prime, x be any non-real character modp. Then for any inte-
gers m and n with (mn, p) = 1, we have the asymptotic formula
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Corollary 2 Let p be an odd prime, x be any non-real character mod p. Then for any in-

tegers m and n with (mn, p) = 1, we have the asymptotic formula
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For general integer ¢ > 3, whether there exists an asymptotic formula for the 2kth power
mean

g-1 2k

ZZXa +na-b*—nb+c)- <Mb2_ma2>

q

q-1 g-1
b=0

=0

[+
&

is an interesting open problem, where m and # are any integers with (mn,q) = 1.
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2 Proof of the theorems

To complete the proofs of our theorems, we need the following simple conclusion.

Lemma Let p be an odd prime, x be any non-principal character modp. Then for any
integers ¢, m, and n with (cmn, p) = 1, we have the identity

p (%)

p-1 p-1 2 2 ¥ . o<
b2 _ X (mc) - e()
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Proof If (n,p) =1, then from the properties of Gauss sums and quadratic residue mod p we
have

(2)S(8)o(8) - (2)

where x; = (;) denotes the Legendre symbol.
Since yx is a non-principal Dirichlet character mod p, from (1), for the properties of Gauss
sums and a complete residue system mod p we have
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where 7 denotes the solution of the congruence equation # - x = 1modp.
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For any non-principal character x mod p, note that |t(x)| = ,/p; from (2) we may imme-
diately complete the proof of our lemma. O

Now we use this lemma to prove our theorems. First we prove Theorem 1. In fact from
the lemma and the absolute value inequality |a| — |b] < |a — b| < |a| + |b| we have the
estimate

p-1 p-1

‘E

h2 _ 2
pP—p=p- x(a —b2+na—nb+c)'e(w)
|T(X)| prdurs p
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<p+—— 2" = p+ /b
= ol TP
This proves Theorem 1.
To prove Theorem 2, from the lemma we have
p1pl 2 2\ |
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So for any positive integer k > 1, from (3) and the binomial theorem we have
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If x = x» is the Legendre symbol, note that we have the trigonometric identities
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and from (4) we may immediately get the asymptotic formula
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If x is any non-real character mod p, then note that the identities
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From (4) we may immediately get the asymptotic formula

p-1 2k

2

c=1

p-1 p-1 2 2
b2 —
E Xa -b*+na-— nb+c) (m ma)
a=0 b=0 p

k>—-3k-2
=p2k+1+ nooen e

5 Py O(pzk—%)'

(6)

Page 5 of 6


http://www.journalofinequalitiesandapplications.com/content/2014/1/102

Xiancun and Xiaoxue Journal of Inequalities and Applications 2014, 2014:102 Page 6 of 6
http://www.journalofinequalitiesandapplications.com/content/2014/1/102

Now combining (5) and (6) we have the asymptotic formula

p-1|p-1 p-1 2 o 2K
Z ZZx(u2—b2+na—nb+C)'e(M)

c=1|a=0 b=0 p

2
Ul 3622 2k 4 O(p*Y), if x is the Legendre symbol mod p;
2k+1 | k*=3k=2
2

<

p p¥ + O(p¥-2), if x is a complex character modp.

This completes the proof of our theorems.
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