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Abstract
The main purpose of this paper is using the analytic methods and the properties of
Gauss sums to study the computational problem of a new sum analogous to
quadratic Gauss sums, and to give an interesting asymptotic formula for its 2kth
power mean.
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1 Introduction
Let q ≥  be an integer, and let χ be a Dirichlet character modq. Then for any integer n,
the famous Gauss sumsG(χ ,n) and quadratic Gauss sumsG(χ ,n) are defined as follows:

G(χ ,n) =
q∑

a=

χ (a) · e
(
na
q

)
and G(χ ,n) =

q∑
a=

χ (a) · e
(
na

q

)
,

where e(y) = eπ iy.
These two sums play a very important role in the study of analytic number theory, and

many famous number theoretic problems are closely related to them. The distribution of
primes, the Goldbach problem, and the properties of Dirichlet L-functions are some good
examples. The arithmetic properties ofG(χ ,n) andG(χ ,n) can be found in [, ], and [].
The upper bound estimate of G(χ ,n) has been studied by some authors, and one ob-

tained many important results. For example, if q = p is a prime and (p,m) = , then from
Weil’s work [] we can obtain the estimate

∣∣∣∣∣
p∑

a=

χ (a) · e
(
f (a)
p

)∣∣∣∣∣ � p

 ,

where f (x) is a polynomial. Related work can also be found in [–], and [].
In this paper, we introduce a new sumG(χ ,m,n, c;q), analogous to quadraticGauss sums

G(χ ,n), as follows:

G(χ ,m,n, c;q) =
q–∑
a=

q–∑
b=

χ
(
a + na – b – nb + c

) · e
(
mb –ma

q

)
,

where c,m, and n are any integers, χ is a non-principal Dirichlet character modq.
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In this paper, we shall study the asymptotic properties of G(χ ,m,n, c;q). As regards this
problem, it seems that none has studied it yet, at least we have not seen any related results
before. The problem is interesting, because it has a close relation with the Gauss sums,
and it is also analogous to quadratic Gauss sums. Of course, it can also help us to further
understand and study the quadratic Gauss sums.
Themain purpose of this paper is using the analytic method and the properties of Gauss

sums to study the kth power mean of G(χ ,m,n, c;p), and to give a sharp asymptotic for-
mula for it. That is, we shall prove the following two conclusions.

Theorem  Let p be an odd prime, χ be any non-principal character modp. Then for any
integers c,m and n with (cmn,p) = , we have the estimate

p –
√
p ≤

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣ ≤ p +
√
p.

Theorem  Let p be an odd prime, χ be any non-principal charactermodp, k be any fixed
positive integer. Then for any integers m and n with (mn,p) = , we have the asymptotic
formula

p–∑
c=

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣
k

=

{
pk+ + k–k–

 · pk +O(pk–), if χ is the Legendre symbol modp;
pk+ + k–k–

 · pk +O(pk– 
 ), if χ is a complex character modp.

From Theorem  we can also deduce the following two corollaries.

Corollary  Let p be an odd prime, χ be any non-real charactermodp. Then for any inte-
gers m and n with (mn,p) = , we have the asymptotic formula

p–∑
c=

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣


= p – p +O
(
p



)
.

Corollary  Let p be an odd prime, χ be any non-real character modp. Then for any in-
tegers m and n with (mn,p) = , we have the asymptotic formula

p–∑
c=

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣


= p + p +O
(
p



)
.

For general integer q ≥ , whether there exists an asymptotic formula for the kth power
mean

q–∑
c=

∣∣∣∣∣
q–∑
a=

q–∑
b=

χ
(
a + na – b – nb + c

) · e
(
mb –ma

q

)∣∣∣∣∣
k

is an interesting open problem, wherem and n are any integers with (mn,q) = .
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2 Proof of the theorems
To complete the proofs of our theorems, we need the following simple conclusion.

Lemma Let p be an odd prime, χ be any non-principal character modp. Then for any
integers c,m, and n with (cmn,p) = , we have the identity

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣ = p ·
∣∣∣∣ – χ (mc) · e(mc

p )
τ (χ )

∣∣∣∣.
Proof If (n,p) = , then from the properties of Gauss sums and quadratic residuemodpwe
have

p–∑
a=

e
(
na

p

)
=  +

p–∑
a=

e
(
na

p

)
=  +

p–∑
a=

(
 +

(
a
p

))
· e

(
na
p

)

=
p–∑
a=

e
(
na
p

)
+

p–∑
a=

(
a
p

)
· e

(
na
p

)

=
(
n
p

) p–∑
a=

(
a
p

)
· e

(
a
p

)
=

(
n
p

)
· τ (χ), ()

where χ = ( ∗
p ) denotes the Legendre symbol.

Since χ is a non-principal Dirichlet charactermodp, from (), for the properties ofGauss
sums and a complete residue system modp we have

p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)

=


τ (χ )
·
p–∑
a=

p–∑
b=

p–∑
r=

χ (r)e
(
r(a + b + na – nb + c)

p

)
· e

(
mb –ma

p

)

=


τ (χ )
·
p–∑
r=

χ (r)
p–∑
a=

p–∑
b=

e
(
(r –m)a + rna – (r –m)b – nrb + cr

p

)

=


τ (χ )

p–∑
r=

(r–m,p)=

χ (r)
p–∑
a=

p–∑
b=

e
(
(r –m)((a + r –mnr) – (b + r –mnr)) + rc

p

)

=


τ (χ )

p–∑
r=

(r–m,p)=

χ (r)
p–∑
a=

p–∑
b=

e
(
(r –m)(a – b) + rc

p

)

=
τ (χ)
τ (χ )

p–∑
r=

(r–m,p)=

χ (r)
(
r –m
p

)

e
(
rc
p

)
=

τ (χ)
τ (χ )

( p–∑
r=

χ (r)e
(
rc
p

)
– χ (m)e

(
mc
p

))

= τ (χ)
(

χ (c) –
χ (m)e(mc

p )
τ (χ )

)
, ()

where n denotes the solution of the congruence equation n · x ≡ modp.
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For any non-principal character χ modp, note that |τ (χ )| = √p; from () we may imme-
diately complete the proof of our lemma. �

Now we use this lemma to prove our theorems. First we prove Theorem . In fact from
the lemma and the absolute value inequality |a| – |b| ≤ |a – b| ≤ |a| + |b| we have the
estimate

p –
√
p = p –

p
|τ (χ )| ≤

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣
≤ p +

|p · χ (cm) · e(mc
p )|

|τ (χ )| = p +
√
p.

This proves Theorem .
To prove Theorem , from the lemma we have

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣


= p
(
 +


p

)
– p

(
χ (mc) · e(mc

p )
τ (χ )

–
χ (mc) · e( –mc

p )

τ (χ )

)
. ()

So for any positive integer k ≥ , from () and the binomial theorem we have

p–∑
c=

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣
k

=
p–∑
c=

(
p

(
 +


p

)
– p

(
χ (mc) · e(mc

p )
τ (χ )

+
χ (mc) · e( –mc

p )

τ (χ )

))k

= pk
(
 +


p

)k

(p – ) –
p–∑
c=

(
χ (mc) · e(mc

p )
τ (χ )

+
χ (mc) · e( –mc

p )

τ (χ )

)

× kpk
(
 +


p

)k–

+
k(k – )


pk

(
 +


p

)k–

×
p–∑
c=

(
χ (mc) · e(mc

p )
τ (χ )

+
χ (mc) · e( –mc

p )

τ (χ )

)

+
k(k – )(k – )


pk

×
(
 +


p

)k– p–∑
c=

(
χ (mc) · e(mc

p )
τ (χ )

+
χ (mc) · e( –mc

p )

τ (χ )

)

+O
(
pk–

)
. ()

If χ = χ is the Legendre symbol, note that we have the trigonometric identities

p–∑
c=

χ(mc) · e( mc
p )

τ (χ )
=

p–∑
c=

e( mc
p )

τ (χ )
=

–
τ (χ )

=O
(

p

)
,

p–∑
c=

χ(mc) · e( –mc
p )

τ (χ )
=

p–∑
c=

e( –mc
p )

τ (χ )
=

–
τ (χ )

=O
(

p

)
,
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p–∑
c=

χ (mc) · e(mc
p )

τ (χ )
· χ (mc) · e( –mc

p )

τ (χ )
=
p – 
p

and

p–∑
c=

(
χ (mc) · e(mc

p )
τ (χ )

+
χ (mc) · e( –mc

p )

τ (χ )

)

=


τ (χ )

p–∑
c=

χ(c)e
(
c
p

)
+


p · τ (χ )

p–∑
c=

χ (c)e
(
c
p

)

+


τ (χ )


p–∑
c=

χ(c)e
(
–c
p

)
+


p · τ (χ )

p–∑
c=

χ (c)e
(
–c
p

)
=O

(

p

)
,

and from () we may immediately get the asymptotic formula

p–∑
c=

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣
k

= pk
(
 +


p

)k

(p – ) – kpk
(
 +


p

)k–

+
k(k – )


pk

(
 +


p

)k– p – 
p

+O
(
pk–

)

= pk+ +
k – k – 


· pk +O

(
pk–

)
. ()

If χ is any non-real character modp, then note that the identities

p–∑
c=

χ(mc) · e( mc
p )

τ (χ )
=

χ()τ (χ)
τ (χ )

=O
(

√p

)
,

p–∑
c=

χ(mc) · e( –mc
p )

τ (χ )
=

χ()τ (χ)
τ (χ )

=O
(

√p

)
,

p–∑
c=

χ (mc) · e(mc
p )

τ (χ )
· χ (mc) · e( –mc

p )

τ (χ )
=
p – 
p

,

and

p–∑
c=

(
χ (mc) · e(mc

p )
τ (χ )

+
χ (mc) · e( –mc

p )

τ (χ )

)

=O

(

p 


·
p–∑
c=



)
=O

(
√p

)
.

From () we may immediately get the asymptotic formula

p–∑
c=

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣
k

= pk+ +
k – k – 


· pk +O

(
pk–



)
. ()
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Now combining () and () we have the asymptotic formula

p–∑
c=

∣∣∣∣∣
p–∑
a=

p–∑
b=

χ
(
a – b + na – nb + c

) · e
(
mb –ma

p

)∣∣∣∣∣
k

=

{
pk+ + k–k–

 · pk +O(pk–), if χ is the Legendre symbol modp;
pk+ + k–k–

 · pk +O(pk– 
 ), if χ is a complex character modp.

This completes the proof of our theorems.
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