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Abstract
In this paper, we introduce and study the concept of lacunary strongly
(A,ϕ)-convergence with respect to a modulus function and lacunary (A,ϕ)-statistical
convergence and examine some properties of these sequence spaces. We establish
some connections between lacunary strongly (A,ϕ)-convergence and lacunary
(A,ϕ)-statistical convergence.
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1 Introduction
Let s denote the set of all real and complex sequences x = (xk). By l∞ and c, we denote the
Banach spaces of bounded and convergent sequences x = (xk) normed by ‖x‖ = supn |xn|,
respectively. A linear functional L on l∞ is said to be a Banach limit [] if it has the following
properties:
() L(x)≥  if n≥  (i.e. xn ≥  for all n),
() L(e) = , where e = (, , . . .),
() L(Dx) = L(x), where the shift operator D is defined by D(xn) = {xn+}.

Let B be the set of all Banach limits on l∞. A sequence x ∈ �∞ is said to be almost con-
vergent if all Banach limits of x coincide. Let ĉ denote the space of almost convergent
sequences. Lorentz [] has shown that

ĉ =
{
x ∈ l∞ : lim

m
tm,n(x) exists uniformly in n

}
,

where

tm,n(x) =
xn + xn+ + xn+ + · · · + xn+m

m + 
.

By a lacunary θ = (kr); r = , , , . . . , where k = , we shall mean an increasing sequence
of non-negative integers with kr – kr– → ∞ as r → ∞. The intervals determined by θ will
be denoted by Ir = (kr–,kr] and hr = kr – kr–. The ratio kr

kr–
will be denoted by qr . The

space of lacunary strongly convergent sequences Nθ was defined by Freedman et al. [] as
follows:

Nθ =
{
x = (xk) : limr


hr

∑
k∈Ir

|xk – l| = , for some l
}
.
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In the special case where θ = (r) (see []) we have Nθ = w, which is defined by

w =

{
x = (xk) : limn


n

n∑
k=

|xk – l| = , for some l

}
.

Das and Mishra [] have introduced the space ACθ of lacunary almost convergent se-
quences and the space |ACθ | of lacunary strongly almost convergent sequences as follows:

ACθ =
{
x = (xk) : limr


hr

∑
k∈Ir

(xk+n – L) = , for some L uniformly in n
}

and

|ACθ | =
{
x = (xk) : limr


hr

∑
k∈Ir

|xk+n – L| = , for some L uniformly in n
}
.

Ruckle used the idea of a modulus function f to construct a class of FK spaces,

L(f ) =

{
x = (xk) :

∞∑
k=

f
(|xk|) < ∞

}
.

The space L(f ) is closely related to the space l, which is an L(f ) space with f (x) = x for all
real x ≥ .
In , Savaş [] generalized the concept of strong almost convergence by using amod-

ulus f and p = (pk) is a sequence of strictly positive real numbers as follows:

[
ĉ(f ,p)

]
=

{
x : lim

n


n

n∑
k=

f
(|xk+m – L|)pk = , for some L, uniformly inm

}

and

[
ĉ(f ,p)

]
 =

{
x : lim

n


n

n∑
k=

f
(|xk+m|)pk = ,uniformly inm

}
.

More investigations in this direction andmore applications of themodulus can be found
in [–].
Following Ruckle [], a modulus function f is a function from [,∞) to [,∞) such

that
(i) f (x) =  if and only if x = ,
(ii) f (x + y) ≤ f (x) + f (x) for all x, y≥ ,
(iii) f increasing,
(iv) f is continuous from the right at zero.
By a ϕ-function we understand a continuous non-decreasing function ϕ(u) defined for

u≥  and such that ϕ() = , ϕ(u) > , for u >  and ϕ(u) → ∞ as u → ∞.
A ϕ-function ϕ is called non-weaker than a ϕ-functionψ if there are constants c,b,k, l >

 such that cψ(lu)≤ bϕ(ku) (for all large u) and we write ψ ≺ ϕ.
A ϕ-function ϕ and ψ are called equivalent if there are positive constants b, b, c, k,

k, l such that bϕ(ku) ≤ cψ(lu)≤ bϕ(ku) (for all large u) and we write ϕ ∼ ψ .
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A ϕ-function ϕ is said to satisfy the condition (�) (for all large u) if for some constant
k >  there is satisfied the inequality ϕ(u) ≤ kϕ(u) (see [, ]).
In this paper, we introduce and study some properties of the following sequence space

which is generalization of Savaş [].

2 Main results
Let ϕ and f be a given ϕ-function and modulus function, respectively, and let p = (pn)
be a sequence of positive real numbers. Moreover, let A = (Ai) be the generalized three
parametric real matrix with Ai = (an,k(i)) and a lacunary sequence θ be given. Then we
define the following sequence spaces:

N
θ (A,ϕ, f ,p) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

= ,uniformly in i

}
.

If x ∈ N
θ (A,ϕ, f ), the sequence x is said to be lacunary strong (A,ϕ)-convergent to zero

with respect to a modulus f . When ϕ(x) = x for all x, we obtain

N
θ (A, f ,p) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)xk

∣∣∣∣∣
)pn

= ,uniformly in i

}
.

If we take f (x) = x, we write

N
θ (A,ϕ,p) =

{
x = (xk) : limr


hr

∑
n∈Ir

∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
pn

= ,uniformly in i

}
.

If we take pk = p, for all k, we have

N
θ (A,ϕ, f ) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)p

= ,uniformly in i

}
.

If we take A = I and ϕ(x) = x, respectively, then we have

N
θ =

{
x = (xk) : limr


hr

∑
k∈Ir

f
(|xk|)pn = 

}
.

If we define the matrix A = (ank(i)) as follows:

ank(i) :=

{

n , if n≥ k,
, otherwise,

then we have

N
θ (C,ϕ, f ,p) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣ n
n∑
k=

ϕ
(|xk|)

∣∣∣∣∣
)pn

= ,uniformly in i

}
,

ank(i) :=

{

n , if i≤ k ≤ i + n – ,
, otherwise,
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then we have

N
θ (ĉ,ϕ, f ,p) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣ n
i+n∑
k=i

ϕ
(|xk|)

∣∣∣∣∣
)pn

= ,uniformly in i

}
.

If x ∈N
θ (ĉ,ϕ, f ), the sequence x is said to be almost lacunary strong ϕ-convergent to zero

with respect to a modulus f . In the next theorem we establish inclusion relations between
w(A,ϕ, f ,p) and N

θ (A,ϕ, f ,p). We now have the following.

Theorem . Let f be any modulus function and let there be a ϕ-function ϕ and a gener-
alized three parametric real matrix A; let p = (pn) be a sequence of positive real numbers
and the sequence θ be given. If

w(A,ϕ, f ,p) =

{
x = (xk) : limm


m

m∑
n=

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

= ,uniformly in i

}
,

then the following relations are true:
(a) If lim infr qr >  then we have w(A,ϕ, f ,p) ⊆N

θ (A,ϕ, f ,p).
(b) If supr qr < ∞, then we have N

θ (A,ϕ, f ,p) ⊆ w(A,ϕ, f ,p).
(c)  < lim infr qr ≤ lim supr qr < ∞, then we have N

θ (A,ϕ, f ,p) = w(A,ϕ, f ,p).

Proof (a) Let us suppose that x ∈ w(A,ϕ, f ,p). There exists δ >  such that qr >  + δ for all
r ≥  and we have hr/kr ≥ δ/( + δ) for sufficiently large r. Then, for all i,


kr

kr∑
n=

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

≥ 
kr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

=
hr
kr


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

≥ δ

 + δ


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ankϕ
(|xk|)

∣∣∣∣∣
)pn

.

Hence, x ∈N
θ (A,ϕ, f ,p).

(b) If lim supr qr < ∞ then there exists M >  such that qr < M for all r ≥ . Let x ∈
N

θ (A,ϕ, f ,p) and ε is an arbitrary positive number, then there exists an index j such that
for every j ≥ j and all i,

Rj =

hj

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

< ε.

Thus, we can also find K >  such that Rj ≤ K for all j = , , . . . . Now letm be any integer
with kr– ≤m ≤ kr , then we obtain, for all i,

I =

m

m∑
n=

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

≤ 
kr–

kr∑
n=

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

= I + I,
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where

I =


kr–

j∑
j=

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

,

I =


kr–

m∑
j=j+

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

.

It is easy to see that

I =


kr–

j∑
j=

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

=


kr–

(∑
n∈I

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

+ · · · +
∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn)

≤ 
kr–

(hR + · · · + hjRj )

≤ 
kr–

jkj sup
≤i≤j

Ri

≤ jkj
kr–

K .

Moreover, we have for all i

I =


kr–

m∑
j=j+

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ankϕ
(|xk|)

∣∣∣∣∣
)pn

=


kr–

m∑
j=j+


hj

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ankϕ
(|xk|)

∣∣∣∣∣
)pn

hj

≤ ε


kr–

m∑
j=j+

hj

≤ ε
kr
kr–

= εqr < ε ·M.

Thus I ≤ jkj
kr–

K + ε ·M. Finally, x ∈ w(A,ψ , f ,p).
The proof of (c) follows from (a) and (b). This completes the proof. �

Theorem . Let f , f, be modulus functions. Then we have

N
θ (A, f,ϕ,p) ⊂ (A,ϕ, fof,p).

Proof This can be proved by using techniques similar to those used in the theorem of
Savaş []. �

Recently Savaş [] defined (A,ϕ)-statistical convergence as follows.
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Let θ be a lacunary sequence, and let A = (ank(i)) be the generalized three parametric
real matrix, the sequence x = (xk), the ϕ-function ϕ(u) and a positive number ε >  be
given. We write, for all i,

Kr
θ (A,ϕ, ε) =

{
n ∈ Ir :

∞∑
k=

ank(i)ϕ
(|xk|) ≥ ε

}
.

The sequence x is said to be (A,ϕ)-statistically convergent to a number zero if for every
ε > 

lim
r


hr

μ
(
Kr

θ (A,ϕ, ε)
)
= , uniformly in i,

where μ(Kr
θ (A,ϕ, ε)) denotes the number of elements belonging to Kr

θ (A,ϕ, ε). We denote
by Sθ (A,ϕ), the set of sequences x = (xk) which are lacunary (A,ϕ)-statistical convergent
to zero and we write

Sθ (A,ϕ) =
{
x = (xk) : limr


hr

μ
(
Kr

θ (A,ϕ, ε)
)
= ,uniformly in i

}
.

More investigations in this direction can be found in [–].
We now establish inclusion relations between N

θ (A,ϕ, f ,p) and Sθ (A,ϕ).
In the following theorem we assume that  < h = infpn ≤ pn ≤ suppk ≤H ≤ ∞.

Theorem . (a) If the matrix A and the sequence θ and functions f and ϕ are given, then

N
θ (A,ϕ, f ,p) ⊂ Sθ (A,ϕ).

(b) If the ϕ-function ϕ(u) and the matrix A are given, and if the modulus function f is
bounded, then

Sθ (A,ϕ) ⊂N
θ (A,ϕ, f ,p).

Proof (a) Let f be a modulus function and let ε be a positive numbers. We write the fol-
lowing inequalities, for all i,


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

=

hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

≥ 
hr

∑
n∈Ir

[
f (ε)

]pn

≥ 
hr

∑
n∈Ir

min
([
f (ε)

]infpn , [f (ε)]H)

≥ 
hr

μ
(
Kr

θ (A,ϕ, ε)
)
min

([
f (ε)

]infpn , [f (ε)]H)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/101
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where

Ir =

{
n ∈ Ir :

∞∑
k=

ank(i)ϕ
(|xk|) ≥ ε

}
.

Finally, if x ∈N
θ (A,ϕ, f ,p) then x ∈ Sθ (A,ϕ, f ).

(b) Let us suppose that x ∈ Sθ (A,ϕ). If the modulus function f is a bounded function,
then there exists an integer K such that f (x) < K for x ≥ . Let us take

Ir =

{
n ∈ Ir :

∞∑
k=

ank(i)ϕ
(|xk|) < ε

}
.

Thus we have, for all i,


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

≤ 
hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

+

hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)pn

≤ 
hr

∑
n∈Ir

max
(
Kh,KH)

+

hr

∑
n∈Ir

[
f (ε)

]pn

≤max
(
Kh,KH) 

hr
μ

(
Kr

θ (A,ϕ, ε)
)
+max

([
f (ε)

]h, [f (ε)]H)
.

Taking the limit as ε → , we observe that x ∈N
θ (A,ϕ, f ,p).

This completes the proof. �
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