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1 Introduction
The following definition is well known in the literature.

Definition  A function f : I ⊆R = (–∞,∞)→R is said to be convex if

f
(
tx + ( – t)y

) ≤ tf (x) + ( – t)f (y) ()

holds for all x, y ∈ I and t ∈ [, ].

We cite the following inequalities for convex functions.

Theorem  ([, p.]) If f is a convex function on I and x,x,x ∈ I , then

f (x) + f (x) + f (x) + f
(
x + x + x



)

≥ 


[
f
(
x + x



)
+ f

(
x + x



)
+ f

(
x + x



)]
. ()

Theorem  ([, Popoviciu inequality]) If f is a convex function on I and x,x, . . . ,xn ∈ I
with n ≥ , then

n∑
i=

f (xi) +
n

n – 
f

(

n

n∑
i=

xi

)
≥ 

n – 
∑
i<j

f
(
xi + xj


)
. ()

Theorem  ([, Generalized Popoviciu inequality]) If f is a convex function on I and
a,a, . . . ,an ∈ I for n≥ , then

(n – )
n∑
i=

f (bi) ≤ n(n – )f (a) +
n∑
i=

f (ai), ()

where a = 
n
∑n

i= ai and bi = na–ai
n– for i = , , . . . ,n.
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The above inequalities were generalized as follows.

Theorem  ([]) If f is a convex function on I and x,x, . . . ,xn ∈ I for n≥ , then

n∑
i=

f (xi) – f

(

n

n∑
k=

xk

)
≥ n – 

n

n∑
i=

f
(
xi + xi+



)
()

and

(n – )
n∑
i=

f (bi) ≤ n

[ n∑
i=

f (ai) – f (a)

]
, ()

where xn+ = x, a = 
n
∑n

i= ai, and bi = na–ai
n– for i = , , . . . ,n.

Definition  ([]) Let s ∈ (, ]. A function f :R = [,∞) → R is said to be s-convex in
the second sense if

f
(
λx + ( – λ)y

) ≤ λsf (x) + ( – λ)sf (y) ()

holds for all x, y ∈ I and λ ∈ [, ].

The following inequalities for s-convex functions were established.

Theorem  ([, Theorem .]) If f is nonnegative and s-convex in the second sense on I
and if x,x, . . . ,xn ∈ I for n≥ , then

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥ s–(ns – )

n

n∑
i=

f
(
xi + xi+



)
, ()

where x = xn+.

Theorem  ([, Theorem .]) If f is nonnegative and s-convex in the second sense on I
and a,a, . . . ,an ∈ I for n≥ , then

(
ns – 

) n∑
i=

bi ≤ ns
[ n∑

i=

f (ai) – f (a)

]
, ()

where a = 
n
∑n

i= ai and bi = na–ai
n– for i = , , . . . ,n.

The concept of h-convex functions below was innovated as follows.

Definition  ([, Definition ]) Let I, J ⊆ R be intervals, (, ) ⊆ J , and h : J → R be a
nonnegative function. A function f : I → R is called h-convex, or as we say, f belongs to
the class SX(h, I), if f is nonnegative and

f
(
tx + ( – t)y

) ≤ h(t)f (x) + h( – t)f (y) ()

for all x, y ∈ I and t ∈ [, ].
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Definition  ([, Section ]) A function h : J ⊆ R is said to be a super-multiplicative on
an interval J if

h(xy) ≥ h(x)h(y) ()

is valid for all x, y ∈ J . If the inequality () reverses, then f is said to be a sub-multiplicative
function on J .

The following inequalities were established for f ∈ SX(h, I).

Theorem  ([, Theorem ]) Let w, . . . ,wn for n ≥  be positive real numbers. If h is a
nonnegative and super-multiplicative function and if f ∈ SX(h, I) and x, . . . ,xn ∈ I , then

f

(

Wn

n∑
i=

wixi

)
≤

n∑
i=

h
(

wi

Wn

)
f (xi), ()

where Wn =
∑n

i=wi. If h is sub-multiplicative and f ∈ SV(h, I), then the inequality () is
reversed.

Theorem  ([, Theorem ]) Let h be a nonnegative and super-multiplicative function.
If f ∈ SX(h, I) and x, . . . ,xn ∈ I , then

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥  – h(/n)

h(/)

n∑
i=

f
(
xi + xi+



)
, ()

where xn+ = x. The inequality () is reversed if f ∈ SV(h, I).

Theorem  ([, Theorem ]) Let h be a nonnegative and super-multiplicative function.
If f ∈ SX(h, I) and x, . . . ,xn ∈ I , then

[
 – h

(

n

)] n∑
i=

f (bi) ≤ (n – )h
(


n – 

)[ n∑
i=

f (ai) – f (a)

]
, ()

where a = 
n
∑n

i= ai and bi =
na–ai
n– for i = , , . . . ,n and n ≥ .The inequality () is reversed

if f ∈ SV(h, I).

Two new kinds of convex functions were introduced as follows.

Definition  ([]) For f : [,b]→R andm ∈ (, ], if

f
(
tx +m( – t)y

) ≤ tf (x) +m( – t)f (y) ()

is valid for all x, y ∈ [,b] and t ∈ [, ], then we say that f (x) is an m-convex function on
[,b].

Definition  ([]) Let J ⊆ R be an interval, (, ) ⊆ J , h : J → R be a nonnegative func-
tion. We say that f : [,b] → R is an (h,m)-convex function, or say, f belongs to the class
SMX((h,m), [,b]), if f is nonnegative and, for all x, y ∈ [,b] and t ∈ [, ] and for some

http://www.journalofinequalitiesandapplications.com/content/2014/1/100
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m ∈ (, ], we have

f
(
tx +m( – t)y

) ≤ h(t)f (x) +mh( – t)f (y). ()

If the inequality () is reversed, then f is said to be (h,m)-concave and denoted by f ∈
SMV((h,m), [,b]).

Recently the h- and (h,m)-convex functions were generalized and some properties and
inequalities for them were obtained in [, ].
The aim of this paper is to find some inequalities of Jensen type and Popoviciu type for

(h,m)-convex functions.

2 Inequalities of Jensen type and Popoviciu type
Now we are in a position to establish some inequalities of Jensen type and Popoviciu type
for (h,m)-convex functions.

Theorem  Let h : [, ] → R be a super-multiplicative function and m ∈ (, ]. If f ∈
SMX((h,m), [,b]), then for all xi ∈ [,b] and wi >  with i = , , . . . ,n and n ≥ , we have

f

(

Wn

n∑
i=

mi–wixi

)
≤

n∑
i=

mi–h
(

wi

Wn

)
f (xi), ()

where Wn =
∑n

i=wi.
If h is sub-multiplicative and f ∈ SMV((h,m), [,b]), then the inequality () is reversed.

Proof Assume that w′
i =

wi
Wn

for i = , , . . . ,n.
When n = , taking t = w′

 and  – t = w′
 in Definition  gives the inequality () clearly.

Suppose that the inequality () holds for n = k, i.e.,

f

( k∑
i=

mi–w′
ixi

)
≤

k∑
i=

mi–h
(
w′
i
)
f (xi). ()

When n = k + , letting �k =
∑k+

i= w′
i and making use of () result in

f

( k+∑
i=

mi–w′
ixi

)
= f

(
w′
x +m�k

k+∑
i=

mi– w′
i

�k
xi

)

≤ h
(
w′

)
f (x) +mh(�k)f

( k+∑
i=

mi– w′
i

�k
xi

)

≤ h
(
w′

)
f (x) +mh(�k)

k+∑
i=

mi–h
(
w′
i

�k

)
f (xi).

Since h is a super-multiplicative function, it follows that

h(�k)h
(
w′
i

�k

)
≤ h

(
w′
i
)

for i = , , . . . ,n. Namely, when n = k + , the inequality () holds. By induction, Theo-
rem  is proved. �
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Corollary  Under the conditions of Theorem ,
. ifWn = , we have

f

( n∑
i=

mi–wixi

)
≤

n∑
i=

mi–h(wi)f (xi); ()

. if w = w = · · · = wn, we have

f

(

n

n∑
i=

mi–wixi

)
≤ h

(

n

) n∑
i=

mi–f (xi); ()

. if h is sub-multiplicative and f ∈ SMV((h,m), [,b]), then the inequalities () and
() are reversed.

Corollary  For m ∈ (, ] and s ∈ (, ], the assertion f ∈ SMX((ts,m), [,b]) is valid if
and only if for all xi ∈ [,b] and wi >  with i = , , . . . ,n and n≥ 

f

(

Wn

n∑
i=

mi–xi

)
≤

n∑
i=

mi–
(

wi

Wn

)s

f (xi), ()

where Wn =
∑n

i=wi.

Corollary  Under the conditions of Corollary , if h(t) = ts for s ∈ (, ], then

f

(

n

n∑
i=

mi–xi

)
≤ 

ns

n∑
i=

mi–f (xi). ()

If f ∈ SMV((h,m), [,b]), then the inequality () is reversed.

Theorem  Let h : [, ] → R be a super-multiplicative function, m ∈ (, ], and n ≥ .
If f ∈ SMX((h,m), [, b

mn– ]), then for all xi ∈ [,b] and wi >  with i = , , . . . ,n,

f

(

Wn

n∑
i=

wixi

)
≤

n∑
i=

mi–h
(

wi

Wn

)
f
(

xi
mi–

)
, ()

where Wn =
∑n

i=wi.
If h is sub-multiplicative and f ∈ SMV((h,m), [, b

mn– ]), then the inequality () is re-
versed.

Proof Putting yi = xi
mi– for i = , , . . . ,n, then from inequality (), we have

f

(

Wn

n∑
i=

wixi

)
= f

(

Wn

n∑
i=

mi–wiyi

)

≤
n∑
i=

mi–h
(

wi

Wn

)
f (yi) =

n∑
i=

mi–h
(

wi

Wn

)
f
(

xi
mi–

)
.

The proof of Theorem  is complete. �
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Corollary  For m ∈ (, ], s ∈ (, ], and n ≥ , the assertion f ∈ SMX((ts,m), [, b
mn– ]) is

valid if and only if for all xi ∈ [,b] and wi >  with i = , , . . . ,n the inequality

f

(

Wn

n∑
i=

wixi

)
≤

n∑
i=

mi–
(

wi

Wn

)s

f
(

xi
mi–

)
()

is valid, where Wn =
∑n

i=wi.

Corollary  Under the conditions of Theorem ,
. ifWn = , then

f

( n∑
i=

wixi

)
≤

n∑
i=

mi–h(wi)f
(

xi
mi–

)
; ()

. if w = w = · · · = wn, then

f

(

n

n∑
i=

xi

)
≤ h

(

n

) n∑
i=

mi–f
(

xi
mi–

)
; ()

. if h is sub-multiplicative and f ∈ SMV((h,m), [, b
mn– ]), then the inequalities ()

and () are reversed.

Corollary  Under the conditions of Corollary ,
. if h(t) = ts for s ∈ (, ], then

f

(

n

n∑
i=

xi

)
≤ 

ns

n∑
i=

mi–f
(

xi
mi–

)
; ()

. if f ∈ SMV((h,m), [, b
mn– ]), then the inequality () is reversed.

Theorem  Let h : [, ] → [, ] be a super-multiplicative function and let m ∈ (, ] and
n ≥ . If f ∈ SMX((h,m), [,b]), then for all xi ∈ [,b] with i = , , . . . ,n and  ≤ k ≤ n, we
have

n∑
i=

f (xi) –

( n–∑
j=

mj

)– n∑
i=

f

(

n

n+i–∑
j=i

mj–ixj

)

≥  – h(/n)
h(/k)

( k–∑
j=

mj

)– n∑
i=

f

(

k

k+i–∑
j=i

mj–ixj

)
, ()

where xn+ = x, . . . , xn– = xn–.
If h is sub-multiplicative and f ∈ SMV((h,m), [,b]), then the inequality () is reversed.

Proof By using the inequality (), we have

n∑
i=

f

(

k

k+i–∑
j=i

mj–ixj

)
≤ h

(

k

) n∑
i=

k+i–∑
j=i

mj–if (xj) = h
(

k

)( k–∑
j=

mj

) n∑
i=

f (xi) ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/100
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and

n∑
i=

f

(

n

n+i–∑
j=i

mj–ixj

)
≤ h

(

n

) n∑
i=

n+i–∑
j=i

mj–if (xj)

= h
(

n

)( n–∑
j=

mj

) n∑
i=

f (xi). ()

If h( n ) = , then, from the inequality (), the inequality () holds. If h( n ) ≤ , it is easy
to see that

n∑
i=

f

(

k

k+i–∑
j=i

mj–ixj

)

≤ h
(

k

)( k–∑
j=

mj

) n∑
i=

f (xi)

=
h(/k)

 – h(/n)

( k–∑
j=

mj

)[ n∑
i=

f (xi) – h
(

n

) n∑
i=

f (xi)

]

≤ h(/k)
 – h(/n)

( k–∑
j=

mj

)[ n∑
i=

f (xi) –

( n–∑
j=

mj

)– n∑
i=

f

(

n

n+i–∑
j=i

mj–ixj

)]
.

The proof of Theorem  is complete. �

Corollary  Under the conditions of Theorem , let x̄n = 
n
∑n

i= xi.
. When m = , we have

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥  – h(/n)

kh(/k)

n∑
i=

f

(

k

k+i–∑
j=i

xj

)
. ()

. When m =  and k = , we have

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥  – h(/n)

h(/)

n∑
i=

f
(
xi + xi+



)
. ()

. When m =  and k = n – , we have

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥  – h(/n)

(n – )h(/(n – ))

n∑
i=

f
(
nx̄n – xi
n – 

)
. ()

. If h is sub-multiplicative and f ∈ SMV((h,m), [,b]), then the inequalities () to
() are reversed.

Remark  The inequality () can be deduced from applying () to ai = xi for i =
, , . . . ,n, a = 

n
∑n

i= ai, and bi = na–ai
n– for i = , , . . . ,n.

http://www.journalofinequalitiesandapplications.com/content/2014/1/100
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Corollary  Under the conditions of Theorem ,
. if h(t) = ts for s ∈ (, ], then

n∑
i=

f (xi) –

( n–∑
j=

mj

)– n∑
i=

f

(

n

n+i–∑
j=i

mj–ixj

)

≥ ks(ns – )
ns

( k–∑
j=

mj

)– n∑
i=

f

(

k

k+i–∑
j=i

mj–ixj

)
; ()

. if h(t) = ts for s ∈ (, ] andm = , then

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥ ks–(ns – )

ns

n∑
i=

f

(

k

k+i–∑
j=i

xj

)
; ()

. if h(t) = t and m = , then

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥ n – 

n

n∑
i=

f

(

k

k+i–∑
j=i

xj

)
; ()

. if f ∈ SMV((h,m), [,b]), then the inequalities () to () are reversed.

Theorem  Let h : [, ] → [, ] be a super-multiplicative function and let m ∈ (, ] and
n ≥ . If f ∈ SMX((h,m), [, b

mn– ]), then for all xi ∈ [,b] with i = , , . . . ,n and  ≤ k ≤ n
and for �, . . . ,�k ∈N, we have

n∑
i=

f (xi) –

( n–∑
j=

mj

)– n∑
i=

f

(

n

n+i–∑
j=i

mj–ixj

)

≥  – h(/n)(n–
k–

)
h(/k)

( k–∑
j=

mj

)– ∑
≤�<···<�k≤n

k∑
i=

f

(

k

k+i–∑
j=i

mj–ix�j

)
, ()

where �k+ = �, . . . , �k– = �k–.
If h is sub-multiplicative and f ∈ SMV((h,m), [,b]), then the inequality () is reversed.

Proof By the inequality (), we have

∑
≤�<···<�k≤n

k∑
i=

f

(

k

k+i–∑
j=i

mj–ix�j

)

≤ h
(

k

) ∑
≤�<···<�k≤n

k∑
i=

k+i–∑
j=i

mj–if (x�j )

= h
(

k

)( k–∑
j=

mj

) ∑
≤�<···<�k≤n

k∑
i=

f (x�j )

=
(
n – 
k – 

)
h
(

k

)( k–∑
j=

mj

) n∑
i=

f (xi). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/100
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If h( n ) = , then, from the inequality (), the inequality () holds. If h( n ) ≤ , using ()
and (), we have

∑
≤�<···<�k≤n

k∑
i=

f

(

k

k+i–∑
j=i

mj–ix�j

)

≤
(
n – 
k – 

)
h
(

k

)( k–∑
j=

mj

) n∑
i=

f (xi)

=
(n–
k–

)
h(/k)

 – h(/n)

( k–∑
j=

mj

)[ n∑
i=

f (xi) – h
(

n

) n∑
i=

f (xi)

]

≤
(n–
k–

)
h(/k)

 – h(/n)

( k–∑
j=

mj

)[ n∑
i=

f (xi) –

( n–∑
j=

mj

)– n∑
i=

f

(

n

n+i–∑
j=i

mj–ixj

)]
.

The proof of Theorem  is complete. �

Corollary  Under the conditions of Theorem , let x̄n = 
n
∑n

i= xi.
. When m = , we have

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥  – h(/n)(n–

k–
)
h(/k)

∑
≤�<···<�k≤n

f

(

k

k∑
j=

x�j

)
. ()

. When m =  and k = , we have

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥  – h(/n)

(n – )h(/)
∑

≤i<j≤n

f
(
xi + xj


)
. ()

. When m =  and k = n – , we have

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥  – h(/n)

(n – )h(/(n – ))

n∑
i=

(
nx̄n – xi
n – 

)
. ()

. If h is sub-multiplicative and f ∈ SMV((h,m), [,b]), then the inequalities () to
() are reversed.

Corollary  Under the conditions of Theorem ,
. if h(t) = ts for s ∈ (, ], then

n∑
i=

f (xi) –

( n–∑
j=

mj

)– n∑
i=

f

(

n

n+i–∑
j=i

mj–ixj

)

≥ ks(ns – )(n–
k–

)
ns

( k–∑
j=

mj

)– ∑
≤�<···<�k≤n

k∑
i=

f

(

k

k+i–∑
j=i

mj–ix�j

)
; ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/100
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. if m =  and h(t) = ts for s ∈ (, ], we have

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥ ks(ns – )(n–

k–
)
ns

∑
≤�<···<�k≤n

f

(

k

k∑
j=

x�j

)
; ()

. if m =  and h(t) = t, then

n∑
i=

f (xi) – f

(

n

n∑
i=

xi

)
≥ k(n – )(n–

k–
)
n

∑
≤�<···<�k≤n

f

(

k

k∑
j=

x�j

)
; ()

. if f ∈ SMV((h,m), [,b]), then the inequalities () to () are reversed.

3 Applications tomeans
In what follows we will apply the theorems and corollaries in the above section to establish
inequalities for some special means.
For r ∈R, r 	= , andm, s ∈ (, ], let f (x) = xr for x ∈R+ and h(t) = ts for t ∈ [, ]. Then
. if r ≥  and  <m ≤ , or if r <  and m = , we have

(
tx +m( – t)y

)r ≤ txr + ( – t)(my)r ≤ tsxr +m( – t)syr

for x, y ∈ R+;
. if  < r ≤ ,  <m ≤ , and s = , we have

(
tx +m( – t)y

)r ≥ txr + ( – t)(my)r ≥ txr +m( – t)yr

for x, y ∈ R+.
Using Definition  yields the following:
. if r ≥  and  <m ≤ , or if r <  and m = , the function

f (x) = xr ∈ SMX((ts,m),R+);
. if  < r ≤ ,  <m ≤ , and s = , the function f (x) = xr ∈ SMV((t,m),R+).
By virtue of Corollary , we obtain the following results.

Theorem  Let n ≥  and xi ∈ R+ for i = , , . . . ,n, let r ∈ R with r 	=  and m, s ∈ (, ],
and let �, . . . ,�k ∈N for  ≤ k ≤ n and �k+ = �, . . . , �k– = �k–.
. If r ≥  and  <m ≤ , or if r <  and m = , then we have

n∑
i=

xri –

( n–∑
j=

mj

)– n∑
i=

(

n

n+i–∑
j=i

mj–ixj

)r

≥ ks(ns – )(n–
k–

)
ns

( k–∑
j=

mj

)– ∑
≤�<···<�k≤n

k∑
i=

(

k

k+i–∑
j=i

mj–ix�j

)r

; ()

. if r ≥  or r <  and ifm = , we have

n∑
i=

xri –

(

n

n∑
i=

xi

)r

≥ ks(ns – )(n–
k–

)
ns

∑
≤�<···<�k≤n

(

k

k∑
j=

x�j

)r

; ()
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. if r ≥  or r <  and ifm = s = , then

n∑
i=

xri –

(

n

n∑
i=

xi

)r

≥ k(n – )(n–
k–

)
n

∑
≤�<···<�k≤n

(

k

k∑
j=

x�j

)r

; ()

. if  < r ≤ ,  <m ≤ , and s = , then the inequality () are reversed.

Corollary  Under the conditions of Theorem , when �k+ = �, . . . , �k– = �k–, we have
the following conclusions.
. If r = , we have

n∑
i=

xi –

( n–∑
j=

mj

)– n∑
i=

(

n

n+i–∑
j=i

mj–ixj

)

≥ ks(ns – )(n–
k–

)
ns

( k–∑
j=

mj

)– ∑
≤�<···<�k≤n

k∑
i=

(

k

k+i–∑
j=i

mj–ix�j

)

; ()

. if r =  andm = , we have

n∑
i=

xi –

(

n

n∑
i=

xi

)

≥ ks(ns – )(n–
k–

)
ns

∑
≤�<···<�k≤n

(

k

k∑
j=

x�j

)

; ()

. if r =  andm = s = , then

n∑
i=

xi –

(

n

n∑
i=

xi

)

≥ k(n – )(n–
k–

)
n

∑
≤�<···<�k≤n

(

k

k∑
j=

x�j

)

. ()
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