Some inequalities for (h, m)-convex functions

Bo-Yan Xi ${ }^{1 *}$, Shu-Hong Wang ${ }^{1}$ and Feng Qi ${ }^{1,2}$

Correspondence:
baoyintu78@qq.com;
baoyintu68@sohu.com
${ }^{1}$ College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028043, China
Full list of author information is available at the end of the article

Abstract

In the paper, the authors give some inequalities of Jensen type and Popoviciu type for (h, m)-convex functions and apply these inequalities to special means.
MSC: Primary 26A51; secondary 26D15; 26E60
Keywords: convex function; (h,m)-convex function; Jensen inequality; Popoviciu inequality

1 Introduction

The following definition is well known in the literature.

Definition 1 A function $f: I \subseteq \mathbb{R}=(-\infty, \infty) \rightarrow \mathbb{R}$ is said to be convex if

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) \tag{1}
\end{equation*}
$$

holds for all $x, y \in I$ and $t \in[0,1]$.

We cite the following inequalities for convex functions.

Theorem 1 ([1, p.6]) Iff is a convex function on I and $x_{1}, x_{2}, x_{3} \in I$, then

$$
\begin{align*}
& f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right) \\
& \quad \geq \frac{4}{3}\left[f\left(\frac{x_{1}+x_{2}}{2}\right)+f\left(\frac{x_{2}+x_{3}}{2}\right)+f\left(\frac{x_{3}+x_{1}}{2}\right)\right] . \tag{2}
\end{align*}
$$

Theorem 2 ([2, Popoviciu inequality]) Iff is a convex function on I and $x_{1}, x_{2}, \ldots, x_{n} \in I$ with $n \geq 3$, then

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)+\frac{n}{n-2} f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{2}{n-2} \sum_{i<j} f\left(\frac{x_{i}+x_{j}}{2}\right) \tag{3}
\end{equation*}
$$

Theorem 3 ([2, Generalized Popoviciu inequality]) If f is a convex function on I and $a_{1}, a_{2}, \ldots, a_{n} \in I$ for $n \geq 3$, then

$$
\begin{equation*}
(n-1) \sum_{i=1}^{n} f\left(b_{i}\right) \leq n(n-2) f(a)+\sum_{i=1}^{n} f\left(a_{i}\right) \tag{4}
\end{equation*}
$$

where $a=\frac{1}{n} \sum_{i=1}^{n} a_{i}$ and $b_{i}=\frac{n a-a_{i}}{n-1}$ for $i=1,2, \ldots, n$.

[^0]The above inequalities were generalized as follows.

Theorem 4 ([3]) Iff is a convex function on I and $x_{1}, x_{2}, \ldots, x_{n} \in I$ for $n \geq 3$, then

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{k=1}^{n} x_{k}\right) \geq \frac{n-1}{n} \sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i+1}}{2}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
(n-1) \sum_{i=1}^{n} f\left(b_{i}\right) \leq n\left[\sum_{i=1}^{n} f\left(a_{i}\right)-f(a)\right], \tag{6}
\end{equation*}
$$

where $x_{n+1}=x_{1}, a=\frac{1}{n} \sum_{i=1}^{n} a_{i}$, and $b_{i}=\frac{n a-a_{i}}{n-1}$ for $i=1,2, \ldots, n$.
Definition 2 ([4]) Let $s \in(0,1]$. A function $f: \mathbb{R}_{0}=[0, \infty) \rightarrow \mathbb{R}_{0}$ is said to be s-convex in the second sense if

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda^{s} f(x)+(1-\lambda)^{s} f(y) \tag{7}
\end{equation*}
$$

holds for all $x, y \in I$ and $\lambda \in[0,1]$.

The following inequalities for s-convex functions were established.

Theorem 5 ([5, Theorem 4.2]) Iff is nonnegative and s-convex in the second sense on I and if $x_{1}, x_{2}, \ldots, x_{n} \in I$ for $n \geq 3$, then

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{2^{s-1}\left(n^{s}-1\right)}{n} \sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i+1}}{2}\right) \tag{8}
\end{equation*}
$$

where $x_{1}=x_{n+1}$.

Theorem 6 ([5, Theorem 4.4]) Iff is nonnegative and s-convex in the second sense on I and $a_{1}, a_{2}, \ldots, a_{n} \in I$ for $n \geq 3$, then

$$
\begin{equation*}
\left(n^{s}-1\right) \sum_{i=1}^{n} b_{i} \leq n^{s}\left[\sum_{i=1}^{n} f\left(a_{i}\right)-f(a)\right], \tag{9}
\end{equation*}
$$

where $a=\frac{1}{n} \sum_{i=1}^{n} a_{i}$ and $b_{i}=\frac{n a-a_{i}}{n-1}$ for $i=1,2, \ldots, n$.
The concept of h-convex functions below was innovated as follows.

Definition 3 ([6, Definition 4]) Let $I, J \subseteq \mathbb{R}$ be intervals, $(0,1) \subseteq J$, and $h: J \rightarrow \mathbb{R}_{0}$ be a nonnegative function. A function $f: I \rightarrow \mathbb{R}_{0}$ is called h-convex, or as we say, f belongs to the class $\operatorname{SX}(h, I)$, if f is nonnegative and

$$
\begin{equation*}
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y) \tag{10}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$.

Definition 4 ([6, Section 3]) A function $h: J \subseteq \mathbb{R}$ is said to be a super-multiplicative on an interval J if

$$
\begin{equation*}
h(x y) \geq h(x) h(y) \tag{11}
\end{equation*}
$$

is valid for all $x, y \in J$. If the inequality (11) reverses, then f is said to be a sub-multiplicative function on J.

The following inequalities were established for $f \in \operatorname{SX}(h, I)$.

Theorem 7 ([7, Theorem 6]) Let w_{1}, \ldots, w_{n} for $n \geq 2$ be positive real numbers. If h is a nonnegative and super-multiplicative function and iff $\in \operatorname{SX}(h, I)$ and $x_{1}, \ldots, x_{n} \in I$, then

$$
\begin{equation*}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} h\left(\frac{w_{i}}{W_{n}}\right) f\left(x_{i}\right), \tag{12}
\end{equation*}
$$

where $W_{n}=\sum_{i=1}^{n} w_{i}$. If h is sub-multiplicative and $f \in \operatorname{SV}(h, I)$, then the inequality (12) is reversed.

Theorem 8 ([8, Theorem 11]) Let h be a nonnegative and super-multiplicative function. Iff $\in \operatorname{SX}(h, I)$ and $x_{1}, \ldots, x_{n} \in I$, then

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1-h(1 / n)}{2 h(1 / 2)} \sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i+1}}{2}\right) \tag{13}
\end{equation*}
$$

where $x_{n+1}=x_{1}$. The inequality (13) is reversed iff $\in \operatorname{SV}(h, I)$.

Theorem 9 ([8, Theorem 12]) Let h be a nonnegative and super-multiplicative function. Iff $\in \operatorname{SX}(h, I)$ and $x_{1}, \ldots, x_{n} \in I$, then

$$
\begin{equation*}
\left[1-h\left(\frac{1}{n}\right)\right] \sum_{i=1}^{n} f\left(b_{i}\right) \leq(n-1) h\left(\frac{1}{n-1}\right)\left[\sum_{i=1}^{n} f\left(a_{i}\right)-f(a)\right], \tag{14}
\end{equation*}
$$

where $a=\frac{1}{n} \sum_{i=1}^{n} a_{i}$ and $b_{i}=\frac{n a-a_{i}}{n-1}$ for $i=1,2, \ldots, n$ and $n \geq 3$. The inequality (14) is reversed iff $\in \operatorname{SV}(h, I)$.

Two new kinds of convex functions were introduced as follows.

Definition 5 ([9]) For $f:[0, b] \rightarrow \mathbb{R}$ and $m \in(0,1]$, if

$$
\begin{equation*}
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y) \tag{15}
\end{equation*}
$$

is valid for all $x, y \in[0, b]$ and $t \in[0,1]$, then we say that $f(x)$ is an m-convex function on $[0, b]$.

Definition 6 ([10]) Let $J \subseteq \mathbb{R}$ be an interval, $(0,1) \subseteq J, h: J \rightarrow \mathbb{R}$ be a nonnegative function. We say that $f:[0, b] \rightarrow \mathbb{R}$ is an (h, m)-convex function, or say, f belongs to the class $\operatorname{SMX}((h, m),[0, b])$, if f is nonnegative and, for all $x, y \in[0, b]$ and $t \in[0,1]$ and for some
$m \in(0,1]$, we have

$$
\begin{equation*}
f(t x+m(1-t) y) \leq h(t) f(x)+m h(1-t) f(y) . \tag{16}
\end{equation*}
$$

If the inequality (16) is reversed, then f is said to be (h, m)-concave and denoted by $f \in$ $\operatorname{SMV}((h, m),[0, b])$.

Recently the h - and (h, m)-convex functions were generalized and some properties and inequalities for them were obtained in [11, 12].
The aim of this paper is to find some inequalities of Jensen type and Popoviciu type for (h, m)-convex functions.

2 Inequalities of Jensen type and Popoviciu type

Now we are in a position to establish some inequalities of Jensen type and Popoviciu type for (h, m)-convex functions.

Theorem 10 Let $h:[0,1] \rightarrow \mathbb{R}_{0}$ be a super-multiplicative function and $m \in(0,1]$. Iff \in $\operatorname{SMX}((h, m),[0, b])$, then for all $x_{i} \in[0, b]$ and $w_{i}>0$ with $i=1,2, \ldots, n$ and $n \geq 2$, we have

$$
\begin{equation*}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} m^{i-1} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} m^{i-1} h\left(\frac{w_{i}}{W_{n}}\right) f\left(x_{i}\right), \tag{17}
\end{equation*}
$$

where $W_{n}=\sum_{i=1}^{n} w_{i}$.
If h is sub-multiplicative and $f \in \operatorname{SMV}((h, m),[0, b])$, then the inequality (17) is reversed.
Proof Assume that $w_{i}^{\prime}=\frac{w_{i}}{W_{n}}$ for $i=1,2, \ldots, n$.
When $n=2$, taking $t=w_{1}^{\prime}$ and $1-t=w_{2}^{\prime}$ in Definition 6 gives the inequality (17) clearly.
Suppose that the inequality (17) holds for $n=k$, i.e.,

$$
\begin{equation*}
f\left(\sum_{i=1}^{k} m^{i-1} w_{i}^{\prime} x_{i}\right) \leq \sum_{i=1}^{k} m^{i-1} h\left(w_{i}^{\prime}\right) f\left(x_{i}\right) . \tag{18}
\end{equation*}
$$

When $n=k+1$, letting $\Delta_{k}=\sum_{i=2}^{k+1} w_{i}^{\prime}$ and making use of (18) result in

$$
\begin{aligned}
f\left(\sum_{i=1}^{k+1} m^{i-1} w_{i}^{\prime} x_{i}\right) & =f\left(w_{1}^{\prime} x_{1}+m \Delta_{k} \sum_{i=2}^{k+1} m^{i-2} \frac{w_{i}^{\prime}}{\Delta_{k}} x_{i}\right) \\
& \leq h\left(w_{1}^{\prime}\right) f\left(x_{1}\right)+m h\left(\Delta_{k}\right) f\left(\sum_{i=2}^{k+1} m^{i-2} \frac{w_{i}^{\prime}}{\Delta_{k}} x_{i}\right) \\
& \leq h\left(w_{1}^{\prime}\right) f\left(x_{1}\right)+m h\left(\Delta_{k}\right) \sum_{i=2}^{k+1} m^{i-2} h\left(\frac{w_{i}^{\prime}}{\Delta_{k}}\right) f\left(x_{i}\right) .
\end{aligned}
$$

Since h is a super-multiplicative function, it follows that

$$
h\left(\Delta_{k}\right) h\left(\frac{w_{i}^{\prime}}{\Delta_{k}}\right) \leq h\left(w_{i}^{\prime}\right)
$$

for $i=1,2, \ldots, n$. Namely, when $n=k+1$, the inequality (17) holds. By induction, Theorem 10 is proved.

Corollary 1 Under the conditions of Theorem 10,

1. if $W_{n}=1$, we have

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} m^{i-1} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} m^{i-1} h\left(w_{i}\right) f\left(x_{i}\right) \tag{19}
\end{equation*}
$$

2. if $w_{1}=w_{2}=\cdots=w_{n}$, we have

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} m^{i-1} w_{i} x_{i}\right) \leq h\left(\frac{1}{n}\right) \sum_{i=1}^{n} m^{i-1} f\left(x_{i}\right) ; \tag{20}
\end{equation*}
$$

3. if h is sub-multiplicative and $f \in \operatorname{SMV}((h, m),[0, b])$, then the inequalities (19) and (20) are reversed.

Corollary 2 For $m \in(0,1]$ and $s \in(0,1]$, the assertion $f \in \operatorname{SMX}\left(\left(t^{s}, m\right),[0, b]\right)$ is valid if and only if for all $x_{i} \in[0, b]$ and $w_{i}>0$ with $i=1,2, \ldots, n$ and $n \geq 2$

$$
\begin{equation*}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} m^{i-1} x_{i}\right) \leq \sum_{i=1}^{n} m^{i-1}\left(\frac{w_{i}}{W_{n}}\right)^{s} f\left(x_{i}\right), \tag{21}
\end{equation*}
$$

where $W_{n}=\sum_{i=1}^{n} w_{i}$.
Corollary 3 Under the conditions of Corollary 1, if $h(t)=t^{s}$ for $s \in(0,1]$, then

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} m^{i-1} x_{i}\right) \leq \frac{1}{n^{s}} \sum_{i=1}^{n} m^{i-1} f\left(x_{i}\right) \tag{22}
\end{equation*}
$$

Iff $\in \operatorname{SMV}((h, m),[0, b])$, then the inequality (22) is reversed.
Theorem 11 Let $h:[0,1] \rightarrow \mathbb{R}_{0}$ be a super-multiplicative function, $m \in(0,1]$, and $n \geq 2$. Iff $\in \operatorname{SMX}\left((h, m),\left[0, \frac{b}{m^{n-1}}\right]\right)$, then for all $x_{i} \in[0, b]$ and $w_{i}>0$ with $i=1,2, \ldots, n$,

$$
\begin{equation*}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} m^{i-1} h\left(\frac{w_{i}}{W_{n}}\right) f\left(\frac{x_{i}}{m^{i-1}}\right) \tag{23}
\end{equation*}
$$

where $W_{n}=\sum_{i=1}^{n} w_{i}$.
If h is sub-multiplicative and $f \in \operatorname{SMV}\left((h, m),\left[0, \frac{b}{m^{n-1}}\right]\right)$, then the inequality (23) is reversed.

Proof Putting $y_{i}=\frac{x_{i}}{m^{i-1}}$ for $i=1,2, \ldots, n$, then from inequality (17), we have

$$
\begin{aligned}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) & =f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} m^{i-1} w_{i} y_{i}\right) \\
& \leq \sum_{i=1}^{n} m^{i-1} h\left(\frac{w_{i}}{W_{n}}\right) f\left(y_{i}\right)=\sum_{i=1}^{n} m^{i-1} h\left(\frac{w_{i}}{W_{n}}\right) f\left(\frac{x_{i}}{m^{i-1}}\right)
\end{aligned}
$$

The proof of Theorem 11 is complete.

Corollary 4 For $m \in(0,1], s \in(0,1]$, and $n \geq 2$, the assertion $f \in \operatorname{SMX}\left(\left(t^{s}, m\right),\left[0, \frac{b}{m^{n-1}}\right]\right)$ is valid if and only iffor all $x_{i} \in[0, b]$ and $w_{i}>0$ with $i=1,2, \ldots, n$ the inequality

$$
\begin{equation*}
f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} m^{i-1}\left(\frac{w_{i}}{W_{n}}\right)^{s} f\left(\frac{x_{i}}{m^{i-1}}\right) \tag{24}
\end{equation*}
$$

is valid, where $W_{n}=\sum_{i=1}^{n} w_{i}$.

Corollary 5 Under the conditions of Theorem 11,

1. if $W_{n}=1$, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} w_{i} x_{i}\right) \leq \sum_{i=1}^{n} m^{i-1} h\left(w_{i}\right) f\left(\frac{x_{i}}{m^{i-1}}\right) \tag{25}
\end{equation*}
$$

2. if $w_{1}=w_{2}=\cdots=w_{n}$, then

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leq h\left(\frac{1}{n}\right) \sum_{i=1}^{n} m^{i-1} f\left(\frac{x_{i}}{m^{i-1}}\right) ; \tag{26}
\end{equation*}
$$

3. if h is sub-multiplicative and $f \in \operatorname{SMV}\left((h, m),\left[0, \frac{b}{m^{n-1}}\right]\right)$, then the inequalities (25) and (26) are reversed.

Corollary 6 Under the conditions of Corollary 5,

1. if $h(t)=t^{s}$ for $s \in(0,1]$, then

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leq \frac{1}{n^{s}} \sum_{i=1}^{n} m^{i-1} f\left(\frac{x_{i}}{m^{i-1}}\right) ; \tag{27}
\end{equation*}
$$

2. iff $\in \operatorname{SMV}\left((h, m),\left[0, \frac{b}{m^{n-1}}\right]\right)$, then the inequality (27) is reversed.

Theorem 12 Leth $:[0,1] \rightarrow[0,1]$ be a super-multiplicative function and let $m \in(0,1]$ and $n \geq 3$. Iff $\in \operatorname{SMX}((h, m),[0, b])$, then for all $x_{i} \in[0, b]$ with $i=1,2, \ldots, n$ and $2 \leq k \leq n$, we have

$$
\begin{align*}
& \sum_{i=1}^{n} f\left(x_{i}\right)-\left(\sum_{j=0}^{n-1} m^{j}\right)^{-1} \sum_{i=1}^{n} f\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right) \\
& \quad \geq \frac{1-h(1 / n)}{h(1 / k)}\left(\sum_{j=0}^{k-1} m^{j}\right)^{-1} \sum_{i=1}^{n} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{j}\right) \tag{28}
\end{align*}
$$

where $x_{n+1}=x_{1}, \ldots, x_{2 n-1}=x_{n-1}$.
If h is sub-multiplicative and $f \in \operatorname{SMV}((h, m),[0, b])$, then the inequality (28) is reversed.

Proof By using the inequality (20), we have

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{j}\right) \leq h\left(\frac{1}{k}\right) \sum_{i=1}^{n} \sum_{j=i}^{k+i-1} m^{j-i} f\left(x_{j}\right)=h\left(\frac{1}{k}\right)\left(\sum_{j=0}^{k-1} m^{j}\right) \sum_{i=1}^{n} f\left(x_{i}\right) \tag{29}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{i=1}^{n} f\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right) & \leq h\left(\frac{1}{n}\right) \sum_{i=1}^{n} \sum_{j=i}^{n+i-1} m^{j-i} f\left(x_{j}\right) \\
& =h\left(\frac{1}{n}\right)\left(\sum_{j=0}^{n-1} m^{j}\right) \sum_{i=1}^{n} f\left(x_{i}\right) \tag{30}
\end{align*}
$$

If $h\left(\frac{1}{n}\right)=1$, then, from the inequality (30), the inequality (28) holds. If $h\left(\frac{1}{n}\right) \leq 1$, it is easy to see that

$$
\begin{aligned}
& \sum_{i=1}^{n} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{j}\right) \\
& \quad \leq h\left(\frac{1}{k}\right)\left(\sum_{j=0}^{k-1} m^{j}\right) \sum_{i=1}^{n} f\left(x_{i}\right) \\
& \quad=\frac{h(1 / k)}{1-h(1 / n)}\left(\sum_{j=0}^{k-1} m^{j}\right)\left[\sum_{i=1}^{n} f\left(x_{i}\right)-h\left(\frac{1}{n}\right) \sum_{i=1}^{n} f\left(x_{i}\right)\right] \\
& \quad \leq \frac{h(1 / k)}{1-h(1 / n)}\left(\sum_{j=0}^{k-1} m^{j}\right)\left[\sum_{i=1}^{n} f\left(x_{i}\right)-\left(\sum_{j=0}^{n-1} m^{j}\right)^{-1} \sum_{i=1}^{n} f\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right)\right]
\end{aligned}
$$

The proof of Theorem 12 is complete.

Corollary 7 Under the conditions of Theorem 12, let $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

1. When $m=1$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1-h(1 / n)}{k h(1 / k)} \sum_{i=1}^{n} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} x_{j}\right) \tag{31}
\end{equation*}
$$

2. When $m=1$ and $k=2$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1-h(1 / n)}{2 h(1 / 2)} \sum_{i=1}^{n} f\left(\frac{x_{i}+x_{i+1}}{2}\right) \tag{32}
\end{equation*}
$$

3. When $m=1$ and $k=n-1$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1-h(1 / n)}{(n-1) h(1 /(n-1))} \sum_{i=1}^{n} f\left(\frac{n \bar{x}_{n}-x_{i}}{n-1}\right) \tag{33}
\end{equation*}
$$

4. If h is sub-multiplicative and $f \in \operatorname{SMV}((h, m),[0, b])$, then the inequalities (31) to (33) are reversed.

Remark 1 The inequality (14) can be deduced from applying (33) to $a_{i}=x_{i}$ for $i=$ $1,2, \ldots, n, a=\frac{1}{n} \sum_{i=1}^{n} a_{i}$, and $b_{i}=\frac{n a-a_{i}}{n-1}$ for $i=1,2, \ldots, n$.

Corollary 8 Under the conditions of Theorem 12,

1. if $h(t)=t^{s}$ for $s \in(0,1]$, then

$$
\begin{align*}
& \sum_{i=1}^{n} f\left(x_{i}\right)-\left(\sum_{j=0}^{n-1} m^{j}\right)^{-1} \sum_{i=1}^{n} f\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right) \\
& \quad \geq \frac{k^{s}\left(n^{s}-1\right)}{n^{s}}\left(\sum_{j=0}^{k-1} m^{j}\right)^{-1} \sum_{i=1}^{n} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{j}\right) ; \tag{34}
\end{align*}
$$

2. if $h(t)=t^{s}$ for $s \in(0,1]$ and $m=1$, then

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{k^{s-1}\left(n^{s}-1\right)}{n^{s}} \sum_{i=1}^{n} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} x_{j}\right) \tag{35}
\end{equation*}
$$

3. if $h(t)=t$ and $m=1$, then

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{n-1}{n} \sum_{i=1}^{n} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} x_{j}\right) \tag{36}
\end{equation*}
$$

4. iff $\in \operatorname{SMV}((h, m),[0, b])$, then the inequalities (34) to (36) are reversed.

Theorem 13 Let $h:[0,1] \rightarrow[0,1]$ be a super-multiplicative function and let $m \in(0,1]$ and $n \geq 3$. Iff $\in \operatorname{SMX}\left((h, m),\left[0, \frac{b}{m^{n-1}}\right]\right)$, then for all $x_{i} \in[0, b]$ with $i=1,2, \ldots, n$ and $2 \leq k \leq n$ and for $\ell_{1}, \ldots, \ell_{k} \in \mathbb{N}$, we have

$$
\begin{align*}
& \sum_{i=1}^{n} f\left(x_{i}\right)-\left(\sum_{j=0}^{n-1} m^{j}\right)^{-1} \sum_{i=1}^{n} f\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right) \\
& \quad \geq \frac{1-h(1 / n)}{\binom{n-1}{k-1} h(1 / k)}\left(\sum_{j=0}^{k-1} m^{j}\right)^{-1} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} \sum_{i=1}^{k} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{\ell_{j}}\right) \tag{37}
\end{align*}
$$

where $\ell_{k+1}=\ell_{1}, \ldots, \ell_{2 k-1}=\ell_{k-1}$.
Ifh is sub-multiplicative and $f \in \operatorname{SMV}((h, m),[0, b])$, then the inequality (37) is reversed.

Proof By the inequality (20), we have

$$
\begin{align*}
& \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} \sum_{i=1}^{k} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{\ell_{j}}\right) \\
& \leq h\left(\frac{1}{k}\right) \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} \sum_{i=1}^{k} \sum_{j=i}^{k+i-1} m^{j-i} f\left(x_{\ell_{j}}\right) \\
& =h\left(\frac{1}{k}\right)\left(\sum_{j=0}^{k-1} m^{j}\right) \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} \sum_{i=1}^{k} f\left(x_{\ell_{j}}\right) \\
& =\binom{n-1}{k-1} h\left(\frac{1}{k}\right)\left(\sum_{j=0}^{k-1} m^{j}\right) \sum_{i=1}^{n} f\left(x_{i}\right) . \tag{38}
\end{align*}
$$

If $h\left(\frac{1}{n}\right)=1$, then, from the inequality (30), the inequality (28) holds. If $h\left(\frac{1}{n}\right) \leq 1$, using (38) and (30), we have

$$
\begin{aligned}
& \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} \sum_{i=1}^{k} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{\ell_{j}}\right) \\
& \leq\binom{ n-1}{k-1} h\left(\frac{1}{k}\right)\left(\sum_{j=0}^{k-1} m^{j}\right) \sum_{i=1}^{n} f\left(x_{i}\right) \\
& =\frac{\binom{n-1}{k-1} h(1 / k)}{1-h(1 / n)}\left(\sum_{j=0}^{k-1} m^{j}\right)\left[\sum_{i=1}^{n} f\left(x_{i}\right)-h\left(\frac{1}{n}\right) \sum_{i=1}^{n} f\left(x_{i}\right)\right] \\
& \leq \frac{\binom{n-1}{k-1} h(1 / k)}{1-h(1 / n)}\left(\sum_{j=0}^{k-1} m^{j}\right)\left[\sum_{i=1}^{n} f\left(x_{i}\right)-\left(\sum_{j=0}^{n-1} m^{j}\right)^{-1} \sum_{i=1}^{n} f\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right)\right]
\end{aligned}
$$

The proof of Theorem 13 is complete.

Corollary 9 Under the conditions of Theorem 13, let $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

1. When $m=1$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1-h(1 / n)}{\binom{n-1}{k-1} h(1 / k)} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} f\left(\frac{1}{k} \sum_{j=1}^{k} x_{\ell_{j}}\right) \tag{39}
\end{equation*}
$$

2. When $m=1$ and $k=2$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1-h(1 / n)}{(n-1) h(1 / 2)} \sum_{1 \leq i<j \leq n} f\left(\frac{x_{i}+x_{j}}{2}\right) \tag{40}
\end{equation*}
$$

3. When $m=1$ and $k=n-1$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{1-h(1 / n)}{(n-1) h(1 /(n-1))} \sum_{i=1}^{n}\left(\frac{n \bar{x}_{n}-x_{i}}{n-1}\right) . \tag{41}
\end{equation*}
$$

4. If h is sub-multiplicative and $f \in \operatorname{SMV}((h, m),[0, b])$, then the inequalities (39) to (41) are reversed.

Corollary 10 Under the conditions of Theorem 13,

1. if $h(t)=t^{s}$ for $s \in(0,1]$, then

$$
\begin{align*}
& \sum_{i=1}^{n} f\left(x_{i}\right)-\left(\sum_{j=0}^{n-1} m^{j}\right)^{-1} \sum_{i=1}^{n} f\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right) \\
& \quad \geq \frac{k^{s}\left(n^{s}-1\right)}{\binom{n-1}{k-1} n^{s}}\left(\sum_{j=0}^{k-1} m^{j}\right)^{-1} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} \sum_{i=1}^{k} f\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{\ell_{j}}\right) ; \tag{42}
\end{align*}
$$

2. if $m=1$ and $h(t)=t^{s}$ for $s \in(0,1]$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{k^{s}\left(n^{s}-1\right)}{\binom{n-1}{k-1} n^{s}} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} f\left(\frac{1}{k} \sum_{j=1}^{k} x_{\ell_{j}}\right) ; \tag{43}
\end{equation*}
$$

3. if $m=1$ and $h(t)=t$, then

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)-f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \geq \frac{k(n-1)}{\binom{n-1}{k-1} n} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} f\left(\frac{1}{k} \sum_{j=1}^{k} x_{\ell_{j}}\right) \tag{44}
\end{equation*}
$$

4. iff $\in \operatorname{SMV}((h, m),[0, b])$, then the inequalities (42) to (44) are reversed.

3 Applications to means

In what follows we will apply the theorems and corollaries in the above section to establish inequalities for some special means.
For $r \in \mathbb{R}, r \neq 0$, and $m, s \in(0,1]$, let $f(x)=x^{r}$ for $x \in \mathbb{R}_{+}$and $h(t)=t^{s}$ for $t \in[0,1]$. Then

1. if $r \geq 1$ and $0<m \leq 1$, or if $r<0$ and $m=1$, we have

$$
(t x+m(1-t) y)^{r} \leq t x^{r}+(1-t)(m y)^{r} \leq t^{s} x^{r}+m(1-t)^{s} y^{r}
$$

for $x, y \in \mathbb{R}_{+}$;
2. if $0<r \leq 1,0<m \leq 1$, and $s=1$, we have

$$
(t x+m(1-t) y)^{r} \geq t x^{r}+(1-t)(m y)^{r} \geq t x^{r}+m(1-t) y^{r}
$$

for $x, y \in \mathbb{R}_{+}$.
Using Definition 6 yields the following:

1. if $r \geq 1$ and $0<m \leq 1$, or if $r<0$ and $m=1$, the function

$$
f(x)=x^{r} \in \operatorname{SMX}\left(\left(t^{s}, m\right), \mathbb{R}_{+}\right) ;
$$

2. if $0<r \leq 1,0<m \leq 1$, and $s=1$, the function $f(x)=x^{r} \in \operatorname{SMV}\left((t, m), \mathbb{R}_{+}\right)$.

By virtue of Corollary 10, we obtain the following results.

Theorem 14 Let $n \geq 3$ and $x_{i} \in \mathbb{R}_{+}$for $i=1,2, \ldots, n$, let $r \in \mathbb{R}$ with $r \neq 0$ and $m, s \in(0,1]$, and let $\ell_{1}, \ldots, \ell_{k} \in \mathbb{N}$ for $2 \leq k \leq n$ and $\ell_{k+1}=\ell_{1}, \ldots, \ell_{2 k-1}=\ell_{k-1}$.

1. If $r \geq 1$ and $0<m \leq 1$, or if $r<0$ and $m=1$, then we have

$$
\begin{align*}
& \sum_{i=1}^{n} x_{i}^{r}-\left(\sum_{j=0}^{n-1} m^{j}\right)^{-1} \sum_{i=1}^{n}\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right)^{r} \\
& \quad \geq \frac{k^{s}\left(n^{s}-1\right)}{\binom{n-1}{k-1} n^{s}}\left(\sum_{j=0}^{k-1} m^{j}\right)^{-1} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} \sum_{i=1}^{k}\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{\ell_{j}}\right)^{r} ; \tag{45}
\end{align*}
$$

2. if $r \geq 1$ or $r<0$ and if $m=1$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{r}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{r} \geq \frac{k^{s}\left(n^{s}-1\right)}{\binom{n-1}{k-1} n^{s}} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n}\left(\frac{1}{k} \sum_{j=1}^{k} x_{\ell_{j}}\right)^{r} ; \tag{46}
\end{equation*}
$$

3. if $r \geq 1$ or $r<0$ and if $m=s=1$, then

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{r}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{r} \geq \frac{k(n-1)}{\binom{n-1}{k-1} n} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n}\left(\frac{1}{k} \sum_{j=1}^{k} x_{\ell_{j}}\right)^{r} ; \tag{47}
\end{equation*}
$$

4. if $0<r \leq 1,0<m \leq 1$, and $s=1$, then the inequality (47) are reversed.

Corollary 11 Under the conditions of Theorem 14 , when $\ell_{k+1}=\ell_{1}, \ldots, \ell_{2 k-1}=\ell_{k-1}$, we have the following conclusions.

1. If $r=2$, we have

$$
\begin{align*}
& \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{j=0}^{n-1} m^{j}\right)^{-1} \sum_{i=1}^{n}\left(\frac{1}{n} \sum_{j=i}^{n+i-1} m^{j-i} x_{j}\right)^{2} \\
& \quad \geq \frac{k^{s}\left(n^{s}-1\right)}{\binom{n-1}{k-1} n^{s}}\left(\sum_{j=0}^{k-1} m^{j}\right)^{-1} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n} \sum_{i=1}^{k}\left(\frac{1}{k} \sum_{j=i}^{k+i-1} m^{j-i} x_{\ell_{j}}\right)^{2} ; \tag{48}
\end{align*}
$$

2. if $r=2$ and $m=1$, we have

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2} \geq \frac{k^{s}\left(n^{s}-1\right)}{\binom{n-1}{k-1} n^{s}} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n}\left(\frac{1}{k} \sum_{j=1}^{k} x_{\ell_{j}}\right)^{2} ; \tag{49}
\end{equation*}
$$

3. if $r=2$ and $m=s=1$, then

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2} \geq \frac{k(n-1)}{\binom{n-1}{k-1} n} \sum_{1 \leq \ell_{1}<\cdots<\ell_{k} \leq n}\left(\frac{1}{k} \sum_{j=1}^{k} x_{\ell_{j}}\right)^{2} . \tag{50}
\end{equation*}
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Author details

${ }^{1}$ College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028043 , China. ${ }^{2}$ Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin, 300387, China.

Acknowledgements

The authors appreciate anonymous referees for their valuable comments on and careful corrections to the original version of this paper. This work was partially supported by the NNSF under Grant No. 11361038 of China and by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No. NJZY13159, China.

Received: 11 October 2013 Accepted: 18 February 2014 Published: 04 Mar 2014

References

1. Kedlaya, KS: $a<b$ (a is less than b). Based on notes for the Math Olympiad Program (MOP) Version 1.0 Last revised August 2, 1999
2. Popoviciu, T: Sur certaines inégalités qui caractérisent les fonctions convexes. An. Ştiinţ. Univ. 'Al. I. Cuza' laşi, Mat. 11B, 155-164 (1965)
3. Bougoffa, L: New inequalities about convex functions. J. Inequal. Pure Appl. Math. 7(4), Article ID 148 (2006). Available at http://www.emis.de/journals/JIPAM/article766.html
4. Hudzik, H, Maligranda, L: Some remarks on s-convex functions. Aequ. Math. 48(1), 100-111 (1994). doi:10.1007/BF01837981
5. Pinheiro, IMR: Lazhar's inequalities and the S-convex phenomenon. N.Z. J. Math. 38, 57-62 (2008)
6. Varošanec, S: On h-convexity. J. Math. Anal. Appl. 326(1), 303-311 (2007). doi:10.1016/j.jmaa.2006.02.086
7. Sarikaya, MZ, Saglam, A, Yildirim, H: On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2(3), 335-341 (2008). doi:10.7153/jmi-02-30
8. Latif, MA: On some inequalities for h-convex functions. Int. J. Math. Anal. 4(30), 1473-1482 (2010)
9. Toader, G: Some generalizations of the convexity. In: Proceedings of the Colloquium on Approximation and Optimization (Cluj-Napoca, 1985), pp. 329-338. Cluj University Press, Cluj-Napoca (1985)
10. Ozdemir, ME, Akdemir, AO, Set, E: On (h-m)-convexity and Hadamard-type inequalities. Available at arXiv:1103.6163
11. Xi, B-Y, Qi, F: Some inequalities of Hermite-Hadamard type for h-convex functions. Adv. Inequal. Appl. 2(1), 1-15 (2013)
12. Xi, B-Y, Wang, S-H, Qi, F: Properties and inequalities for the h - and (h, m)-logarithmically convex functions. Creative Math. Inform. (2014, in press)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

[^0]: o2014 Xi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: 10.1186/1029-242X-2014-100

 Cite this article as: Xi et al.: Some inequalities for (h, m)-convex functions. Journal of Inequalities and Applications 2014, 2014:100

