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Abstract
In this paper, we discuss three modified Halpern iterations as follows:

xn+1 = αnu + (1 – αn)((1 – δ)xn + δTxn), (I)

xn+1 = αn((1 – δ)u + δxn) + (1 – αn)Txn, (II)

xn+1 = αnu + βnxn + γnTxn, n ≥ 0, (III)

and obtained the strong convergence results of the iterations (I)-(III) for a k-strictly
pseudocontractive mapping, where {αn} satisfies the conditions: (C1) limn→∞ αn = 0
and (C2)

∑∞
n=1 αn = +∞, respectively. The results presented in this work improve the

corresponding ones announced by many other authors.

1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖ and let C be
a nonempty closed convex subset of H .
Recall that a mapping T with domain D(T) and range R(T) in the Hilbert space H is

called strongly pseudo-contractive if, for all x, y ∈D(T), there exists k ∈ (, ) such that

〈Tx – Ty,x – y〉 ≤ k‖x – y‖, (.)

while T is said to be pseudo-contractive if (.) holds for k = . A mapping T is said to be
Lipschitzian if, for all x, y ∈ D(T), there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖. (.)

A mapping T is called nonexpansive if (.) holds for L =  and, further, T is said to be
contractive if L < . T is said to be firmly nonexpansive if for all x, y ∈D(T),

‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉.

Firmly nonexpansive mappings could be looked upon as an important subclass of nonex-
pansivemappings. AmappingT is called k-strictly pseudocontractive, if for all x, y ∈D(T),
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there exists λ >  such that

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ – λ
∥∥x – y – (Tx – Ty)

∥∥. (.)

Without loss of generality, we may assume that λ ∈ (, ). In Hilbert spaces H , (.) is
equivalent to the inequality

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, k = ( – λ) < ,

and we can assume also that k ≥  so that k ∈ [, ).
It is obvious that a k-strictly pseudocontractive mapping is Lipschitzian with L = k+

k .
The class of nonexpansive mappings is a subclass of strictly pseudocontractive mappings
in a Hilbert space, but the converse implication may be false. We remark that the class of
strongly pseudo-contractive mappings is independent from the class of k-strict pseudo-
contractions.
In , Halpern [] was the first who introduced the following iteration scheme for a

nonexpansivemapping T which was referred to as Halpern iteration: For any initialization
x ∈ C and any anchor u ∈ C, αn ∈ [, ],

xn+ = αnu + ( – αn)Txn, ∀n≥ . (.)

He proved that the sequence (.) converges weakly to a fixed point of T , where αn = n–a,
a ∈ (, ). In , Lions [] further proved that the sequence (.) converges strongly to a
fixed point of T in a Hilbert space, where {αn} satisfies the following conditions:

(C) lim
n→∞αn = ;

(C)
∞∑
n=

αn = +∞;

(C) lim
n→∞

|αn+ – αn|
α
n+

= .

But, in [, ], the real sequence {αn} excluded the canonical choice αn = 
n+ . In ,

Wittmann [] proved, still in Hilbert spaces, the strong convergence of the sequence (.)
to a fixed point of T , where {αn} satisfies the following conditions:

(C) lim
n→∞αn = ;

(C)
∞∑
n=

αn = +∞;

(C)
∞∑
n=

|αn+ – αn| < +∞.

The strong convergence of Halpern’s iteration to a fixed point of T has also been proved
in Banach spaces; see, e.g., [–]. Reich [, ] has showed the strong convergence of the
sequence (.), where {αn} satisfies the conditions (C), (C) and (C), {αn} is decreas-
ing (noting that the condition (C) is a special case of condition(C)). In , Shioji and
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Takahashi [] extended Wittmann’s result to Banach spaces. In , Xu [] obtained a
strong convergence theorem, where {αn} satisfies the following conditions: (C), (C) and
(C) limn→∞ |αn+–αn|

αn+
= . In particular, the canonical choice of αn = 

n+ satisfies the con-
ditions (C), (C) and (C).
However, is a real sequence {αn} satisfying the conditions (C) and (C) sufficient to

guarantee the strong convergence of Halpern’s iteration (.) for nonexpansive mappings?
It remains an open question, see [].
Some mathematicians considered the open question. In [], Song proved that for a

firmly nonexpansive mapping T , an important subclass of nonexpansive mappings, the
answer of the Halpern open problem is affirmative. A partial answer to this question was
given independently by Chidume and Chidume [] and Suzuki []. They defined the se-
quence {xn} by

xn+ = αnu + ( – αn)
(
( – δ)xn + δTxn

)
, (.)

where δ ∈ [, ], I is the identity, and obtained the strong convergence of the iteration (.),
where {αn} satisfies the conditions (C) and (C). Recently, Xu [] gave another partial
answer to this question. He obtained the strong convergence of the iterative sequence

xn+ = αn
(
( – δ)u + δxn

)
+ ( – αn)Txn, (.)

where δ ∈ [, ] and {αn} satisfies the conditions (C) and (C).
In [], Liang-Gen Hu introduced the modified Halpern’s iteration: For any u,x ∈ C,

the sequence {xn} is defined by

xn+ = αnu + βnxn + γnTxn, n ≥ , (.)

where {αn}, {βn}, {γn} are three real sequences in [, ], satisfying αn + βn + γn = . He
showed that the sequence {αn} satisfying the conditions (C) and (C) is sufficient to guar-
antee the strong convergence of the modified Halpern’s iterative sequence (.) for non-
expansive mappings.
The purpose of this paper is to present a significant answer to the above open question.

We will show that the sequence {αn} satisfying the conditions (C) and (C) is sufficient to
guarantee the strong convergence of the modified Halpern’s iterative sequences (.)-(.)
for k-strictly pseudocontractive mappings, respectively. The results present in this paper
improve and develop the corresponding results of [, , , ].

2 Preliminaries
In what follows we will need the following:

Lemma . [] Let H be a real Hilbert space, then the following well-known results hold:
(i) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ for all x, y ∈H and for all

t ∈ [, ].
(ii) ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .

Let C be a nonempty closed convex subset of a real Hilbert space H . The nearest point
projection PC :H → C defined fromH onto C is the function which assigns to each x ∈ H
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Li et al. Journal of Inequalities and Applications 2013, 2013:98 Page 4 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/98

its nearest point denoted by PCx in C. Thus PCx is the unique point in C such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

It is known that for each x ∈H ,

〈x – PCx, y – PCx〉 ≤ , ∀y ∈ C. (.)

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , T :
C → C be a k-strictly pseudocontractive mapping. Then (I – T) is demiclosed at zero.

Lemma . [] Let {an} be a sequence of nonnegative real numbers such that an+ ≤ ( –
δn)an + δnξn, ∀n≥ , where {δn} is a sequence in [, ] and {ξn} is a sequence in R satisfying
the following conditions:

(i)
∑∞

n= δn = +∞;
(ii) lim supn→∞ ξn ≤  or

∑∞
n= δn|ξn| < +∞.

Then limn→∞ an = .

3 Main results
In this section, proving the following theorems, we show that the conjunction of (C) and
(C) is a sufficient condition on our iteration (I)-(III), respectively.

Theorem . Let C be a closed and convex subset of a real Hilbert space H , T : C → C be
a k-strictly pseudocontractive mapping such that F(T) �= ∅. For an arbitrary initial value
x ∈ C and fixed anchor u ∈ C, define iteratively a sequence {xn} as follows:

xn+ = αnu + βnxn + γnTxn, (I)

where {αn}, {βn}, {γn} are three real sequences in (, ), satisfying αn+βn+γn =  and  < k <
βn

βn+γn
. Suppose that {αn} satisfies the conditions: (C) limn→∞ αn = ; (C)

∑∞
n= αn = +∞.

Then as n → ∞, {xn} converges strongly to some fixed point x* of T and x* = PF(T)u, where
PF(T) is the metric projection from H onto F(T).

Proof Firstly, we show that {xn} is bounded. Rewrite the iterative process (I) as follows:

xn+ = αnu + βnxn + γnTxn

= αnu + ( – αn)
βnxn + γnTxn

 – αn

= αnu + ( – αn)yn, (.)

where yn = βnxn+γnTxn
–αn

. Take any p ∈ F(T), then, from Lemma . and (.), we estimate as
follows:

‖xn+ – p‖

= αn‖u – p‖ + ( – αn)‖yn – p‖ – αn( – αn)‖u – yn‖

= αn‖u – p‖ + ( – αn)
βn

 – αn
‖xn – p‖ + ( – αn)

γn

 – αn
‖Txn – p‖

http://www.journalofinequalitiesandapplications.com/content/2013/1/98
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– ( – αn)
βn

 – αn

γn

 – αn
‖xn – Txn‖ – αn( – αn)‖u – yn‖

= αn‖u – p‖ + βn‖xn – p‖ + γn‖Txn – p‖ – αn( – αn)‖u – yn‖

–
βnγn

 – αn
‖xn – Txn‖

≤ αn‖u – p‖ + βn‖xn – p‖ + γn
(‖xn – p‖ + k‖xn – Txn‖

)

–
βnγn

 – αn
‖xn – Txn‖ – αn( – αn)‖u – yn‖

= αn‖u – p‖ + ( – αn)‖xn – p‖ –
(

βn

 – αn
– k

)
γn‖xn – Txn‖

– αn( – αn)‖u – yn‖

≤ αn‖u – p‖ + ( – αn)‖xn – p‖

≤ max
{‖u – p‖,‖xn – p‖}. (.)

By induction,

‖xn+ – p‖ ≤ max
{‖u – p‖,‖x – p‖}.

This proves the boundedness of the sequence {xn}, which leads to the boundedness of
{Txn}.
Next, we claim that

lim
n→∞‖xn – Txn‖ = .

In fact, we have from (.) (for some appropriate constantM > ) that

‖xn+ – p‖ ≤ αn‖u – p‖ + ( – αn)‖xn – p‖ –
(

βn

 – αn
– k

)
γn‖xn – Txn‖

= αn
(‖u – p‖ – ‖xn – p‖) + ‖xn – p‖ –

(
βn

 – αn
– k

)
γn‖xn – Txn‖

≤ αnM + ‖xn – p‖ –
(

βn

 – αn
– k

)
γn‖xn – Txn‖,

which implies that

(
βn

 – αn
– k

)
γn‖xn – Txn‖ – αnM ≤ ‖xn – p‖ – ‖xn+ – p‖. (.)

If ( βn
–αn

– k)γn‖xn – Txn‖ – αnM ≤ , then

(
βn

 – αn
– k

)
γn‖xn – Txn‖ ≤ αnM,

‖xn – Txn‖ ≤ αn

( βn
–αn

– k)γn
M,

and hence the desired result is obtained by the condition (C) and  < k < βn
–αn

.
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If ( βn
–αn

– k)γn‖xn – Txn‖ – αnM > , then following (.), we have

m∑
n=

[(
βn

 – αn
– k

)
γn‖xn – Txn‖ – αnM

]
≤ ‖x – p‖ – ‖xm – p‖ ≤ ‖x – p‖.

Then

∞∑
n=

[(
βn

 – αn
– k

)
γn‖xn – Txn‖ – αnM

]
< +∞.

Thus

lim
n→∞

[(
βn

 – αn
– k

)
γn‖xn – Txn‖ – αnM

]
= ,

and hence

lim
n→∞‖xn – Txn‖ = . (.)

In order to prove xn → x* = PF(T)u, we next show that

lim sup
n→∞

〈PF(T)u – u,PF(T)u – xn+〉 ≤ .

Indeed, we can take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈PF(T)u – u,PF(T)u – xn+〉 = lim
k→∞

〈PF(T)u – u,PF(T)u – xnk+〉.

Wemay assume that xnk ⇀ z sinceH is reflexive and {xn} is bounded. From (.), it follows
from Lemma . that z ∈ F(T).
From (.), we conclude

lim sup
n→∞

〈PF(T)u – u,PF(T)u – xn+〉 = lim
k→∞

〈PF(T)u – u,PF(T)u – xnk+〉

= 〈PF(T)u – u,PF(T)u – z〉 ≤ . (.)

Finally, we show that xn → PF(T)u. As amatter of fact, fromLemma . and (.), we obtain

‖xn+ – PF(T)u‖

≤ ( – αn)‖yn – PF(T)u‖ + αn〈u – PF(T)u,xn+ – PF(T)u〉

= ( – αn)
[

βn

 – αn
‖xn – PF(T)u‖ + γn

 – αn
‖Txn – PF(T)u‖ – βnγn

( – αn)
‖xn – Txn‖

]

+ αn〈u – PF(T)u,xn+ – PF(T)u〉

≤ ( – αn)
[

βn

 – αn
‖xn – PF(T)u‖ + γn

 – αn
‖xn – PF(T)u‖ + γnk

 – αn
‖xn – Txn‖

–
βnγn

 – αn
‖xn – Txn‖

]
+ αn〈u – PF(T)u,xn+ – PF(T)u〉

http://www.journalofinequalitiesandapplications.com/content/2013/1/98
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= ( – αn)‖xn – PF(T)u‖ – γn(βn – k)‖xn – Txn‖ + αn〈u – PF(T)u,xn+ – PF(T)u〉
≤ ( – αn)‖xn – PF(T)u‖ + αn〈u – PF(T)u,xn+ – PF(T)u〉.

It follows from the conditions (C), (C) and (.), using Lemma ., that

lim
n→∞‖xn – PF(T)u‖ = .

This completes the proof of Theorem .. �

Theorem . Let C be a closed and convex subset of a real Hilbert space H , T : C → C be
a k-strictly pseudocontractive mapping such that F(T) �= ∅. For an arbitrary initial value
x ∈ C and fixed anchor u ∈ C, define iteratively a sequence {xn} as follows:

xn+ = αn
(
( – δ)u + δxn

)
+ ( – αn)Txn, (II)

where {αn} ⊂ (, ),  < k < αnδ. Suppose that {αn} satisfies the conditions: (C) limn→∞ αn =
; (C)

∑∞
n= αn = ∞. Then as n → ∞, {xn} converges strongly to some fixed point x* of T

and x* = PF(T)u, where PF(T) is the metric projection from H onto F(T).

Proof Firstly, we show that {xn} is bounded. Rewrite the iterative process (II) as follows:

yn = ( – δ)u + δxn,

xn+ = αnyn + ( – αn)Txn.
(.)

Take any p ∈ F(T), then, from Lemma . and (.), we estimate as follows:

‖xn+ – p‖

= αn‖yn – p‖ + ( – αn)‖Txn – p‖ – αn( – αn)‖yn – Txn‖

= αn( – δ)‖u – p‖ + αnδ‖xn – p‖ – αn( – δ)δ‖u – xn‖

+ ( – αn)‖Txn – p‖ – αn( – αn)( – δ)‖u – Txn‖

– αn( – αn)δ‖xn – Txn‖ + αn( – αn)δ( – δ)‖u – xn‖

≤ αn( – δ)‖u – p‖ + αnδ‖xn – p‖ – αn( – δ)δ‖xn – u‖ + ( – αn)‖xn – p‖

+ ( – αn)k‖xn – Txn‖ – αn( – αn)( – δ)‖Txn – u‖

– αn( – αn)δ‖xn – Txn‖ + αn( – αn)δ( – δ)‖xn – u‖

≤ [
 – αn( – δ)

]‖xn – p‖ + αn( – δ)‖u – p‖ – ( – αn)(αnδ – k)‖xn – Txn‖

≤ [
 – αn( – δ)

]‖xn – p‖ + αn( – δ)‖u – p‖

≤ max
{‖u – p‖,‖xn – p‖}.

By induction,

‖xn+ – p‖ ≤ max
{‖u – p‖,‖x – p‖}.

http://www.journalofinequalitiesandapplications.com/content/2013/1/98
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This proves the boundedness of the sequence {xn}, which implies that the sequence {Txn}
is bounded also.
Using the same technique as in Theorem ., we can prove

lim
n→∞‖xn – Txn‖ = 

and

lim sup
n→∞

〈PF(T)u – u,PF(T)u – xn+〉 ≤ .

Finally, we show that xn → PF(T)u. Writing zn = αnδxn+(–αn)Txn
–(–δ)αn , then

xn+ = ( – δ)αnu +
[
 – ( – δ)αn

]
zn,

from Lemma . and (.), we obtain

‖xn+ – PF(T)u‖

≤ [
 – ( – δ)αn

]‖zn – PF(T)u‖ + ( – δ)αn〈u – PF(T)u,xn+ – PF(T)u〉

=
[
 – ( – δ)αn

][ αnδ

 – ( – δ)αn
‖xn – PF(T)u‖ +  – αn

 – ( – δ)αn
‖Txn – PF(T)u‖

–
αn( – αn)δ

[ – ( – δ)αn]
‖xn – Txn‖

]
+ ( – δ)αn〈u – PF(T)u,xn+ – PF(T)u〉

≤ [
 – ( – δ)αn

][ αnδ

 – ( – δ)αn
‖xn – PF(T)u‖ +  – αn

 – ( – δ)αn
‖xn – PF(T)u‖

+
 – αn

 – ( – δ)αn
k‖xn – Txn‖ – αn( – αn)δ

 – ( – δ)αn
‖xn – Txn‖

]

+ ( – δ)αn〈u – PF(T)u,xn+ – PF(T)u〉

=
[
 – ( – δ)αn

]‖xn – PF(T)u‖ – ( – αn)(αnδ – k)
 – ( – δ)αn

‖xn – Txn‖

+ ( – δ)αn〈u – PF(T)u,xn+ – PF(T)u〉
≤ [

 – ( – δ)αn
]‖xn – PF(T)u‖ + ( – δ)αn〈u – PF(T)u,xn+ – PF(T)u〉.

It follows from the conditions (C), (C) and (.), using Lemma ., that

lim
n→∞‖xn – PF(T)u‖ = .

This completes the proof of Theorem .. �

Theorem . Let C be a closed and convex subset of a real Hilbert space H , T : C → C be
a k-strictly pseudocontractive mapping such that F(T) �= ∅. For an arbitrary initial value
x ∈ C and fixed anchor u ∈ C, define iteratively a sequence {xn} as follows:

xn+ = αnu + ( – αn)Tβxn, (III)

http://www.journalofinequalitiesandapplications.com/content/2013/1/98
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where Tβ = βI + (–β)T , {αn} ⊂ [, ], β ∈ (k, ). Suppose that {αn} satisfies the conditions:
(C) limn→∞ αn = ; (C)

∑∞
n= αn = ∞. Then as n → ∞, {xn} converges strongly to some

fixed point x* of T , and x* = PF(T)u, where PF(T) is the metric projection from H onto F(T).

Proof It is easy to see that F(Tβ ) = F(T) �= ∅. For any x, y ∈ C, we have

‖Tβx – Tβy‖

=
∥∥β(x – y) + ( – β)(Tx – Ty)

∥∥

= β‖x – y‖ + ( – β)‖Tx – Ty‖ – β( – β)
∥∥x – Tx – (y – Ty)

∥∥

≤ β‖x – y‖ + ( – β)
[‖x – y‖ + k

∥∥x – Tx – (y – Ty)
∥∥]

– β( – β)
∥∥x – Tx – (y – Ty)

∥∥

= ‖x – y‖ – ( – β)(β – k)
∥∥x – Tx – (y – Ty)

∥∥

= ‖x – y‖ – β – k
 – β

∥∥x – Tβx – (y – Tβy)
∥∥

≤ ‖x – y‖ – (β – k)
∥∥x – Tβx – (y – Tβy)

∥∥.

Thus, for all x ∈ C and for all p ∈ F(Tβ ) = F(T), we have

‖Tβx – p‖ ≤ ‖x – p‖ – (β – k)‖x – Tβx‖.

This implies that Tβ is a quasi-firmly type nonexpansive mapping (see, for example, []).
Tβ is also a strongly quasi-nonexpansive mapping (see, for example, []). Hence it fol-
lows from [, ] (see Theorem . and Remark  of [] or Corollary  of []) that {xn}
converges strongly to a point x* ∈ F(Tβ ) = F(T).
Finally, we show x* = PF(T)u. From Lemma . and the iterative process (III), we estimate

as follows:

‖xn+ – PF(T)u‖

≤ ( – αn)
∥∥β(xn – PF(T)u) + ( – β)(Txn – PF(T)u)

∥∥

+ αn〈u – PF(T)u,xn+ – PF(T)u〉
≤ ( – αn)

[
β‖xn – PF(T)u‖ + ( – β)‖Txn – PF(T)u‖ – β( – β)‖xn – Txn‖

]
+ αn〈u – PF(T)u,xn+ – PF(T)u〉

≤ ( – αn)
[
β‖xn – PF(T)u‖ + ( – β)‖xn – PF(T)u‖ + ( – β)k‖xn – Txn‖

– β( – β)‖xn – Txn‖
]
+ αn〈u – PF(T)u,xn+ – PF(T)u〉

= ( – αn)
[‖xn – PF(T)u‖ – ( – β)(β – k)‖xn – Txn‖

]
+ αn〈u – PF(T)u,xn+ – PF(T)u〉

≤ ( – αn)‖xn – PF(T)u‖ + αn〈u – PF(T)u,xn+ – PF(T)u〉.

It follows from the conditions (C), (C) and

lim
n→∞〈u – PF(T)u,xn+ – PF(T)u〉 = 〈

u – PF(T)u,x* – PF(T)u
〉 ≤ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/98
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using Lemma ., that

lim
n→∞‖xn – PF(T)u‖ = .

This completes the proof of Theorem .. �

Remark . Theorems .-. improve themain results of [, , , ] from a nonexpan-
sive mapping to a k-strictly pseudocontractive mapping, respectively. Theorems .-.
show that the real sequence {αn} satisfying the two conditions (C) and (C) is sufficient
for the strong convergence of the iterative sequences (I)-(III) for k-strictly pseudocontrac-
tive mappings, respectively. Therefore, our results give a significant partial answer to the
open question.
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