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Abstract
The purpose of this paper is to provide some remarks for the main results of the paper
Verma (Appl. Math. Lett. 21:142-147, 2008). Further, by using the generalized proximal
operator technique associated with the (A,η,m)-monotone operators, we discuss the
approximation solvability of general variational inclusion problem forms in Hilbert
spaces and the convergence analysis of iterative sequences generated by the
over-relaxed (A,η,m)-proximal point algorithm frameworks with errors, which
generalize the hybrid proximal point algorithm frameworks due to Verma.
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1 Introduction
In , Verma [] developed a general framework for a hybrid proximal point algorithm
using the notion of (A,η)-monotonicity (also referred to as (A,η)-maximal monotonicity
or (A,η,m)-monotonicity in literature) and explored convergence analysis for this algo-
rithm in the context of solving the following variational inclusion problems along with
some results on the resolvent operator corresponding to (A,η)-monotonicity: Find a so-
lution to

 ∈M(x), (.)

whereM :H → H is a set-valued mapping on a real Hilbert spaceH.
We remark that the problem (.) provides us a general and unified framework for study-

ing a wide range of interesting and important problems arising in mathematics, physics,
engineering sciences, economics finance, etc. For more details, see [–] and the follow-
ing example.
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Example . [] Let V :Rn → R be a local Lipschitz continuous function, and let K be a
closed convex set in R

n. If x∗ ∈ R
n is a solution to the following problem:

min
x∈K V (x),

then

 ∈ ∂V
(
x∗) +NK

(
x∗),

where ∂V (x∗) denotes the subdifferential of V at x∗, and NK (x∗) the normal cone of K
at x∗.

Very recently, Huang andNoor [] have pointed out ‘the question on whether the strong
convergence holds or not for the over-relaxed proximal point algorithm is still open’.
Verma [] also pointed out ‘the over-relaxed proximal point algorithm is of interest in
the sense that it is quite application-oriented, but nontrivial in nature’. In [, ], we dis-
cussed the convergence of iterative sequences generated by the hybrid proximal point al-
gorithm frameworks associated with (A,η,m)-monotonicity when operator A is strongly
monotone and Lipschitz continuous.
Motivated and inspired by the recent works, in this paper, we correct the main result

of the paper []. Further, by using the generalized proximal operator technique associated
with the (A,η,m)-monotone operators, we discuss the approximation solvability of general
variational inclusion problem forms inHilbert spaces and the convergence analysis of iter-
ative sequences generated by the over-relaxed (A,η,m)-proximal point algorithm frame-
works with errors, which generalize the hybrid proximal point algorithm frameworks due
to Verma [].

2 Preliminaries
In the sequel, letH be a real Hilbert space with the norm ‖ · ‖ and the inner product 〈·, ·〉
and H denote the family of all subsets ofH.

Definition . A single-valued operator A :H →H is said to be
(i) r-strongly monotone, if there exists a positive constant r such that

〈
A(x) –A(y),x – y

〉 ≥ r‖x – y‖, ∀x, y ∈H;

(ii) s-Lipschitz continuous, if there exists a constant s >  such that

∥∥A(x) –A(y)
∥∥ ≤ s‖x – y‖, ∀x, y ∈H.

If s = , then A is called nonexpansive.

Definition . Let A :H → H and η :H ×H → H be two nonlinear (in general) opera-
tors. A set-valued operatorM :H → H is said to be

(i) maximal monotone if for any (y, v) ∈Graph(M) = {(y, v) ∈H×H|v ∈M(y)},

〈u – v,x – y〉 ≥  implies x ∈D(M),u ∈M(x);

http://www.journalofinequalitiesandapplications.com/content/2013/1/97
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(ii) r-strongly η-monotone if there exists a positive constant r such that

〈
u – v,η(x, y)

〉 ≥ r‖x – y‖, ∀(x,u), (y, v) ∈Graph(M),

where η is said to be τ -Lipschitz continuous if there exists a constant τ >  such
that

∥∥η(x, y)
∥∥ ≤ τ‖x – y‖, ∀x, y ∈H;

(iii) m-relaxed η-monotone if there exists a positive constant m such that

〈
u – v,η(x, y)

〉 ≥ –m‖x – y‖, ∀(x,u), (y, v) ∈Graph(M);

Similarly, if η(x, y) = x – y for all x, y ∈ H, we can obtain the definition of strong mono-
tonicity and relaxed monotonicity.

Definition . Let A :H →H be r-strongly monotone. The operatorM :H → H is said
to be A-maximal monotone if

(i) M is m-relaxed monotone;
(ii) R(A + ρM) =H for ρ > .

Definition . Let A :H → H be r-strongly η-monotone. Then M :H → H is said to
be (A,η,m)-monotone if

(i) M is m-relaxed η-monotone;
(ii) R(A + ρM) =H for ρ > .

Lemma . [] Let H be a real Hilbert space, A :H → H be r-strongly monotone, and
M :H → H be A-maximal monotone. Then the resolvent operator associated withM and
defined by

JMρ,A(x) = (A + ρM)–(x), ∀x ∈H,

is 
r–ρm-Lipschitz continuous.

Lemma . [] Let H be a real Hilbert space, A :H → H be r-strongly η-monotone, M :
H → H be (A,η,m)-maximal monotone, and η :H×H →H be τ -Lipschitz continuous.
Then the generalized resolvent operator associated with M and defined by

JM,η
ρ,A (x) = (A + ρM)–(x), ∀x ∈H,

is τ
r–ρm-Lipschitz continuous.

3 Remarks and algorithm frameworks
In this section, we give some remarks for the main results of [] and then introduce a
new class of over-relaxed (A,η,m)-proximal point algorithm frameworks with errors to
approximate solvability of the general variational inclusion problem (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/97
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Lemma . [] Let H be a real Hilbert space, A :H → H be r-strongly η-monotone, and
M :H → H be (A,η,m)-maximal monotone. Then the following statements are mutually
equivalent:

(i) An element x ∈H is a solution to (.).
(ii) For an x ∈H, we have

x = JM,η
ρ,A

(
A(x)

)
,

where JM,η
ρ,A = (A + ρM)–.

Lemma . [] Let H be a real Hilbert space, A : H → H be r-strongly monotone, and
M :H → H be A-maximal monotone. Then the following statements are mutually equiv-
alent:

(i) An element x ∈H is a solution to (.).
(ii) For an x ∈H, we have

x = JMρ,A
(
A(x)

)
,

where JMρ,A = (A + ρM)–.

In [], by using Lemmas ., ., ., and ., the author obtained the following main
results on the convergence rate (or convergence), which hold only when r – ρm > :

Theorem V (See [, p., Theorem .]) Let H be a real Hilbert space, let A :H → H
be r-strongly monotone and s-Lipschitz continuous, and let M : H → H be A-maximal
monotone. For an arbitrarily chosen initial point x, suppose that the sequence {xn} is gen-
erated by an iterative procedure

xn+ = ( – αn)xn + αnyn, ∀n≥ ,

and yn satisfies

∥∥yn – JMρn ,A
(
A(xn)

)∥∥ ≤ δn‖yn – xn‖,

where JMρn ,A = (A + ρnM)– and {δn}, {αn}, {ρn} ⊂ [,∞) are scalar sequences such that

∞∑
n=

δn < ∞, δn → , α = lim sup
n→∞

αk < , ρn ↑ ρ ≤ +∞.

Then the sequence {xn} converges linearly to a solution of (.) with the convergence rate

√
 – α

[
 – ( – α)

s
r – ρm

–


α

(
s

r – ρm

)

–


α

]
< ,

for c = r – ρm,

c <
( – α)s –

√
( – α)s + ( – α)αs

 – α
, ( – α)s >

√
( – α)s + ( – α)αs,

http://www.journalofinequalitiesandapplications.com/content/2013/1/97
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and for

c >
( – α)s +

√
( – α)s + ( – α)αs

 – α
.

TheoremV (See [, p., Theorem .]) LetH be a real Hilbert space, let A :H →H be
r-strongly η-monotone and s-Lipschitz continuous, and let M :H → H be (A,η)-maximal
monotone. Let η :H×H →H be τ -Lipschitz continuous. For an arbitrarily chosen initial
point x, suppose that the sequence {xn} is generated by an iterative procedure

xn+ = ( – αn)xn + αnyn, ∀n≥ ,

and yn satisfies

∥∥yn – JM,η
ρn ,A

(
A(xn)

)∥∥ ≤ n–‖yn – xn‖,

where JMρn ,A = (A + ρnM)– and {αn}, {ρn} ⊂ [,∞) are scalar sequences such that α =
lim supn→∞ αk < , ρn ↑ ρ ≤ +∞. Then the sequence {xn} converges linearly to a solution
of (.) for

r <
( – α)sτ –

√
( – α)sτ  + ( – α)αsτ 

 – α
,

( – α)sτ >
√
( – α)sτ  + ( – α)αsτ ,

and for

r >
( – α)sτ +

√
( – α)sτ  + ( – α)αsτ 

 – α
.

In the sequel, we give the following remarks to show that themain proof of Theorems .
and . of [] is worth correcting.

Remark . By the r-strongly monotonicity and s-Lipschitz continuity of the underlying
operator A, it follows that for all x, y ∈H, if x �= y,

r‖x – y‖ ≤ 〈
A(x) –A(y),x – y

〉 ≤ ∥∥A(x) –A(y)
∥∥ · ‖x – y‖ ≤ s‖x – y‖,

showing that r ≤ s.

Remark . From Remark ., it is easy to prove that the convergence rate θn >  in p.
of [] for n≥ . Therefore, the strong convergence of [, Theorem .], is not true.

In fact, fromRemark . and the definition of the convergence rate in line , p. of [],
we have the following estimate:

s ≥ r ≥ r – ρnm > , i.e.,
s

r – ρnm
≥ 

http://www.journalofinequalitiesandapplications.com/content/2013/1/97
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and

θ
n =  – αn

[
 – ( – αn)

s
r – ρnm

–


αn

(
s

r – ρnm

)

–


αn

]

=  – αn + αn( – αn)
s

r – ρnm
+ α

n

(
s

r – ρnm

)

+ α
n

= ( – αn) + ( – αn)
sαn

r – ρnm
+

(
sαn

r – ρnm

)

=
[
( – αn) +

sαn

r – ρnm

]

=
[
 – αn

(
 –

s
r – ρnm

)]

> , (.)

it is because αn >  for all n≥ .

Remark . Similarly, we can show that the conditions for the convergence of [, Theo-
rem .] must be revised.
Indeed, from  ≤ α <  and the assumption, it follows that the conditions for the con-

vergence of a sequence {xn} generated by the iterative algorithm are equivalent to

( – α)c – ( – α)sτc – αsτ  > , c = r – ρm,

that is,

 – ( – α)
sτ

r – ρm
–


α

(
sτ

r – ρm

)

–


α > ,

which should be revised because it follows from the assumption, (.), and Remark . that

sτ < r – ρm≤ r ≤ s, i.e., τ < .

Thus, if τ ≥ , then the conditions for the convergence are not true.

Next, in order to illustrate themain results in [], we construct the following over-relaxed
proximal point algorithm frameworks with errors based on Lemmas . and ..

Algorithm . Step . Choose an arbitrary initial point u ∈H.
Step . Choose sequences {αn}, {δn}, and {ρn} such that for n≥ , {αn}, {δn}, and {ρn} are

three sequences in [,∞) satisfying

∞∑
n=

δn < ∞, ρn ↑ ρ.

Step . Let {xn} ⊂H be generated by the following iterative procedure:

xn+ = ( – αn)xn + αnyn + en, ∀n≥ , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/97
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where {en} is an error sequence inH to take into account a possible inexact computation
of the operator point, which satisfies

∑∞
n= ‖en‖ < ∞, and yn satisfies

∥∥yn – JM,η
ρn ,A

(
A(xn)

)∥∥ ≤ δn‖yn – xn‖,

where n≥ , JM,η
ρn ,A = (A + ρnM)– and ρn > .

Step . If xn and yn satisfy (.) to sufficient accuracy, stop; otherwise, set n := n +  and
return to Step .

Remark . If en ≡ , δn = 
n , and αn <  for n ≥ , then Algorithm . is reduced to the

iterative algorithm in Theorem . of [].

Algorithm . Step . Choose an arbitrary initial point x ∈H.
Step . Choose sequences {αn}, {δn}, and {ρn} such that for n≥ , {αn}, {δn}, and {ρn} are

three sequences in [,∞) satisfying

∞∑
n=

δn < ∞, ρn ↑ ρ.

Step . Let {xn} ⊂H be generated by the following iterative procedure:

xn+ = ( – αn)xn + αnyn + en, ∀n≥ , (.)

where {en} is an error sequence inH to take into account a possible inexact computation
of the operator point, which satisfies

∑∞
n= ‖en‖ < ∞, and yn satisfies

∥∥yn – JMρn ,A
(
A(xn)

)∥∥ ≤ δn‖yn – xn‖,

where n≥ , JMρn ,A = (A + ρnM)– and ρn > .
Step . If xn and yn satisfy (.) to sufficient accuracy, stop; otherwise, set n := n +  and

return to Step .

Remark . If en ≡  and αn <  for n ≥ , then Algorithm . is reduced to the iterative
algorithm in Theorem . of [].

4 Convergence analysis
In this section, we apply the over-relaxed proximal point Algorithms . and . to ap-
proximate the solution of (.), and as a result, we end up showing linear convergence.

Theorem . Let H be a real Hilbert space, A : H → H be r-strongly monotone and s-
Lipschitz continuous, η : H × H → H be τ -Lipschitz continuous, and M : H → H be
(A,η,m)-maximal monotone. If for γ > 

 ,

〈
A(xn) –A

(
x∗), JM,η

ρn ,A
(
A(xn)

)
– JM,η

ρn ,A
(
A

(
x∗))〉 ≥ γ

∥∥JM,η
ρn ,A

(
A(xn)

)
– JM,η

ρn ,A
(
A

(
x∗))∥∥,

and there exists a constant ρ ∈ (, r
m ) such that

α + sk
[
α – γ (α – )

]
< , k =

τ

r – ρm
< , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/97
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then the sequence {xn} generated by Algorithm . converges linearly to a solution x∗ of the
problem (.) with the convergence rate

ϑ =

√
 – α

{

[
 – γ

(
sτ

r – ρm

)]
– α

[
 – (γ – )

(
sτ

r – ρm

)]}
< ,

where α = lim supn→∞ αn >  and ρn ↑ ρ .

Proof Let x∗ be a solution of the problem (.). Then it follows from Lemma . that

x∗ = ( – αn)x∗ + αnJM,η
ρn ,A

(
A

(
x∗)). (.)

Let

zn+ = ( – αn)xn + αnJM,η
ρn ,A

(
A(xn)

)
, ∀n≥ .

Thus, by the assumptions of the theorem, Lemma ., and (.), now we find the estimate

∥∥zn+ – x∗∥∥

=
∥∥( – αn)

(
xn – x∗) + αn

[
JM,η
ρn ,A

(
A(xn)

)
– JM,η

ρn ,A
(
A

(
x∗))]∥∥

= α
n
∥∥JM,η

ρn ,A
(
A(xn)

)
– JM,η

ρn ,A
(
A

(
x∗))∥∥ +

∥∥( – αn)
(
xn – x∗)∥∥

+ 
〈
αn

[
JM,η
ρn ,A

(
A(xn)

)
– JM,η

ρn ,A
(
A

(
x∗))], ( – αn)

(
xn – x∗)〉

≤ ( – αn)
∥∥xn – x∗∥∥ +

[
α
n + γαn( – αn)

]∥∥JM,η
ρn ,A

(
A(xn)

)
– JM,η

ρn ,A
(
A

(
x∗))∥∥

≤
{
( – αn) +

[
α
n + γαn( – αn)

] τ 

(r – ρnm)
· s

}∥∥xn – x∗∥∥

= ϑ
n
∥∥xn – x∗∥∥,

where

ϑn =

√
 – αn

{

[
 – γ

(
sτ

r – ρnm

)]
– αn

[
 – (γ – )

(
sτ

r – ρnm

)]}
.

Thus, we have

∥∥xn+ – x∗∥∥ ≤ ϑn
∥∥xn – x∗∥∥.

Since xn+ = ( – αn)xn + αnyn + en, xn+ – xn = αn(yn – xn) + en, it follows that

‖xn+ – zn+‖
=

∥∥( – αn)xn + αnyn + en – ( – αn)xn – αnJM,η
ρn ,A(xn)

∥∥
=

∥∥αn
[
yn – JM,η

ρn ,A(xn)
]∥∥ + ‖en‖

≤ δn
∥∥αn(yn – xn)

∥∥ + ‖en‖
= δn‖xn+ – xn‖ + ‖en‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/97
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Using the above arguments, we estimate that

∥∥xn+ – x∗∥∥
≤ ‖xn+ – zn+‖ +

∥∥zn+ – x∗∥∥
≤ δn‖xn+ – xn‖ + ϑn

∥∥xn – x∗∥∥ + ‖en‖
≤ δn

∥∥xn+ – x∗∥∥ + δn
∥∥xn – x∗∥∥ + ϑn

∥∥xn – x∗∥∥ + ‖en‖.

This implies that

∥∥xn+ – x∗∥∥ ≤ ϑn + δn

 – δn

∥∥xn – x∗∥∥ +


 – δn
‖en‖. (.)

Since A is r-strongly monotone (and hence, ‖A(u) – A(v)‖ ≥ r‖u – v‖, ∀u, v ∈ H), this
implies from (.) that the {xn} converges linearly to a solution x∗ for

ϑn =

√
 – αn

{

[
 – γ

(
sτ

r – ρnm

)]
– αn

[
 – (γ – )

(
sτ

r – ρnm

)]}
.

Hence, we have

lim sup
n→∞

ϑn + δn

 – δn
= lim sup

n→∞
ϑn

=

√
 – α

{

[
 – γ

(
sτ

r – ρm

)]
– α

[
 – (γ – )

(
sτ

r – ρm

)]}
,

where α = lim supn→∞ αn, ρn ↑ ρ . This completes the proof. �

Remark . The conditions (.) in Theorem . hold for some suitable values of con-
stants, for example, α = ., γ = ., τ = ., r = ., ρ = ., m = ., s =
. and the convergence rate θ = . < .

From Theorem ., we have the following result.

Theorem . LetH be a real Hilbert space, A :H →H be r-strongly monotone with r > 
and s-Lipschitz continuous, and M :H → H be A-maximal monotone. If for γ > 

 ,

〈
A(xn) –A

(
x∗), JMρn ,A(

A(xn)
)
– JMρn ,A

(
A

(
x∗))〉

≥ γ
∥∥JMρn ,A(

A(xn)
)
– JMρn ,A

(
A

(
x∗))∥∥,

and there exists a constant ρ ∈ (, r–m ) such that

α +
[
α – γ (α – )

]( s
r – ρm

)

< ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/97
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then the sequence {xn} generated by Algorithm . converges linearly to a solution x∗ of the
problem (.) with the convergence rate

θ =

√
 – α

{

[
 – γ

(
s

r – ρm

)]
– α

[
 – (γ – )

(
s

r – ρm

)]}
< ,

where α = lim supn→∞ αn >  and ρn ↑ ρ .

Remark . In Theorems . and ., if we apply the c-Lipschitz continuity of M– in-
stead, it seems that the strong convergence could be achieved (see, for example, [–]).

Remark . For an arbitrarily chosen initial point x, let the iterative sequence {xn} gen-
erate the following over-relaxed proximal point algorithm:

A(xn+) = ( – αn)A(xn) + αnyn,

and yn satisfy

∥∥yn –A
(
G

(
A(xn)

))∥∥ ≤ δn
∥∥yn –A(xn)

∥∥,
where n ≥ , G = JM,η

ρn ,A = (A + ρnM)–, the resolvent operator associated with A-maximal
monotoneM, or G = JMρn ,A = (A+ ρnM)–, the resolvent operator associated with (A,η,m)-
maximal monotoneM, and scalar sequences {αn}, {ρn}, {δn} ⊂ [,∞). Then we can obtain
the corresponding results by using the same method as in Theorem . (see, for example,
[, ]). Therefore, the results presented in this paper improve, generalize, and unify the
corresponding results of recent works.
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