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1 Introduction and statement of the main result

Let G(¢,z(t)) be a C? function defined on R' x R?" which is 2 -periodic with respect to
the first variable ¢. In this paper we investigate the number of 27 -periodic solutions of the
following Hamiltonian system:

() = =G, (t,p(0),4(0)),

(1.1)
q(t) = Gp(t,p(1),q(t)),
where p,q € R", z = (p, q). Let ] be the standard symplectic structure on R*”, i.e.,
so(0
\, o)
where I, is the n x n identity matrix. Then (1.1) can be rewritten as
_]é = Gz(tr Z(t)), (1'2)

where z = % and G, is the gradient of G. We assume that G € C2(R' x R*", R!) satisfies the
following asymptotically linear conditions:

(G1) G(t,z(t)) = o(|z]?) as |z| = 0, G(t,0) = 0, G,(¢t,0) = 6, where 8 = (0,...,0).
(G2) There exist constants «, B (without loss of generality, we may assume «, 8 ¢ Z) such
that

ol <d*G(t,z) < BI VY(tz) e R x R*".

© 2013 Jung and Choi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

L]
@ Sprlnger Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2013/1/91
mailto:qheung@inha.ac.kr
http://creativecommons.org/licenses/by/2.0

Jung and Choi Journal of Inequalities and Applications 2013, 2013:91 Page2of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/91

(G3) Let j; be an integer within [«, 8] such that

G,(t,2) -
hi-1l<a <d§G(t,O) = lim M <J1-
lz—~0  |z|?

(G4) limp5 GZ‘(Ztl‘?'Z exists and there exists j, = j; + 1 which satisfies

G.(t,2)
i <d2Gt,00) = lim 220D 2

lz>o0  |z|2

< B <ja.

(G5) G is 2w -periodic with respect to t.

We are looking for the weak solutions of (1.1) with conditions (G1)-(G5). The 2 -periodic
weak solution z = (p, q) € E of (1.1) satisfies

2w
f (z-J(G:(t,2(2)))) - Jwdt =0 forallw€E,
0

2
fo [(5+ Gy(620))) - ¥ — (4 - Gyp(620)) - $]de =0 forall ¢ = (b, ¥) € E,

where E is introduced in Section 2. By Lemma 2.1 in Section 2, the weak solutions of (1.1)
coincide with the critical points of the functional

1

2 2 2 2
flz) = 5/0 (—]z)-zdt—/o G(t, (1)) dt:/o pth—/o G(t,z(t)) dt. (1.3)

Several authors [1-4] considered the multiplicity of solutions for the Hamiltonian system.
Chang proved in [1] that if G € C}(R! x R?",R!) satisfies conditions (G2), (G5) and the
following additional conditions:

(G3) Letjo,jo+1,...,and j; be all integers within [e, 8] (without loss of generality, we may
assume &, B ¢ Z) such thatjo —1 <o <jo <j1 < B <j1+1=J,. Suppose that there exist
y >0and t > 0 such that j; <y < 8 and

1
G(t,z) > §y||z||§2 - T VY(t,z) e R' x R*.

(G4)' G,(t,0) =0 and € [jo,j1) N Z such that
jI<d>G(t,0) < (j+1)] VteR',

then (1.1) has at least two nontrivial 27 -periodic weak solutions. Jung and Choi proved in
[2] that if G satisfies the following conditions:

(G1)” G:R* — Ris C' with G(9) = 0.
(G2)”" There exists i € N such that
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(G3)” There exists m € N such that

G(z) -z
h+2m <lim inf @) <h+2m+1
l2]-0 |z|?
or
G(2)-z
h—-2m—1<lim sup @ <h-2m
lZ—0 |z
(G4)” There exists an integer I such that I" < % <T +1,

then (1.1) has at least 7 weak solutions, which are geometrically distinct and nonconstant.

Our main result is the following:

Theorem 1.1 Assume that G satisfies conditions (G1)-(G5). Then system (1.1) has at least

three 27 -periodic solutions.

Theorem 1.1 will be proved by the finite dimensional reduction method, the critical point
theory and the variational method for the perturbed operator A.. The finite dimensional
reduction method combined with the critical point theory and the variational method
reduces the critical point results of the functional I(z) on the infinite dimensional space to
those of the corresponding functional I(v) on the finite dimensional subspace.

The outline of this paper is organized as follows. In Section 2, we introduce the Hilbert
normed space E, show that the corresponding functional I(z) of (1.1) is in C}(E, R), Fréchet
differentiable and prove the reduction lemma for the perturbed operator A.. In Section 3,
we show that the reduced functional —I(v) satisfies (P.S.). condition and v = 0 is the strict
local point of minimum of I(v) and prove Theorem 1.1 by the shape of graph of the reduced

functional.

2 The perturbed operator A,
Let L2([0,27], R?") denote the set of 2xn-tuples of the square integrable 27 -periodic func-

k=+00 ikt

tions and choose z € L?([0, 2], R*"). Then it has a Fourier expansion z(¢) = > ;- "o axe'*,

with a; = 5= fozn z2(t)e K dt € C*",a_y =ay and Y, lax|* < co. Let
A:z(t)— —Jz(t)
with the domain

D(A) = {z(t) € Hl([O,Zn],RZ”)|z(O) = z(27r)}

> (e + 1kl laxl? < +00},

kez

= {Z(t) S LZ([O1 27T]’R2n)

where € is a positive small number. Then A is a self-adjoint operator. Let {M;} be the
spectral resolution of A, and let

B +00 o
Py =/ am;, p, =/ aM,, p_ =/ dM;,.
o B —

{o¢]
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Let

Lo = PoL*([0,27], R*"), L, =P, 1*([0,27],R*"), L_=P_[*([0,27],R*").
For each u € L*([0,27], R*"), we have the composition

U=Ug+U, +U_,

where uy € Lo, u, € L, u_ € L_. According to A, there exists a small number € > 0 such
that — ¢ o (A). Let us define the space E as follows:

E=D(A|?) = {z e 12([0, 2], R>")

D (e + Ikl laxl® < oo}

keZ

with the scalar product
(z,w)p =€z, w)2 + (|A| %z, |A|%W)L2

and the norm

1

Izl = (z,2)} = (Z(e . |k|)|ak|2)2.

kezZ
The space E endowed with this norm is a real Hilbert space continuously embedded in
L%([0,27], R?"). The scalar product in L? naturally extends as the duality pairing between
Eand E' = W‘%’Z([O,Zn],RZ”). We note that the operator (¢ + |[A|)™ is a compact linear
operator from L2([0,27], R*") to E such that
((6 + |A|)71w,z)E =(w,2)p2.
Let
Ac =€l + A.
Let
_1 _1 _1
Eo =|Acl"2 Lo, E,=1A"2L,, E =lA2L..
Then E = Ey @ E, @ E_ and for z € E, z has the decomposition z = zy + z, + z_ € E, where
_1 _1 _1
zo = |Ael™ 2 uo, zi = A 20y, zo =AUl

Thus we have

lizollzy = lluollLo, lz:lle, = Nl llz, s lz-lle- = llu-llz_
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and that Ey, E,, E_ are isomorphic to Lo, L,, L_, respectively. Let us define the functional
f(u) on L? as follows:

Su) = %(Ilmll2 + 1Mo uo|? = 1Mo |1* = llu-1I?) = e (2), 21

where M, = fooo amM,, M_ = ff)oo dM;, and V. (z) = ¥ (z) + %Hz(t)lliz, Y(z) = fozn G(t,z(t)) dt.
Let

F(z) = G,(t,2(t)).
By G € C>and (G2), ¥/(2) = [;" G(t,2(t)) € C*(E,R"). Let
Fo(2) = €l + F(2) = el + G, (t,2(2)).
The system (L.1) is equal to
Ac(2) = Fc(2). (2.2)

The Euler equation of the functional f(x) is the system

U, = A2 P,F.(2), (2.3)

u_=—|A|?P_F.(2), (2.4)
_1 _1

M, uy = |Ac|" 2 M, PyF(2), M_uy = —|Ac| 2 M_PyF(2). (2.5)

Thus z = zy + z, + z_ is a solution of (2.2) if and only if u = ug + u, + u_ is a critical point
of f. System (2.3)-(2.5) is reduced to

Aczy =P,F(zo+2z, +2_) or z,=(A) P, F(zo +24 +2), (2.6)

Acz_=P_F(zo+2z, +2.) or z_=(A)P_F.(zo+2z, +2.), (2.7)

AM,zg=M,PyF.(zo + 2z, +2z_), AM_zog=M_PyF.(zo + 7, +72_). (2.8)
By (G2),

|Ee() = Fc)| ;2 < (e + B)llu—vl2 Vu,vel? (2.9)

By (G2), there exists a y > 8 + € such that

[Act e =

R | =

We note that

Slu) =f(ulzo + 2 +2.)).
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I(zo + 2, +2_) = f (ulzo +z_ + 2.)).
Now we will prove a reduction lemma which reduces the problem on the infinite dimen-
sional space E to that of the finite dimensional subspace.
Let zg € E be fixed and consider the function /: E_ x E, — R defined by

h(z_,z,)=1(zo + z_ + z,).

The function 4 has continuous partial Fréchet derivatives Dis and D,/ with respect to its
first and second variables given by

Dih(z_,z,)(yi) = DI(zo + z_ + z,) (i) (2.10)
fory; € E_andy, € E,,i=1,2. Let v=1z.
Lemma 2.1 Assume that G satisfies the conditions (G1)-(G5).
(i) For given v € Ey, there exists a unique z_ + z, € CY(Eo, E_ @ E,) satisfying the
equation
Az-+z,)=(P_+P)F.(v+z_+z,). (2.11)
(i) There exists my < 0 such that ifz_andy_ arein E_ and z, € E,, then
(Dihlzr2,) - Dih(y-,2.)) (e =) < millz- - y_I". (2.12)
(iii) There exists my > 0 such that ifz, and y, are in E, and z_ € E_, then
(Dah(z-,2,) = Dah(z-,9.)) (2 = y:) = mallz, -y 1> (2.13)
(iv) For given v € Ey, if we put the unique solution z_(v) + z,(v) of (2.11) as
z_(v) + z,(v) = 6(v), then 6(v) is continuous on Ey and satisfies a uniform Lipschitz
condition in Ey with respect to L*> norm (also norm || - || ) and
1A |2z (v) € C\(Eo, E_ © E.), |Ac|? 2, (v) € C(Eo, E- @ E,). Moreover,
DI(v+6(v))(w)=0 forallweE_&E,.
(v) If1:Ey — R is defined by
IV =1(v+0)) =1(v+2z-(v) +z.(v)),

then I has a continuous Fréchet derivative DI with respect to v, and

DI(v)(y) = DI(V + O(V))(y) forallv,y € Ey. (2.14)

Page6of 11
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(vi) v € Ey is a critical point ofj ifand only if v+ 0(v) = v + z_(v) + z,(v) is a critical
point of I.

Proof (i) Let § = # +e. If F°(y) = F.(y) - 8, then equation (2.11) is equivalent to the

equation
z_+z, = (Ac = 8) 1P + P+)Ff(v +2Z_+2,). (2.15)

The operator (A, —8)}(P_ + P,) is a self-adjoint, compact and linear map from (P_ + P, )L,

into itself and its norm is (min{|j, — 8|, |j1 — 1 — 8|})™'. We note that

|E2(W2) = FX ()| 12 < (max{lo = 81,18 =81} + €) Iy — ¥l 2
B—-«
= ( +6)||1/f2_1/f1”L2'

2

We claim that the right-hand side of (2.14) is a Lipschitz mapping of (P_ + P, )L, into itself
with a Lipschitz constant r < 1. In fact, let v be a fixed element in Ey and w=v + z_ + z,,

y =v+w_+w, be any elements in E. Then we have
||(A6 -8NP+ P+)Ff(v +z_+2.)— (Ac = 8)71(P_ + P+)Ff(v +Ww_+ w+)||E
1
= [lAc =817 2(P_ + P.)(E2(w) - EX9)) | 2

< 14c =812 -+ PO | (F2w) - F) | 2

< (max{la = 81,18 =81} + €) [ 1Ac =812 (P_ + P (z- + 2.) = w_ + )| o-

1
/min{lj2=8],[j1-1-5]} +€

Since the operator norm of |A, —§ I‘% (P_+P,)isless than or equal to

and
lz_ll2 = 1A 2 u_||,, < ! |
Z |2 = € u_ = = = = Uu_||2
2 J/min{lj =8|, |1 —1-8]} +€
! el
= . > A Z_|lEs
Jmin{ljp — 8], [ —1-8[} +€
2l = |lAc e, o < L RE
J/min{[j, = 8], [ —1-8|} +¢
! 2.l
= o - , Z+llEs
Jmin{li, =3[, [i —1-8[} +€
we have
[(Ac =87 (P- + PYF2(w) - (Ac = 8) (P~ + POF ()|
max{|ja —§|,|B - 38|} +¢€ ||(z vz) - (ot w )”
T min{lj, -8, i -1-8)}+e' " T TlEek,

=r|l(z- +24) = (w- + W+)||E_€BE+’ where r <1,
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since min{|j, — §|,[j1 — 1 — 8|} + € > max{|a — §|,|B8 — 3|} + €. Therefore, by the implicit
function theorem, for given v € Ey, there exists a unique solution z_(v) + z,(v) € E. ® E,
which satisfies (2.15).

(ii) For all z_ € E_,

lz- 11z < (i = Dllwa 7. (2.16)
Forallz, € E,,

Iz 17 = 1+ Dliwall7a . (2.17)
IfveEy,z andy_ areinE_,z, € E, andz=v+z_ +z,, then

(Dih(z-,2.) = Dih(y_,z.))(z- - y-)

2
= ./o [Ae(z_ -y Nze—y_) - (G;(v+ z_+2,) -G (v+y_ + z+))(z_ —y_)] dt.

Since (GS(&2) — GE(£1))(52 — &1) > (@ + €) (&2 — &) and (2.15) holds, we see that if z_ and y_
are in E_ and z, € E,, then

(Dih(z-,24) = Dih(y_,z.))(z- = y-) < mllz- - y_|I*,

whereml:l—j%1 <0.
(iii) Similarly, using the fact that (GS(&2) — GE(&1))(&2 — &) < (B + €)(&2 — &) and (2.17)
holds, we see that if z, and y, are in E, and z_ € E_, then

(Dah(z-,2,) = Dah(z_,y.)) (24 — y2) = mallzs = 34117,

wheremgzl—,i > 0.
1+l

(iv) If 6(v) denotes the unique (z_ + z,)(v) € E_ & E, which solves (2.11), then 0 €
CY(Eo,E). In fact, if v,V € Ey, and p; = 0(v), ps = 6(v'), then we have

lpr-palle = [(A)™(P- + P)[Fc(v+p1) - F (v + p2) ]|
< Cl|v+p) = (v +p2) |
=C[(v-v)-r-p2) -

Thus we have

llp1 = p2lle < 1_C||V—V'||E.

Thus 6 is continuous. Since F, € C'(E,E), § € C(Ey,E). Since dimL, is finite and all

topologies on Ly are equivalent, we have

Ac|22,(v) € C\(Lo, L).

Page80of 11
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Letve Ey. If g€ E_ @ E,, then from (2.11) we have
2
/ [Ac(0() -q— (P- + P,)Ec(v+6(v)) - q]dt = 0.
0
Since fozn Acv-q =0, wehave

DI(v+ G(V))(w) = /0211 [A6 (V+ 6(1/)) -q— (P +P+)F€(V+ 9(1/)) -q] dt=0

forallge E_ @ E,.

(v) Since the functional I has a continuous Fréchet derivative DI, I has a continuous
Fréchet derivative DI with respect to v.

(vi) Suppose that there exists v € Ey such that DI(v) = 0. From DI(v)(k) = DI(v + 6(v))(h)
forallv,h € Ey, DI(v+60(v))(h) = 0 for all 1 € Ey. Since DI(v+0(v))(w) forallw € E_®E,, it
follows that DI(v+6(v)) = 0. Thus v + 0(v) is a solution of (1.1). Conversely if  is a solution
of (1.1) and v = Pou, then DI(v) = 0. O

3 Proof of Theorem 1.1
Lemma 3.1 Assume that G satisfies the conditions (G1)-(G5). Then —1(v) is bounded below
and satisfies (P.S.) condition.

Proof Let v € Ey. By the finite dimensional reduction,

2w
1) = %(Ae (v+6W),v+0(v)) - / G (t,v(t) + 0 (v(1))) dt,
0

where 6(v) = 0_(v) + 0,(v), v € Ey, 6_(v) € E_, 0,.(v) € E,, G(¢,v(t) + O(v(t))) = G(¢t, v(¢t) +
O((t))) + e(w(t) + O(v(t)))*. Let w = v + 6_(v). Then we have

1) = %(Ae(w),w) - /02” G¢ (t, w(t)) dt
N B (A (601), 60)) - (Ac(w), w)) - /0 (6 (10 (v0) - G (6 W) dt].

Moreover, we have

%((Ae (9(1/))’ Q(V)) - (Ae (w), W)) - /(‘)2” (G6 (t, 0 (V(t))) _Gt (t, W(t))) dt
- /OZJT (G (850, (v(1)) — w(2)), 6, (v(0))) ds + %(AE (6(1)),6,(v))

2w 2w
_ / / (G (8,56, (v(8)) + w(0))8, (v(0)), 6. (v(0)) s s it
0 0

1

- 5 (Ae (9+ (V)): 9+(V))

<0.
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By (G4), we have chosen a number y such that j; < y < d2G(¢,00) < B. Thus we have

- 2
1) < S (Acw), w) - /0 G (t,w(t)) dt

. 2
< =(i=p)wllj2 + C— —oco as||v|[g — oo.

N = N =

Thus —-1(v) is bounded from below and satisfies (P.S.) condition. |

Lemma 3.2 Assume that G satisfies conditions (G1)-(G5). Then v = 0 is a strict local point
of minimum ofj(v) with 1(0) = 0.

Proof
1) = I(V + 9(1/))
1 2
== (AE (v + 9(1/)), v+ 9(1/)) - / G* (t, v(t) + O(V(t))) dt
2 0
= %(Ae(v),v) +C,

where
1 2
C =5 (4c(60),60)) - / G (6,60(v(1))) dt
0
2T
_ /O [G (6, (8) + 0(10))) - G* (1,6 (w(1)))] it

2w
-1(0) - /0 [G* (&, v() + 6 (v(1)) - G(t,6(v(2)))] dt,

lim I(v) —1(0) = 1(A€(1/), v) — lim /zn [Ge (t, v(t) + 6 (v(t))) -G (t,@(v(t)))] dt
0

[v|—0 2 [v|—>0
1 2
=5 (Ac),v) - Lim / GS (8, sv(2) + 0 (v(0)))v(t) dt.
v|i— 0
Thus we have

lim I(v) - 1(0) = %(j1 - d:G(t,0)) vl > 0.

lv|—0

Thus v = 0 is a strict local point of minimum of 1(v). Since 6(0) = 0, 1(0) = 0. O

Proof of Theorem 1.1 By Lemma 2.1(v), 1(v) is continuous and Fréchet differentiable in
Ey. By Lemma 3.1, I(v) is bounded above, satisfies the (P.S.) condition and 1(v) — —occ as
[lvlle — oo. By Lemma 3.2, v = 0 is a strict local point of minimum of I(v) with a critical
value I(0) = 0. We note that max,ek, 1(v) > 0 is another critical value of I. By the shape of
the graph of the functional I on the one-dimensional subspace E, there exists the third
critical point of I(v). Thus (1.1) has at least three solutions, one of which is a trivial solution
u=v+6(r)=0+0=0. a

Page 10 of 11
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