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Abstract
Recently, Todeschini et al. (Novel Molecular Structure Descriptors - Theory and
Applications I, pp. 73-100, 2010), Todeschini and Consonni (MATCH Commun. Math.
Comput. Chem. 64:359-372, 2010) have proposed the multiplicative variants of
ordinary Zagreb indices, which are defined as follows:

∏
1

=
∏
1

(G) =
∏
v∈V(G)

dG(v)2,
∏
2

=
∏
2

(G) =
∏

uv∈E(G)
dG(u)dG(v).

These two graph invariants are calledmultiplicative Zagreb indices by Gutman (Bull.
Soc. Math. Banja Luka 18:17-23, 2011). In this paper the upper bounds on the
multiplicative Zagreb indices of the join, Cartesian product, corona product,
composition and disjunction of graphs are derived and the indices are evaluated for
some well-known graphs.
MSC: 05C05; 05C90; 05C07
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1 Introduction
Throughout this paper, we consider simple graphswhich are finite, indirected graphswith-
out loops and multiple edges. Suppose G is a graph with a vertex set V (G) and an edge set
E(G). For a graph G, the degree of a vertex v is the number of edges incident to v and is
denoted by dG(v). A topological index Top(G) of a graph G is a number with the property
that for every graphH isomorphic toG, Top(H) = Top(G). Recently, Todeschini et al. [, ]
have proposed the multiplicative variants of ordinary Zagreb indices, which are defined
as follows:

∏


=
∏


(G) =
∏

v∈V (G)

dG(v),
∏


=
∏


(G) =
∏

uv∈E(G)
dG(u)dG(v).

Mathematical properties and applications of multiplicative Zagreb indices are reported
in [–]. Mathematical properties and applications of multiplicative sum Zagreb indices
are reported in []. For other undefined notations and terminology from graph theory, the
readers are referred to [].
In [, ], Khalifeh et al. computed some exact formulae for the hyper-Wiener index and

Zagreb indices of the join, Cartesian product, composition, disjunction and symmetric
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difference of graphs. Some more properties and applications of graph products can be
seen in the classical book [].
In this paper, we give some upper bounds for the multiplicative Zagreb index of various

graph operations such as join, corona product, Cartesian product, composition, disjunc-
tion, etc.Moreover, computations are done for some well-known graphs.

2 Multiplicative Zagreb index of graph operations
We begin this section with two standard inequalities as follows.

Lemma  (AM-GM inequality) Let x,x, . . . ,xn be nonnegative numbers. Then

x + x + · · · + xn
n

≥ n√xx · · ·xn ()

holds with equality if and only if all the xk ’s are equal.

Lemma  (Weighted AM-GM inequality) Let x,x, . . . ,xn be nonnegative numbers and
also let w,w, . . . ,wn be nonnegative weights. Set w = w + w + · · · + wn. If w > , then the
inequality

wx +wx + · · · +wnxn
w

≥ w
√
xw
 xw

 · · ·xwn
n ()

holds with equality if and only if all the xk with wk >  are equal.

Let G and G be two graphs with n and n vertices andm andm edges, respectively.
The join G ∨G of graphs G and G with disjoint vertex sets V (G) and V (G) and edge
sets E(G) and E(G) is the graph union G ∪G together with all the edges joining V (G)
and V (G). Thus, for example, Kp ∨ Kq = Kp,q, the complete bipartite graph. We have
|V (G ∨G)| = n + n and |E(G ∨G)| =m +m + nn.

Theorem  Let G and G be two graphs. Then

∏


(G ∨G) ≤
[
M(G) + mn + nn

n

]n
×

[
M(G) + nm + nn

n

]n
()

and

∏


(G ∨G) ≤
[
M(G) + nM(G) +mn

m

]m

×
[
M(G) + nM(G) +mn

m

]m

×
[
mm + nn(m +m) + (nn)

nn

]nn
, ()

where n and n are the numbers of vertices of G and G, and m, m are the numbers of
edges of G and G, respectively. Moreover, the equality holds in () if and only if both G

and G are regular graphs, that is, G ∨G is a regular graph and the equality holds in ()
if and only if both G and G are regular graphs, that is, G ∨G is a regular graph.
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Das et al. Journal of Inequalities and Applications 2013, 2013:90 Page 3 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/90

Proof Now,
∏


(G ∨G) =
∏

(ui ,vj)∈V (G∨G)

dG∨G (ui, vj)


=
∏

ui∈V (G)

(
dG (ui) + n

) ∏
vj∈V (G)

(
dG (vj) + n

)

=
∏

ui∈V (G)

(
dG (ui)

 + ndG (ui) + n
) ∏
vj∈V (G)

(
dG (vj)

 + ndG (vj) + n
)

and by () this above equality is actually less than or equal to

≤
[∑

ui∈V (G)(dG (ui)
 + ndG (ui) + n)
n

]n

×
[ ∑
vj∈V (G)

(dG (vj)
 + ndG (vj) + n )

n

]n

=
[
M(G) + mn + nn

n

]n
×

[
M(G) + nm + nn

n

]n
.

Moreover, the above equality holds if and only if

dG (ui)
 + ndG (ui) + n = dG (uk)

 + ndG (uk) + n
(
ui,uk ∈ V (G)

)

and

dG (vj)
 + ndG (vj) + n = dG (v�) + ndG (v�) + n

(
vj, v� ∈ V (G)

)

(by Lemma ), that is, for ui,uk ∈ V (G) and vj, v� ∈ V (G),

(
dG (ui) – dG (uk)

)(
dG (ui) + dG (uk) + n

)

and

(
dG (vj) – dG (v�)

)(
dG (vj) + dG (v�) + n

)
.

That is, for ui,uk ∈ V (G) and vj, v� ∈ V (G), we get dG (ui) = dG (uk) and dG (vj) = dG (v�).
Hence the equality holds in () if and only if both G and G are regular graphs, that is,
G ∨G is a regular graph.
Now, since

∏


(G ∨G) =
∏

(ui ,vj)(uk ,v�)∈E(G∨G)

dG∨G (ui, vj)dG∨G (uk , v�),

we then obtain

=
∏

uiuk∈E(G)

(
dG (ui) + n

)(
dG (uk) + n

) ∏
vjv�∈E(G)

(
dG (vj) + n

)(
dG (v�) + n

)

×
∏

ui∈V (G),vj∈V (G)

(
dG (ui) + n

)(
dG (vj) + n

)

http://www.journalofinequalitiesandapplications.com/content/2013/1/90


Das et al. Journal of Inequalities and Applications 2013, 2013:90 Page 4 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/90

and by ()

≤
[∑

uiuk∈E(G)(dG (ui)dG (uk) + n(dG (ui) + dG (uk)) + n)
m

]m

×
[∑

vjv�∈E(G)(dG (vj)dG (v�) + n(dG (vj) + dG (v�)) + n )

m

]m

×
[∑

ui∈V (G),vj∈V (G)(dG (ui)dG (vj) + ndG (vj) + ndG (ui) + nn)

nn

]nn
. ()

However, from the last inequality, we get

=
[
M(G) + nM(G) +mn

m

]m

×
[
M(G) + nM(G) +mn

m

]m

×
[∑

ui∈V (G) di
∑

vj∈V (G) d
∗
j + nn

∑
vi∈V (G) di + nn

∑
vj∈V (G) d

∗
j + nn

nn

]nn

=
[
M(G) + nM(G) +mn

m

]m

×
[
M(G) + nM(G) +mn

m

]m

×
[
mm + nn(m +m) + (nn)

nn

]nn
.

Furthermore, for both connected graphs G and G, the equality holds in () iff

dG (ui)dG (ur)+n
(
dG (ui)+dG (ur)

)
+n = dG (ui)dG (uk)+n

(
dG (ui)+dG (uk)

)
+n

for any uiur ,uiuk ∈ E(G); and

dG (vj)dG (vr) + n
(
dG (vj) + dG (vr)

)
+ n = dG (vj)dG (v�) + n

(
dG (vj) + dG (v�)

)
+ n

for any vjvr , vjv� ∈ E(G) as well as

dG (ui)dG (vj) + ndG (vj) + ndG (ui) + nn

= dG (ui)dG (v�) + ndG (v�) + ndG (ui) + nn

for any ui ∈ V (G), vj, v� ∈ V (G); and

dG (ui)dG (vj) + ndG (vj) + ndG (ui) + nn

= dG (uk)dG (vj) + ndG (vj) + ndG (uk) + nn

for any vj ∈ V (G), ui,uk ∈ V (G) by Lemma . Thus one can easily see that the equality
holds in () if and only if for ui,uk ∈ V (G) and vj, v� ∈ V (G),

dG (ui) = dG (uk) and dG (vj) = dG (v�).

Hence the equality holds in () if and only if both G and G are regular graphs, that is,
G ∨G is a regular graph. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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Example  Consider two cycle graphs Cp and Cq. We thus have

∏


(Cp ∨Cq) = (p + )q(q + )p and
∏


(Cp ∨Cq) = (p + )(p+)q(q + )(q+)p.

The Cartesian product G � G of graphs G and G has the vertex set V (G × G) =
V (G)×V (G) and (ui, vj)(uk , v�) is an edge of G �G if

either ui = uk and vjv� ∈ E(G),

or uiuk ∈ E(G) and vj = v�.

Theorem  Let G and G be two connected graphs. Then
(i)

∏


(G �G)≤
[
nM(G) + nM(G) + mm

nn

]nn
. ()

The equality holds in () if and only if G �G is a regular graph.
(ii)

∏


(G �G) ≤ 
(nm)nm

(
nM(G) + mm

)nm

× 
(nm)nm

(
nM(G) + mm

)nm . ()

Moreover, the equality holds in () if and only if G �G is a regular graph.

Proof By the definition of the first multiplicative Zagreb index, we have

∏


(G �G) =
∏

(ui ,vj)∈V (G�G)

(
dG (ui) + dG (vj)

)

=
∏

ui∈V (G)

∏
vj∈V (G)

(
dG (ui) + dG (vj)

).

On the other hand, by ()

≤
[∑

ui∈V (G)
∑

vj∈V (G)(dG (ui)
 + dG (vj)

 + dG (ui)dG (vj))

nn

]nn
. ()

But as
∑

ui∈V (G) dG (ui)
 =M(G) and

∑
vj∈V (G) dG (vj)

 =M(G), the last statement
in () is less than or equal to

≤
[∑

ui∈V (G)(dG (ui)
 ∑

vj∈V (G)  +
∑

vj∈V (G) dG (vj)
+ dG (ui)

∑
vj∈V (G) dG (vj))

nn

]nn

which equals to

[
nM(G) + nM(G) + mm

nn

]nn
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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Moreover, the equality holds in () if and only if dG (ui) + dG (vj) = dG (uk) + dG (v�)
for any (ui, vj), (uk , v�) ∈ V (G � G) by Lemma . Since both G and G are connected
graphs, one can easily see that the equality holds in () if and only if dG (ui) = dG (uk),
ui,uk ∈ V (G) and dG (vj) = dG (v�), vj, v� ∈ V (G). Hence the equality holds in () if and
only if bothG andG are regular graphs, that is,G�G is a regular graph. This completes
the first part of the proof.
By the definition of the second multiplicative Zagreb index, we have

∏


(G �G) =
∏

(ui ,vj)(uk ,v�)∈E(G�G)

(
dG (ui) + dG (vj)

)(
dG (uk) + dG (v�)

)
.

This actually can be written as

∏


(G �G) =
∏

ui∈V (G)

∏
vjv�∈E(G)

(
dG (ui) + dG (vj)

)(
dG (ui) + dG (v�)

)

×
∏

vj∈V (G)

∏
uiuk∈E(G)

(
dG (ui) + dG (vj)

)(
dG (uk) + dG (vj)

)

or, equivalently,

∏


(G �G) =
∏

ui∈V (G)

∏
vj∈V (G)

(
dG (ui) + dG (vj)

)dG (vj)

×
∏

vj∈V (G)

∏
ui∈V (G)

(
dG (ui) + dG (vj)

)dG (ui).

After that, by () we get

∏


(G �G) ≤
∏

ui∈V (G)

[∑
vj∈V (G) dG (vj)(dG (ui) + dG (vj))

m

]m

×
∏

vj∈V (G)

[∑
ui∈V (G) dG (ui)(dG (ui) + dG (vj))

m

]m

. ()

Moreover, since

∑
ui∈V (G)

dG (ui) = m,
∑

vj∈V (G)

dG (vj) = m and

∑
ui∈V (G)

dG (ui)
 =M(G),

∑
vj∈V (G)

dG (vj)
 =M(G).

By () the final statement in () becomes

=
∏

ui∈V (G)

[
M(G) + mdG (ui)

m

]m

×
∏

vj∈V (G)

[
M(G) + mdG (vj)

m

]m

≤ 
(m)nm

[∑
ui∈V (G)(M(G) + mdG (ui))

n

]nm

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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× 
(m)nm

[∑
vj∈V (G)(M(G) + mdG (vj))

n

]nm

()

=


(nm)nm

(
nM(G) + mm

)nm

× 
(nm)nm

(
nM(G) + mm

)nm .

Hence the second part of the proof is over.
The equality holds in () and () if and only if dG (vj) = dG (v�) for any vj, v� ∈ V (G)

and dG (ui) = dG (uk) for any ui,uk ∈ V (G) by Lemmas  and . Hence the equality holds
in () if and only if both G and G are regular graphs, that is, G �G is a regular graph.
This completes the proof. �

Example  Consider a cycle graph Cp and a complete graph Kq. We thus have

∏


(Cp �Kq) = (q + )pq and
∏


(Cp �Kq) = (q + )(q+)pq.

The corona product G ◦ G of two graphs G and G is defined to be the graph � ob-
tained by taking one copy of G (which has n vertices) and n copies of G, and then
joining the ith vertex of G to every vertex in the ith copy of G, i = , , . . . ,n.
Let G = (V ,E) and G = (V ,E) be two graphs such that V (G) = {u,u, . . . ,un},

|E(G)| = m and V (G) = {v, v, . . . , vn}, |E(G)| = m. Then it follows from the defini-
tion of the corona product that G ◦ G has n( + n) vertices and m + nm + nn
edges, where V (G ◦ G) = {(ui, vj), i = , , . . . ,n; j = , , , . . . ,n} and E(G ◦ G) =
{((ui, v), (uk , v)), (ui,uk) ∈ E(G)} ∪ {((ui, vj), (ui, v�)), (vj, v�) ∈ E(G), i = , , . . . ,n} ∪
{((ui, v), (ui, v�)),� = , , . . . ,n, i = , , . . . ,n}. It is clear that if G is connected, then
G ◦G is connected, and in general G ◦G is not isomorphic to G ◦G.

Theorem  The first and second multiplicative Zagreb indices of the corona product are
computed as follows:
(i)

∏


(G ◦G) ≤ 
nn nnn

M(G)n
(
M(G) + m + n

)nn , ()

(ii)

∏


(G ◦G) ≤
[
M(G) + nM(G) + n

m

]m[M(G) +M(G) + 
m

]nm

×
[
mm + nn + mn + mnn

nn

]nn
, ()

where M(Gi) and M(Gi) are the first and second Zagreb indices of Gi, where i = , , re-
spectively.Moreover, both equalities in () and () hold if and only if G ◦G is a regular
graph.

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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Proof By the definition of the first multiplicative Zagreb index, we have

∏


(G ◦G) =
∏

(ui ,vj)∈V (G◦G)

dG◦G (ui, vj)


=
∏

ui∈V (G)

(
dG (ui) + n

) ∏
ui∈V (G)

∏
vj∈V (G)

(
dG (vj) + 

)

=
∏

ui∈V (G)

(
dG (ui)

 + ndG (ui) + n
)

×
[ ∏
vj∈V (G)

(
dG (vj)

 + dG (vj) + 
)]n

≤
[∑

ui∈V (G)(dG (ui)
 + ndG (ui) + n)
n

]n

×
[∑

vj∈V (G)(dG (vj)
 + dG (vj) + )

n

]nn
by () ()

=


nn nnn

(
M(G) + nm + nn

)n(M(G) + m + n
)nn .

The equality holds in () if and only if dG (ui) = dG (uk), ui,uk ∈ V (G) and dG (vj) =
dG (v�), vj, v� ∈ V (G), that is, both G and G are regular graphs, that is, G ◦ G is a
regular graph.
By the definition of the second multiplicative Zagreb index, we have

∏


(G ◦G) =
∏

(ui ,vj)(uk ,v�)∈E(G◦G)

dG◦G (ui, vj)dG◦G (uk , v�)

=
∏

uiuk∈E(G)

(
dG (ui) + n

)(
dG (uk) + n

)

×
∏

ui∈V (G)

∏
vj∈V (G)

(
dG (ui) + n

)(
dG (vj) + 

)

×
∏

ui∈V (G)

∏
vjv�∈E(G)

(
dG (vj) + 

)(
dG (v�) + 

)

=
∏

uiuk∈E(G)

(
dG (ui)dG (uk) + n

(
dG (ui) + dG (uk)

)
+ n

)

×
[ ∏
ui∈V (G)

(
dG (ui) + n

)]n[ ∏
vj∈V (G)

(
dG (vj) + 

)]n

×
[ ∏
vjv�∈E(G)

(
dG (vj)dG (v�) +

(
dG (vj) + dG (v�)

)
+ 

)]n

≤
[
M(G) + nM(G) + nm

m

]m

×
[
m + nn

n

]nn

×
[
m + n

n

]nn
×

[
M(G) +M(G) +m

m

]nm

by ().

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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The above equality holds if and only if dG (ui) = dG (uk) for any ui,uk ∈ V (G) and dG (vj) =
dG (v�) for any vj, v� ∈ V (G), that is, bothG andG are regular graphs, which implies that
G ◦G is a regular graph. This completes the proof. �

Example 
∏

(Cp ◦Kq) = qpq(q + )p and
∏

(Cp ◦Kq) = qpq (q + )p(q+).

The composition (also called lexicographic product []) G = G[G] of graphs G and
G with disjoint vertex sets V (G) and V (G) and edge sets E(G) and E(G) is the graph
with a vertex set V (G)×V (G) and (ui, vj) is adjacent to (uk , v�) whenever

either ui is adjacent to uk ,

or ui = uk and vj is adjacent to v�.

Theorem  The first and second multiplicative Zagreb indices of the composition G[G]
of graphs G and G are bounded above as follows:
(i)

∏


(
G[G]

) ≤ 
(nn)nn

[
nM(G) + nmm + nM(G)

]nn , ()

(ii)

∏


(
G[G]

) ≤ 
(nm)nm

[
mnM(G) + nmM(G) + nM(G)

]nm

× 
(nm)mn

[
nM(G) +mM(G) + mnM(G)

]nm , ()

whereM(Gi) andM(Gi) are the first and second Zagreb indices of Gi,where i = , .More-
over, the equalities in () and () hold if and only if G ◦G is a regular graph.

Proof By the definition of the first multiplicative Zagreb index, we have

∏


(
G[G]

)

=
∏

(ui ,vj)∈V (G[G])

dG[G](ui, vj)


=
∏

ui∈V (G)

∏
vj∈V (G)

(
dG (ui)n + dG (vj)

)

≤
[∑

ui∈V (G)
∑

vj∈V (G)(n

dG (ui)

 + ndG (ui)dG (vj) + dG (vj)
)

nn

]nn
()

=


(nn)nn
[
nM(G) + nmm + nM(G)

]nn .

The equality holds in () if and only if dG (ui) = dG (uk), ui,uk ∈ V (G) and dG (vj) =
dG (v�), vj, v� ∈ V (G) (by Lemma ), that is, both G and G are regular graphs, that is,
G ◦G is a regular graph.

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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By the definition of the second multiplicative Zagreb index, we have

∏


(
G[G]

)

=
∏

(ui ,vj)(uk ,v�)∈E(G[G])

dG◦G (ui, vj)dG[G](uk , v�)

=
∏

ui∈V (G)

∏
vjv�∈E(G)

(
dG (ui)n + dG (vj)

)(
dG (ui)n + dG (v�)

)

×
∏

uiuk∈E(G)

∏
vj∈V (G)

[(
dG (ui)n + dG (vj)

)(
dG (uk)n + dG (vj)

)]n

≤
∏

ui∈V (G)

[
mndG (ui)

 + ndG (ui)M(G) +M(G)
m

]m

×
∏

uiuk∈E(G)

[
ndG (ui)dG (uk) +M(G) + mn(dG (ui) + dG (uk))

n

]n
()

≤ 
mnm



[
mnM(G) + nmM(G) + nM(G)

n

]nm

× 
(n)mn

[
nM(G) +mM(G) + mnM(G)

m

]nm

, ()

which gives the required result in ().
The equality holds in () and () if and only if dG (ui) = dG (uk), ui,uk ∈ V (G) and

dG (vj) = dG (v�), vj, v� ∈ V (G) (by Lemma ), that is, both G and G are regular graphs,
that is, G ◦G is a regular graph. �

Example 
∏

(Cp[Cq]) = pq(q + )pq and
∏

(Cp[Cq]) = pq(q+)(q + )pq(q+).

The disjunctionG⊗G of graphsG andG is the graphwith a vertex setV (G)×V (G)
and (ui, vj) is adjacent to (uk , v�) whenever uiuk ∈ E(G) or vjv� ∈ E(G).

Theorem  The first and second multiplicative Zagreb indices of the disjunction are com-
puted as follows:
(i)

∏


(G ⊗G) ≤ 
(nn)nn

[
nM(G) + nM(G) +M(G)M(G)

+ nnmm – nmM(G) – nmM(G)
] nn , ()

(ii)

∏


(G ⊗G)

≤
[
M(G)(n +M(G) – nm) +M(G)(n – nm) + nnmm

Q

]Q

, ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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where Q =
∑

ui∈V (G)
∑

vj∈V (G) P = (nm + nm – mm) and M(Gi) is the first Zagreb
index of Gi, i = , .Moreover, the equalities in () and () hold if and only if G ◦G is a
regular graph.

Proof We have dG⊗G (ui, vj) = ndG (ui) + ndG (vj) – dG (ui)dG (vj). By the definition of
the first multiplicative Zagreb index, we have

∏


(G ⊗G)

=
∏

(ui ,vj)∈V (G⊗G)

dG⊗G (ui, vj)


=
∏

ui∈V (G)

∏
vj∈V (G)

(
ndG (ui) + ndG (vj) – dG (ui)dG (vj)

)

≤
[∑

ui∈V (G)
∑

vj∈V (G)(ndG (ui) + ndG (vj) – dG (ui)dG (vj))

nn

]nn
()

=


(nn)nn
[
nM(G) + nM(G) +M(G)M(G)

+ nnmm – nmM(G) – nmM(G)
] nn .

The equality holds in () if and only if dG (ui) = dG (uk), ui,uk ∈ V (G) and dG (vj) =
dG (v�), vj, v� ∈ V (G) (by Lemma ), that is, both G and G are regular graphs, that is,
G ◦G is a regular graph.
By the definition of the second multiplicative Zagreb index, we have

∏


(G ⊗G) =
∏

(ui ,vj)(uk ,v�)∈E(G⊗G)

dG⊗G (ui, vj)dG⊗G (uk , v�)

=
∏

ui∈V (G)

∏
vj∈V (G)

PP ,

where

P = ndG (ui) + ndG (vj) – dG (ui)dG (vj).

Using the weighted arithmetic-geometric mean inequality in (),
∏

(G ⊗ G) is less
than or equal to

≤
[∑

ui∈V (G)
∑

vj∈V (G)(ndG (ui) + ndG (vj) – dG (ui)dG (vj))∑
ui∈V (G)

∑
vj∈V (G) P

]∑
ui∈V (G)

∑
vj∈V (G) P

()

=
[
M(G)(n +M(G) – nm) +M(G)(n – nm) + nnmm

Q

]Q
,

where

Q =
∑

ui∈V (G)

∑
vj∈V (G)

P = 
(
nm + nm – mm

)
.

Hence the first part of the proof is over.

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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The equality holds in () if and only if dG (ui) = dG (uk), where ui,uk ∈ V (G) and
dG (vj) = dG (v�), where vj, v� ∈ V (G) (by Lemma ), that is, both G and G are regular
graphs, and so the graph G ◦G is regular. �

Example 
∏

(Kp ⊗Cq) = (pq – q + )pq and
∏

(Kp ⊗Cq) = (pq – q + )pq(pq–q+).

The symmetric difference G ⊕G of two graphsG andG is the graph with a vertex set
V (G) × V (G) in which (ui, vj) is adjacent to (uk , v�) whenever ui is adjacent to uk in G

or vi is adjacent to v� in G, but not both. The degree of a vertex (ui, vj) of G ⊕G is given
by

dG⊕G (ui, vj) = ndG (ui) + ndG (vj) – dG (ui)dG (vj),

while the number of edges in G ⊕G is nm + nm – mm.

Theorem  The first and second multiplicative Zagreb indices of the symmetric difference
G ⊕G of two graphs G and G are bounded above as follows:
(i)

∏


(G ⊕G) ≤ 
(nn)nn

[
nM(G) + nM(G) + M(G)M(G)

+ nnmm – nmM(G) – nmM(G)
] nn , ()

(ii)

∏


(G ⊕G)

≤
[
M(G)(n + M(G) – nm) +M(G)(n – nm) + nnmm

Q

]Q

, ()

where Q =
∑

ui∈V (G)
∑

vj∈V (G) P = (nm + nm – mm) and M(Gi) is the first Zagreb
index of Gi, for i = , .Moreover, the equalities in () and () hold if and only if G ◦G

is a regular graph.

Proof We have

dG⊕G (ui, vj) = ndG (ui) + ndG (vj) – dG (ui)dG (vj).

By the definition of the first multiplicative Zagreb index, we have

∏


(G ⊕G)

=
∏

(ui ,vj)∈V (G⊕G)

dG⊗G (ui, vj)


=
∏

ui∈V (G)

∏
vj∈V (G)

(
ndG (ui) + ndG (vj) – dG (ui)dG (vj)

)

http://www.journalofinequalitiesandapplications.com/content/2013/1/90
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≤
[∑

ui∈V (G)
∑

vj∈V (G)(ndG (ui) + ndG (vj) – dG (ui)dG (vj))

nn

]nn
()

=


(nn)nn
[
nM(G) + nM(G) + M(G)M(G) + nnmm

– nmM(G) – nmM(G)
]nn .

The equality holds in () if and only if dG (ui) = dG (uk), ui,uk ∈ V (G) and dG (vj) =
dG (v�), vj, v� ∈ V (G) (by Lemma ), that is, both G and G are regular graphs, which
implies that G ◦G is a regular graph.
By the definition of the second multiplicative Zagreb index, we have

∏


(G ⊕G) =
∏

(ui ,vj)(uk ,v�)∈E(G⊗G)

dG⊗G (ui, vj)dG⊗G (uk , v�)

=
∏

ui∈V (G)

∏
vj∈V (G)

PP ,

where P = ndG (ui) + ndG (vj) – dG (ui)dG (vj).
Using the weighted arithmetic-geometric mean inequality in (), we get

∏
ui∈V (G)

∏
vj∈V (G)

PP

≤
[∑

ui∈V (G)
∑

vj∈V (G)(ndG (ui) + ndG (vj) – dG (ui)dG (vj))∑
ui∈V (G)

∑
vj∈V (G) P

]∑
ui∈V (G)

∑
vj∈V (G) P

()

=
[
M(G)(n + M(G) – nm) +M(G)(n – nm) + nnmm

Q

]Q

,

whereQ =
∑

ui∈V (G)
∑

vj∈V (G) P = (nm +nm –mm). First part of the proof is over.
The equality holds in () if and only if dG (ui) = dG (uk), ui,uk ∈ V (G) and dG (vj) =

dG (v�), vj, v� ∈ V (G) (by Lemma ), that is, both G and G are regular graphs, which
implies that G ◦G is a regular graph. �

Example 
∏

(G ⊕G) = (p + q – )pq and
∏

(G ⊕G) = (p + q – )pq(p+q–).
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