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Abstract
In this paper, we study the following p-harmonic problem involving the Hardy term:

�(|�u|p–2�u) – λ
|u|p–2u
|x|2p = f (x,u), in �, u =

∂u

∂n
= 0 on ∂�,

where � is an open bounded domain containing the origin in R
N , 1 < p < N

2 and
0 ≤ λ < [N(p – 1)(N – 2p)/p2]p. By using the variational method, we prove that the
above problem has infinitely many solutions with positive energy levels.
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1 Introduction
The main purpose of this paper is to show the existence of infinitely many solutions for
the following p-harmonic equation:

⎧⎨
⎩

�(|�u|p–�u) – λ
|u|p–u
|x|p = f (x,u), x ∈ �,

u = ∂u
∂n = , x ∈ ∂�,

(.)

where � is an open bounded domain containing the origin in R
N , the boundary ∂� is

smooth.  < p < N
 ,  ≤ λ < λ = [N(p – )(N – p)/p]p. ∂

∂n is the outer normal derivative.
Nonlinearity f (x,u) satisfies the following conditions:
(f) f (x,u) is continuous on � ×R and limits subcritical growing at infinity; that is,

lim
u→∞

f (x,u)
|u|p*– = , uniformly for x ∈ �, (.)

where p* =Np/(N –p) is the critical exponent of Sobolev’s embeddingW ,p
 (�) ↪→ Ls(�).

(f) For any x ∈ �, f (x,u) satisfies

lim
u→

f (x,u)u
|u|p =  and lim

u→∞
f (x,u)u

|u|p = +∞. (.)
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(f) Denote G(x, t) = f (x, t)t – p
∫ t
 f (x, s)ds. For all x ∈ �, there exists a constant M ≥ 

such that

G(x, t) ≤ G(x, t) for anyM ≤ |t| ≤ |t|. (.)

(f) f (x,u) is odd with respect to u.
By the Hardy-Rellich inequality (see [, ]), we know that

∫
�

|u|p
|x|p dx ≤ 

λ

∫
�

|�u|p dx. (.)

Obviously, for any λ ∈ [,λ),

(
 –

λ

λ

)∫
�

|�u|p dx ≤
∫

�

(
|�u|p – λ

|u|p
|x|p

)
dx≤

∫
�

|�u|p dx.

InW ,p
 (�), forλ ∈ [,λ), we define

‖u‖ = ‖u‖W,p
 (�) :=

(∫
�

(
|�u|p – λ

|u|p
|x|p

)
dx

) 
p
,

this norm is equivalent to (
∫
�

|�u|p dx)/p.
A weak solution of the problem (.) is a critical point of the energy functional

I(u) =

p

∫
�

(
|�u|p – λ

|u|p
|x|p

)
dx –

∫
�

F(x,u)dx, u ∈W ,p
 (�), (.)

where F(x,u) =
∫ u
 f (x, s)ds. It is easy to check that I(u) is a continuous even functional.

Biharmonic equations can describe the static form change of a beam or the sport of a
rigid body. For example, this type of equation furnishes amodel for studying travelingwave
in suspension bridges (see []). By using variational arguments, many authors investigated
nonlinear biharmonic equations underDirichlet boundary conditions orNavier boundary
conditions and got interesting results (see [–]).
Li and Squassina in [] considered the superlinear p-harmonic equation with Navier

boundary conditions

�
(|�u|p–�u

)
= f (x,u), in �, u = �u =  on ∂�, (.)

where � is an open bounded domain inR
N with a smooth boundary ∂�. p > ,N ≥ p+

and f :� ×R →R is a Carathéodory function such that for some positive constant C,

∣∣f (x,u)∣∣ ≤ C
(
 + |u|q–) for all q ∈ [

,p*
)
. (.)

By means of the Morse theory, they proved the existence of two nontrivial solutions to
(.). After that, Li and Tang [] considered a more general problem than (.). They
got three solutions by the three critical points theorem which was obtained in []. If
f (x,u) = λg(x,u), Candito and Bisci [] established a well-determined interval of values
of the parameter λ for which the problem (.) admits at least two distinct weak solutions.
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The authors in [] considered the p-harmonic equation with Dirichlet conditions and
obtained the existence of a nontrivial solution. Under the condition of (.), [] proved
the existence and multiplicity of weak solutions for the nonuniformly nonlinear problem

�
(
a(x,�u)

)
= f (x,u), in �, u =

∂u
∂n

=  on ∂�, (.)

where |a(x, t)| ≤ c(h(x) + h(x)|t|p–) with h(x) ≥ , h(x) ≥ . a(x, t) and f (x, t) are odd
with respect to the second variable. Furthermore, f (x, t) is subcritical and satisfies the
Ambrosetti-Rabinowitz condition, that is, there exists a constant θ > p such that

 < θ

∫ t


f (x, s)ds≤ f (x, t)t for any x ∈ �. (.)

The aim of this paper is to obtain infinitely many solutions for the problem (.) when
p < N . The main difficulty lies in the fact that the embeddings W ,p

 (�) ↪→ Lp* (�) and
W ,p

 (�) ↪→ Lp(�, |x|–p dx) are not compact. Furthermore, the assumption (f) is not the
usual subcritical growth (.). The condition (f) is weaker than the A-R condition (.).
We use the concentration compactness principle (see [, ]) to overcome those difficul-
ties. The following theorem is our main result.

Theorem . Assume f (x,u) satisfies (f)-(f), then the problem (.) possesses infinitely
many weak solutions and the corresponding critical values are positive.

This paper proceeds as follows. In the next section, we prove the energy functional I(u)
satisfies the Palais-Smale condition. In Section , by using the symmetric mountain pass
theorem (see []), we get the main result of this paper. Throughout the paper, denote

Sp,λ := inf
u∈W,p

 (�)\{}

‖u‖p
‖u‖pp*

.

We use ‖u‖q = (
∫
�

|u|q dx)/q to denote the norm of Lq(�), C, Ci stand for universal con-
stants. We omit dx and � in the integrals if there is no other indication.

2 Palais-Smale condition
To show the (PS) sequence {un} of the variational functional I(u) is compact inW ,p

 (�), we
first prove the boundedness of {un} by the analytic argument which has been used in [].
Then, using the concentration compactness principle, we get the compactness of {un}.

Lemma . The condition (f) implies that for any ε > , there exists a positive constant
Cε such that

F(x,u)≤ ε|u|p* +Cε|u|, (x,u) ∈ � ×R. (.)

(f) implies that F(x,u) = o(up) as u → . Furthermore, for any |u| ≥ M > , there exists a
small positive constant θ

F(x,u)≥ C|u|p+θ and f (x,u)u > . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/9
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Lemma . Under the conditions (f), (f) and (f), if the sequence {un} ∈W ,p
 (�) satisfies

I(un) → c, I ′(un) →  as n → +∞, (.)

then the sequence {un} is bounded in W ,p
 (�).

Proof We prove this lemma by contradiction. Without loss of generality, we assume that

‖un‖ → +∞ as n→ +∞. (.)

Set wn = un/‖un‖, then ‖wn‖ =  for any n ∈N. As n→ +∞, there exists w ∈W ,p
 (�) such

that

wn ⇀ w weakly inW ,p
 (�),

wn → w strongly in Ls(�) for any ≤ s < p*,

wn → w a.e. x ∈ �.

If w 	≡ , we denote � = {x ∈ � : w = }, set � \ � is nonempty. (.) implies that

‖un‖p –
∫

�

f (x,un)un dx = o().

Therefore,

 – o() =
∫

�

f (x,un)un
‖un‖p dx =

∫
�

f (x,un)un
‖un‖p dx +

∫
�\�

f (x,un)un
‖un‖p dx. (.)

As n → +∞,
∫
�

|un|p dx ≤ ‖un‖ → . So, |un| → +∞ for x ∈ � \ �. It follows from (f)
that

lim
un→∞

f (x,un)un
‖un‖p = lim

un→∞
f (x,un)un

|un|p |wn|p = +∞.

Since |� \ �| > , then

∫
�\�

f (x,un)un
‖un‖p dx → +∞ as n→ +∞. (.)

Using (.) and (.), we derive that

∫
�

f (x,un)un
‖un‖p dx =


‖un‖p

(∫
�(|un|>M)

· · · +
∫

�(|un|≤M)
· · ·

)

≥ –


‖un‖p
∫

�(|un|≤M)

∣∣f (x,un)un∣∣dx

≥ –
C

‖un‖p
(
M +Mp*)|�|

≥ –C as n→ +∞. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/9
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From (.) and (.), we get

∫
�

f (x,un)un
‖un‖p dx→ +∞ as n→ +∞. (.)

This contradicts (.).
If w≡ , then wn →  strongly in L(�). Since I(un) → c, we know that

c← 
p
‖un‖p –

∫
F(x,un)dx ≥ 

p
‖un‖p – ε

∫
|un|p* dx –Cε

∫
|un|dx. (.)

In (.), choose ε = , then


p
‖un‖p ≤ ‖un‖p*p* +C‖un‖ + c ≤ C‖un‖p*p* + c.

From (.), it follows that ‖un‖p* → +∞ as n→ +∞. Denote

An =M
‖un‖

‖un‖p*
≥ MS/pp,λ , (.)

whereM is any fixed positive constant. It is clear that

An

‖un‖ =
M

‖un‖p*
→  (as n→ +∞).

Therefore, for n large enough, An/‖un‖ ∈ (, ).
For every n ∈N, we define a sequence of tn as follows:

I(tnun) = max
t∈[,]

I(tun).

We claim that

I(tnun) → +∞ (as n→ +∞). (.)

In fact, by (.)-(.) and the definition of tn, we have

I(tnun) ≥ I
(

An

‖un‖un
)

≥ 
p
Ap
n – ε

∫ ∣∣∣∣ An

‖un‖un
∣∣∣∣
p*

dx –CεAn

∫
|wn|dx

=

p
Ap
n – εMp* –CεAn

∫
|wn|dx.

If An → +∞ as n→ +∞, then (.) follows from the above estimate. If An is bounded for
any n, that is, there exists a constant K >  such that An ≤ K , then

I(tnun) ≥ 
p
Ap
n – εMp* –CεAn

∫
|wn|dx ≥ 

p
Sp,λMp – εMp* –CεK

∫
|wn|dx

→ 
p
Sp,λMp – εMp* as n → +∞,

http://www.journalofinequalitiesandapplications.com/content/2013/1/9
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where we use the fact that ‖wn‖ →  as n → +∞. The positive constant ε is arbitrary,
thus

lim
n→+∞ I(tnun) ≥ 

p
Sp,λMp for any positive constantM.

(.) follows from the above inequality.
From (.), we know that

pc + o() = pI(un) –
〈
I ′(un),un

〉
=

∫ (
f (x,un)un – pF(x,un)

)
dx. (.)

By the definition of tn, we obtain d
dt I(tun)|t=tn =  and tn ∈ [, ], then |tnun| ≤ |un|. The

condition (f) and (.) derive that
∫ (

f (x,un)un – pF(x,un)
)
dx ≥

∫ (
f (x, tnun)tnun – pF(x, tnun)

)
dx

= pI(tnun) –
〈
I ′(tnun), tnun

〉

= pI(tnun) – tn
d
dt

I(tun)
∣∣∣∣
t=tn

→ +∞.

Which is a contradiction to (.). Therefore, the sequence {un} is bounded in W ,p
 (�).

�

Under the conditions of Lemma ., we know ‖un‖ ≤ C. Therefore, there exists a sub-
sequence, still denoted by {un}, and some u ∈W ,p

 (�) such that

un ⇀ u weakly inW ,p
 (�),

un ⇀ u weakly in Lp
(
�, |x|–p dx),

un → u strongly in Ls(�) for any ≤ s < p*,

un → u a.e. x ∈ �.

Obviously, u is a weak solution of (.). Now we prove that u 	≡ . According to the con-
centration compactness principle (see [, ]), there exists a subsequence, still denoted
by {un}, at most countable set J , a set of different points {xj}j∈J ⊂ � \ {} and two positive
number sequences {μj}j∈J∪{}, {νj}j∈J∪{} such that

|�un|p ⇀ dμ ≥ |�u|p +
∑
j∈J

μjδxj +μδ weakly in the sense of measure,

|un|p* ⇀ dν = |u|p* +
∑
j∈J

νjδxj + νδ weakly in the sense of measure,

|un|p
|x|p ⇀ dγ =

|u|p
|x|p + γδ weakly in the sense of measure,

Sp,λν
p
p*
 ≤ μ – λγ, and Sp,ν

p
p*
j ≤ μj for j ∈ J ,

where δxj is the unit Dirac measure at xj.

http://www.journalofinequalitiesandapplications.com/content/2013/1/9
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Lemma . Assume f (x,u) satisfies (f), the sequence {un} is bounded in W ,p
 (�) and sat-

isfies (.). Then the set J = {x,x, . . . ,xj} ⊂ � is finite, μ – λγ = .

Proof We first prove that μj =  for any xj ∈ J .
Let ε >  be small enough such that  /∈ Bε(xj) andBε(xi)∩Bε(xj) = ∅ for i 	= j. φj(x) ∈ [, ]

is a cutting-off function in C∞
 (�). φj(x)≡  for |x– xj| < ε/, φj(x)≡  for |x– xj| ≥ ε, and

|�φj| ≤ /ε. Since

〈
I ′(un),unφj

〉
=

∫
|�un|pφj dx + 

∫
|�un|p–�un∇un∇φj dx

+
∫

un|�un|p–�un�φj dx

–
∫

λ
|un|p
|x|p φj dx –

∫
f (x,un)unφj dx, (.)

we deduce that

lim
ε→

lim
n→+∞

∫
|�un|pφj dx = lim

ε→

∫
φj dμ ≥ lim

ε→

∫
|�u|pφj dx +μj = μj,

lim
ε→

lim
n→+∞

∣∣∣∣
∫ |un|p

|x|p φj dx
∣∣∣∣ ≤ lim

ε→
lim

n→+∞

∫
Bε(xj)

|un|p
(|xj| – ε)p

|φj|dx = ,

lim
ε→

lim
n→+∞

∫
|un|p*φj dx = lim

ε→

∫
|u|p*φj dx + νj = νj, (.)

lim
ε→

lim
n→+∞

∫
|un|φj dx = lim

ε→

∫
|u|φj dx = . (.)

By Hölder’s inequality,

lim
ε→

lim
n→+∞

∣∣∣∣
∫

|�un|p–�un∇un∇φj dx
∣∣∣∣

≤ lim
ε→

lim
n→+∞‖�un‖p–Lp(Bε (xj))‖∇un‖LNp/(N–p)(Bε(xj))‖∇φj‖LN (Bε(xj))

≤ C lim
ε→

‖�un‖pLp(Bε (xj)) = ,

lim
ε→

lim
n→+∞

∣∣∣∣
∫

|�un|p–�unun�φj dx
∣∣∣∣

≤ lim
ε→

lim
n→+∞‖�un‖p–Lp(Bε (xj))‖un‖Lp* (Bε (xj))

‖�φj‖LN/(Bε(xj))

≤ C lim
ε→

‖un‖Lp* (Bε(xj))
= .

Using (f), (.) and (.), we have

lim
ε→

lim
n→+∞

∫ ∣∣f (x,un)unφj
∣∣dx ≤ lim

ε→
lim

n→+∞

(
ε

∫
|un|p*φj dx +Cε

∫
|un|φj dx

)
= .

By the above estimates, (.) becomes

 = lim
ε→

lim
n→+∞

〈
I ′(un),unφj

〉 ≥ μj. (.)

Therefore, for any j ∈ J , μj = , which implies that J is finite.

http://www.journalofinequalitiesandapplications.com/content/2013/1/9
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If the concentration is at the origin, let φ(x) ∈ [, ] be a cutting-off function in C∞
 (�).

φ(x)≡  for |x| < ε/, φ(x) ≡  for |x| ≥ ε, and |�φ| ≤ /ε. Choose ε >  small enough
such that xj /∈ Bε() for all j ∈ J . Then

lim
ε→

lim
n→+∞

∫
|�un|pφ dx = lim

ε→

∫
φ dμ ≥ lim

ε→

∫
|�un|pφ dx +μ = μ, (.)

lim
ε→

lim
n→+∞

∣∣∣∣
∫ |un|p

|x|p φ dx
∣∣∣∣ = lim

ε→

∫
Bε (xj)

|u|p
|x|p |φ|dx + γ = γ. (.)

Similarly, we can get

lim
ε→

lim
n→+∞

∫ (
|�un|p–�un∇un∇φ + |�un|p–�unun�φj

)
dx = , (.)

lim
ε→

lim
n→+∞

∫ ∣∣f (x,un)unφ
∣∣dx = . (.)

From equalities (.)-(.), we get

 = lim
ε→

lim
n→+∞

〈
I ′(un),unφ

〉 ≥ μ – λγ. (.)

On the other hand, μ – λγ ≥ Sp,λν
p
p*
 ≥ , thus μ – λγ = . The proof is complete. �

Lemma . Assume f (x,u) satisfies (f), the sequence {un} satisfying (.) is bounded in
W ,p

 (�). Then there exist some u ∈W ,p
 (�) and a subsequence, still denoted by {un}, such

that

un → u strongly in Lp
*
(�ε),

∇un → ∇u strongly in L
Np
N–p (�ε),

where �ε = � \ ⋃j
i= Bε(xi), xi ∈ J = {x,x, . . . ,xj} ∪ {}.

Proof Lemma . implies that J is finite. Choose ϕ ∈ C∞
 (�) with ϕ(xi) =  for any xi ∈

J ∪ {}. Then
∫

|ϕun|p* dx =
∫

|ϕu|p* dx +
j∑

i=

νiϕ
p* (xi) + νϕ

p* ()

=
∫

|ϕu|p* dx. (.)

Since ϕun → ϕu a.e. in �, we get that

un → u strongly in Lp
*
(�ε).

Similarly,

∇un → ∇u strongly in L
Np
N–p (�ε). �

http://www.journalofinequalitiesandapplications.com/content/2013/1/9
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By using the Lebesgue decomposition theorem, we have

dμ – λdγ = |�u|p – λ
|u|p
|x|p + dσ , (.)

where (|�u|p – λ|u|p|x|–p) ⊥ dσ . Then dσ ≥ ∑
j∈J μjδxj + (μ – λγ)δ.

Lemma . Assume f (x,u) satisfies (f)-(f), the sequence {un} ∈ W ,p
 (�) satisfies (.).

Then there exist u ∈ W ,p
 (�) and a subsequence, still denoted by {un}, such that un con-

verges to u strongly in W ,p
 (�).

Proof We first prove that

(
σ –

∑
j∈J

μjδxj – (μ – λγ)δ
)
(�) = . (.)

Claim for any closed set F ⊂ � \ J , J = J ∪ {}, σ (F) = . In fact, denote r = dist(F , J) > .
Then, by using a finite covering theorem, there exist finite open balls Br/(zi), with zi ∈ F ,
i = , . . . ,m, such that F ⊂ ⋃m

i= Br/(zi) ⊂ � \ J . Let �(t) be a smooth cutting-off function.
 ≤ �(t) ≤  for any t ∈ [,∞). �(x) ≡  for  ≤ t ≤ /, and � ≡  for t ≥ . Denote ηε,y =
�(|x – y|/ε), then

∫
RN

|∇ηε,y|N dx =
∫ 

/

∣∣�′(t)
∣∣N dt = C, (.)

∫
RN

|�ηε,y|N dx :=
∫ 

/

∣∣�′′(t)
∣∣N dt = C. (.)

The sequence {ηε,yun} is still bounded inW ,p
 (�). Define

η(x) =
m∑
i=

ηr/,zi (x), (.)

then η(x) ∈ C∞
 (� \ J) and  ≤ η(x)≤ m. Furthermore,

F ⊂
m⋃
i=

B r

(zi) ⊂ sptη(x)⊂ � r


, (.)

where sptη(x) denotes the support of η(x). As n→ +∞, (.) implies

 ← 〈
I ′(un) – I ′(u), (un – u)η

〉

=
∫

�

η
(|�un|p – |�un|p–�un�u – |�u|p–�u�un + |�u|p)dx

– λ

∫
�

η

|x|p
(|un|p – |un|p–unu – |u|p–uun + |u|p)dx

+ 
∫

�

∇η∇(un – u)
(|�un|p–�un – |�u|p–�u

)
dx

+
∫

�

�η(un – u)
(|�un|p–�un – |�u|p–�u

)
dx

http://www.journalofinequalitiesandapplications.com/content/2013/1/9
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–
∫

�

η(un – u)
(
f (x,un) – f (x,u)

)
dx

= I + II + III + IV +V .

As n→ +∞,

I + II =
∫

�

η
(|�un|p – |�un|p–�un�u – |�u|p–�u�un + |�u|p)dx

– λ

∫
�

η

|x|p
(|un|p – |un|p–unu – |u|p–uun + |u|p)dx

=
∫

�

η

(
|�un|p – |�u|p – λ

|un|p – |u|p
|x|p

)
dx + o()

=
∫

�

ηdσ + o(),

where we have used (.). Lemma . implies that ‖un‖ ≤ M. Hölder’s inequality, (.)-
(.) and Lemma . deduce that

|III| = 
∣∣∣∣
∫

�

∇η∇(un – u)
(|�un|p–�un – |�u|p–�u

)
dx

∣∣∣∣

≤ C
∫

�

(|�un|p + |�u|p)dx‖∇η‖N
(∫

spt(η)

∣∣∇(un – u)
∣∣ Np
N–p dx

)N–p
Np

≤ C(m,M,p)C

(∫
� r



∣∣∇(un – u)
∣∣ Np
N–p dx

)N–p
Np

→  as n→ +∞,

|IV | =
∣∣∣∣
∫

�

(un – u)�η
(|�un|p–�un – |�u|p–�u

)
dx

∣∣∣∣

≤ C(m,M,p)C

(∫
� r



|un – u|p* dx
) 

p*

→  as n→ +∞.

By (.), for any ε > , we have

|V | =
∣∣∣∣
∫

�

(
f (x,un) – f (x,u)

)
(un – u)ηdx

∣∣∣∣
≤

∫
�

(∣∣f (x,un)∣∣ + ∣∣f (x,u)∣∣)|un – u|ηdx

≤
∫

�

(
Cε + ε

(|un|p*– + |u|p*–))|un – u|ηdx

≤ Cε

∫
�

|un – u|ηdx + ε
(‖un‖p*–p* + ‖u‖p*–p*

)(∫
spt(η)

|un – u|p* dx
) 

p*

≤ Cε

∫
�

|un – u|dx + εC(M)

→  as n→ +∞, ε → .
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Therefore, as n→ +∞,

 ≤ σ (F)≤ σ
(
spt(η)

) ≤
∫

�

ηdσ ≤ |III| + |IV | + |V | = . (.)

Since the set F is arbitrary, (.) is obtained.
Lemma . means that μj =  for any j ∈ J and μ – λγ = , so σ (�) = , which implies

that as n→ +∞,

∫
�

(
|�un|p – λ

|un|p
|x|p

)
dx →

∫
�

(
|�u|p – λ

|u|p
|x|p

)
dx. (.)

Together with un → u a.e. in �, we complete the proof. �

3 The proof of themain result
In this section, by using the following symmetric mountain pass theorem (see []), we
give the proof of Theorem ..

Lemma . (Symmetric mountain pass theorem) Assume functional I satisfies the follow-
ing conditions:
() I ∈ C(W ,p

 (�),R) is even and satisfies the Palais-Smale condition.
() There exists a finite dimensional subspace X ∈W ,p

 (�) such that I|X∩∂Br ≥ a > .
() There exists a sequence of the finite dimensional subspace {Xj}, dim(Xj) = j and rj > 

such that

I(u) ≤  for any u ∈ Xj \ Brj , j = , , . . . .

Then I has infinitely many different critical points, and the corresponding energy values are
positive.

Proof of Theorem . We know the energy functional I(u) is continuous and even.
Lemma . implies that I(u) satisfies the PS condition in W ,p

 (�). In any finite dimen-
sional subspace X ⊂W ,p

 (�), all norms are equivalent. For any u ∈ X, since F(x,u) = o(up)
as u→ , there exists a constant q > p such that

I(u) =

p

∫
�

(
|�u|p – λ

|u|p
|x|p

)
dx –

∫
�

F(x,u)dx

≥ 
p
‖u‖p –C‖u‖q >  for u small enough. (.)

Thus, there exists r >  such that I|X∩∂Br ≥ a > . On the other hand, by using (.), we
have

I(u) =

p

∫
�

(
|�u|p – λ

|u|p
|x|p

)
dx –

∫
�

F(x,u)dx

≤ 
p
‖u‖p –C

∫
{x∈�:|u|>M}

|u|p+θ dx –C′

≤ 
p
‖u‖p –C‖u‖p+θ –C′ → –∞ as u→ ∞.
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There exists a sequence of the finite dimensional subspace {Xj}, dim(Xj) = j and rj >  such
that

I(u) ≤  for any u ∈ Xj \ Brj , j = , , . . . .

Finally, all the assumptions of Lemma . are satisfied. Hence, the problem (.) possesses
infinitely many weak solutions, and the corresponding critical values are positive. �

Remark . Under the same conditions of Theorem ., we can also prove that the fol-
lowing p-harmonic type equation with Navier boundary conditions:

⎧⎨
⎩

�(|�u|p–�u) – λ
|u|p–u
|x|p = f (x,u), x ∈ �,

u = �u = , x ∈ ∂�,
(.)

has infinitely many solutions {un} ∈ W ,p(�) ∩ W ,p
 (�), where � containing the origin

is an open bounded domain in R
N , ∂� is smooth.  < p < N

 ,  ≤ λ < λ = [N(p – )(N –
p)/p]p.

Remark . All the results obtained above obviously hold if we choose f (x,u) = |u|q–u+
|u|r–u with p < q < r < p*.
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