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Abstract
In the present paper, we would like to introduce a simple transformation for bivariate
means from which we derive a lot of new means. Relationships between the standard
means are also obtained. A simple link between the Stolarsky mean and the Gini
mean is given. As applications, this transformation allows us to extend some means
from two to three or more arguments.
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1 Introduction and basic notions
In the recent past, the theory of means has been the subject intensive research. It has
proved to be a useful tool for theoretical viewpoint as well as for practical purposes. For
the definition of a mean, various statements, more or less different, can be found in the
literature; see [] and the references therein. Throughout this paper, we adopt the following
definition.

Definition . A functionm : (,∞)× (,∞) –→ (,∞) is called a mean if

∀a,b >  min(a,b)≤ m(a,b)≤ max(a,b).

From this, it is clear that everymean iswith positive values and reflexive, that is,m(a,a) =
a for each a > . The maps (a,b) �–→ min(a,b) and (a,b) �–→ max(a,b) are (trivial) means
which will be denoted by min and max, respectively. The standard examples of means are
given as follows:

A := A(a,b) =
a + b


; G :=G(a,b) =
√
ab; H :=H(a,b) =

ab
a + b

;

L := L(a,b) =
b – a

lnb – lna
, L(a,a) = a;

I := I(a,b) =

e

(
bb

aa

)/(b–a)

, I(a,a) = a;

S := S(a,b) = aa/(a+b)bb/(a+b); C := C(a,b) =
a + b

a + b
;

P := P(a,b) =
b – a

 arctan
√
b/a – π

=
b – a

 arcsin b–a
b+a

, P(a,a) = a
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and are known as the arithmetic, geometric, harmonic, logarithmic, identric, weighted
geometric, contraharmonic and (first) Seiffert means, respectively.
The set of all means can be equipped with a partial ordering, called a point-wise order,

defined bym ≤ m if and only ifm(a,b)≤ m(a,b) for every a,b > .We writem <m if
and only ifm(a,b) <m(a,b) for all a,b >  with a �= b. With this, the above means satisfy
the known chain of inequalities

min <H <G < L < P < I < A < S < C <max .

A mean m is symmetric if m(a,b) =m(b,a) and homogeneous if m(ta, tb) = tm(a,b) for
all a,b, t > . The above means are all symmetric and homogeneous. However, the mean
(a,b) �–→ (a + b)/ is (homogeneous) not symmetric, while (a,b) �–→ ln( ea+eb ) is (sym-
metric) not homogeneous. The mean (a,b) �–→ ln( ea+eb ) is neither symmetric nor homo-
geneous.
A mean m is called monotone if (a,b) �–→ m(a,b) is increasing in a and in b, that is, if

a ≤ a (resp. b ≤ b), thenm(a,b) ≤ m(a,b) (resp.m(a,b)≤ m(a,b)). There aremany
means which are not monotone. For example, it is easy to see that the means A, G, H , L
are monotone but C is not. However, extending the above definitions of reflexivity and
monotonicity from a mean to a general binary map, the following result is of interest [,
].

Proposition . Let m be a monotone and reflexive map. Then m is a mean.

For a given mean m, we set m*(a,b) = (m(a–,b–))–, and it is easy to see that m* is also
a mean, called the dual mean of m. If m is homogeneous, then so is m* with m*(a,b) =
ab/m(b,a). If m is symmetric and homogeneous, then so is m*, and in this case, we have
m*(a,b) = ab/m(a,b). Every mean m satisfies m** := (m*)* =m, and if m and m are two
means such thatm ≤ m, thenm*

 ≥ m*
. One can check thatmin* =max andmax* =min.

Further, the arithmetic and harmonic means are mutually dual (i.e., A* = H , H* = A) and
the geometric mean is self-dual (i.e., G* = G). The dual of the logarithmic and identric
means has been studied by the second author in [].
The following inequalities are immediate from the above:

min < C* < S* <H < I* < P* < L* <G < L < P < I < A < S < C <max .

Remark . Let k : ], +∞[–→ ], +∞[ be a monotone continuous function and denote
by k– its inverse function. An extension of the dual mean can be given by mk(a,b) =
k–(m(k(a),k(b))). It is easy to verify that mk is a mean. For k(x) = /x, we obtain the
classical dual. If we choose k(x) = x–r with r > , then we get the following generalized
dual m*r (a,b) = (m(a–r,b–r))–/r . If m is symmetric and homogeneous, then m*r (a,b) =
ab/(m(ar,br))/r .

Let m be a homogeneous mean. Writing m(a,b) = bm(a/b, ), we then associate to m a
unique positive function f defined by f (x) = m(x, ) for all x > . The function f will be
called the associated function to the mean m, or we simply say that f corresponds to the
mean m. It follows that f corresponds to a homogeneous mean if and only if min(x, ) ≤

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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f (x)≤ max(x, ). Clearly, f () = , and if, moreover,m is symmetric, then f (x) = xf (/x) for
every x > . It is obvious that a mean m is monotone if and only if its associated function
is increasing. For example, the contraharmonic mean C is not monotone because its as-
sociated function f (x) = (x + )/(x + ) satisfies (x + )f ′ (x) = x + x – , and it is easy to
see that f is not increasing for all x > , but only for x >

√
 – .

Now, let us observe the next question : under which sufficient condition a given function
f is the associated function of a certain mean? The following result gives an answer to this
situation; see [], Remark .

Proposition . Let f : ], +∞[–→ ],∞[ be a function such that min(x, ) ≤ f (x) ≤
max(x, ) for every x > . Then m(a,b) = bf (a/b) defines a (homogeneous) mean. If, more-
over, f is increasing with f (x) = xf (/x) for each x > , then m is monotone symmetric.

The next result is also of interest to our present paper; see [, ].

Proposition . Let m be a symmetric and homogeneous mean having a strictly increas-
ing associated function f . Then f *, the associated function to the dual mean m*, is strictly
increasing, too.

By virtue of the relationm** =m (and so f ** = f ), the result of the above proposition is in
fact an equivalence. It follows that the associated function of the dualC* will be not always
increasing since that of C is not.
In the literature, there are some families of means which include the above familiar

means. Precisely, let p and q be two real numbers. The Stolarsky mean Ep,q of order (p,q)
is defined for all a,b >  such that a �= b as well by

Ep,q(a,b) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( pq
bq–aq
bp–ap )

/(q–p) if pq(p – q) �= ,
exp(– 

p +
ap lna–bp lnb

ap–bp ) if p = q �= ,
( p

bp–ap
lnb–lna )

/p if p �= ,q = ,√
ab if p = q = 

with Ep,q(a,a) = a, while the Gini mean Gp,q of order (p,q) is defined by

Gp,q(a,b) :=

⎧⎪⎨
⎪⎩
( aq+bqap+bp )

/(q–p) if p �= q,
exp( ap lna+bp lnbap+bp ) if p = q �= ,√
ab if p = q = .

Clearly, the means Ep,q andGp,q are symmetric and homogeneous. Further, Ep,q andGp,q

are symmetric in p and q. It is worth mentioning that

Ep,p(a,b) =G,p(a,b) =

{
( ap+bp )/p if p �= ,√
ab if p = 

is called the powermean of order p. It is well known that Ep,q andGp,q are strictly increasing
with both p and q. For particular choices of p and q, we find again

E–,– =H < E, =G < E, = L < E, = I < E, =G, = A <G, = S <G, = C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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2 Amean-transformation
The following formula

L(a,b) =
∞∏
n=

A
(
a/

n
,b/

n)
:=

∞∏
n=

a/n + b/n


()

is well known in the literature []; see also [, ] for another approach. The aim of this
section is to observe () in a general point of view. The second side of () is an infinite
product involving the arithmetic mean A and the geometric sequence (/n). Let us try to
replace A by an arbitrary meanm and (/n) by a general sequence. Two points arise from
this situation: the corresponding infinite product should be convergent and we need its
value to define a mean. By virtue of the double inequality

min(a,b)≤ m(a,b)≤ max(a,b),

which is valid for every mean m, the infinite product
∏∞

n=m(atn ,btn ) will be convergent
provided that the sequence (tn) has a constant sign and the series

∑∞
n= tn is convergent.

We must choose (tn) positive and satisfying
∑∞

n= tn = , and so we have

min(a,b)≤
∞∏
n=

m
(
atn ,btn

) ≤max(a,b). ()

Summarizing the above, we may state the following.

Definition . Let t = (tn)n≥ be a positive sequence such that
∑∞

n= tn =  and m be a
mean. For all a,b > , define

mπt (a,b) =
∞∏
n=

m
(
atn ,btn

)
()

which we call the t-transformation ofm.

We explicitly notice that the convergence of the infinite product in () is shown by the
double inequality ().
The elementary properties of the mean-transformation m –→ mπt are summarized in

the next result.

Proposition . Let m,m,m be givenmeans and t = (tn) be a positive sequence such that∑∞
n= tn = . Then the following assertions are fulfilled:
(i) mπt is a mean.
(ii) If m is homogeneous (resp. symmetric,monotone), then so is mπt and the associated

function f πt to mπt is given by

∀x >  f πt (x) =
∞∏
n=

f
(
xtn

)
,

where f is the associated function to m.

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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(iii) (mπt )*s = (m*s )πt for each s > , where *s denotes the generalized dual mean (see
Remark .).

(iv) m <m =⇒mπt
 <mπt

 .
(v) ∀α ∈ [, ] (m–α

 mα
 )πt = (mπt

 )–α(mπt
 )α .

Proof
(i) It is already proved by ().
(ii) The symmetry of mπt from that of m is obvious, while the monotonicity of mπt fol-

lows from the fact thatm is monotone andmπt is defined as (infinite) product of positive
terms. Now, assume that m is homogeneous. By definition, we have for all a,b,α > 

mπt (αa,αb) =
∞∏
n=

m
(
(αa)tn , (αb)tn

)
=

∞∏
n=

αtn
∞∏
n=

m
(
atn ,btn

)
.

The homogeneity ofmπt follows since
∏∞

n= α
tn = α

∑∞
n= tn = α.

The homogeneity of m and mπt implies, with (), that the associated function of mπt is
given by

∀x >  f πt (x) =mπt (x, ) =
∞∏
n=

m
(
xtn , 

)
=

∞∏
n=

f
(
xtn

)
.

(iii) By definition, we have successively

(
mπt

)*s (a,b) = (
mπt

(
a–s,b–s

))–/s =
( ∞∏

n=

m
(
a–stn ,b–stn

))–/s

=
∞∏
n=

(
m

((
atn

)–s, (btn)–s))–/s = ∞∏
n=

m*s
(
atn ,btn

)
=

(
m*s

)πt .

(iv) and (v) are not difficult. Details are omitted for the reader as a simple exercise. �

We now present the following examples. In all these examples, the sequence t = (tn) is
as in the above.

Example . It is easy to verify that Gπt =G. Otherwise, we have

Aπt (a,b) =
∞∏
n=

atn + btn


≤

∞∏
n=

(
a + b


)tn
=
a + b


= A(a,b),

with strict inequality for a �= b since  < tn <  and the map x �–→ xα is strictly concave for
 < α < . We then have Aπt < A, and by Proposition .(iii) and (iv), we deduce H < Hπt .
In summary, we have

H <Hπt <Gπt =G < Aπt < A. ()

Example . According to the definition, with (), we have

Lπt (a,b) =
∞∏
n=

L
(
atn ,btn

)
=

∞∏
n=

∞∏
i=

atn/i + btn/i


≤

∞∏
i=

∞∏
n=

(
a/i + b/i



)tn

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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for the same reason as in the above example. Then

Lπt (a,b)≤
∞∏
i=

(
a/i + b/i



)∑∞
n= tn

=
∞∏
i=

a/i + b/i


= L(a,b).

Further, the above inequalities are strict for a �= b. It follows that Lπt < L and so

L* < L*πt <Gπt =G < Lπt < L. ()

Example . It is well known that

I(a,b) = exp
∫ 


log

(
( – s)a + sb

)
ds.

With this we have

Iπt (a,b) =
∞∏
n=

(
exp

∫ 


log

(
( – s)atn + sbtn

)
ds

)

= exp

( ∞∑
n=

∫ 


log

(
( – s)atn + sbtn

)
ds

)

≤ exp

( ∞∑
n=

∫ 


log

(
( – s)a + sb

)tn ds
)
.

We deduce that Iπt (a,b)≤ I(a,b) with strict inequality for a �= b. It follows that Iπt < I and
so

I* < I*πt <Gπt =G < Iπt < I. ()

Reduction of the three chains of inequalities (), () and () in one chain does not appear
to be obvious. However, for the particular case tn = /n, the above three chains can be
reduced into one chain; see Corollary . in Section  below.

Example . Let r be a real number such that  < r < . Setting tn = ( – r)rn–, we have∑∞
n= tn = , and so the hypotheses of the above definition are satisfied. In this case, we

write

mπt (a,b) :=mπr (a,b) =
∞∏
n=

m
(
a(–r)r

n–
,b(–r)r

n–)
.

The situation of this example will be developed below.

In what precedes, starting from a given mean m, we have defined a new class of means
mπt provided that the positive sequence t = (tn) satisfies

∑∞
n= tn = . Our procedure can

be recursively continued: for k positive sequences t = (tn,), t = (tn,), . . . , tk = (tn,k) such
that

∑∞
n= tn,i =  for i = , , . . . ,k, we can define the following:

mπTk =
(
mπTk–

)πtk ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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where we set Tk := (t, t, . . . , tk), or explicitly,

mπTk (a,b) =
∞∏
n=

m
(
aTn,k ,bTn,k

)
,

with Tn,k :=
∏k

i= tn,i. In particular, if tn,i = ( – ri)rn–i with  < ri <  for i = , , . . . ,k, we
obtain

mπRk (a,b) =
∞∏
n=

m
(
aRn,k ,bRn,k

)
,

where we put

Rk := (r, r, . . . , rk) and Rn,k :=
k∏
i=

( – ri) ·
( k∏

i=

ri

)n–

.

In what follows, we will explore this latter situation in more detail. For the sake of sim-
plicity, we restrict ourselves to the case r = /. The general case can be stated in a similar
manner and we leave it to the reader. Precisely, we put the following.

Definition . Let m be a given mean. We set mπ = m, mπ = mπ and, for all integer
k ≥ ,

mπk+ =
(
mπk

)π =
(
mπ

)πk .

Clearly,mπk is a mean for all k ≥ . The next example may be stated.

Example . We have Gπk =G for each k ≥ . Formula () written in a brief form L = Aπ ,
with a mathematical induction, yields

Lπk– (a,b) = Aπk (a,b) =
∞∏

n,n,...,nk=

A
(
a/

Nk ,a/
Nk ),

where we put Nk :=
∑k

i= ni for every k ≥ .

If we apply the above definition to the standard means, we obtain the following iterative
inequalities:

G < Lπk < Pπk < Iπk < Aπk = Lπk– < Pπk– < Iπk– < Aπk– = Lπk– < · · · . ()

A sequence (mk)k of means will be called point-wise convergent (in short p-convergent)
if, for all a,b > , the real sequence (mk(a,b))k converges. Settingm∞(a,b) = limk mk(a,b),
it is easy to see that m∞ is a mean. Similarly, we define the point-wise monotonicity of
(mk)k . By virtue of the double inequality

min(a,b)≤ mk(a,b)≤ max(a,b),

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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we deduce that every p-increasing (resp. p-decreasing) sequence (mk)k is p-convergent.
This together with inequalities () implies that the mean-sequences (Lπk )k , (Pπk )k , (Iπk )k
and (Aπk )k are decreasingly p-convergent. Then, what are their limits? The answer to this
latter question will be presented in the next section after stating some needed results.

3 Study of a special case
As already pointed before, this section will be devoted to studying the family of meansmπt

for the case tn = ( – r)rn– with  < r < . We recall the following formula:

mπt (a,b) :=mπr (a,b) =
∞∏
n=

m
(
a(–r)r

n–
,b(–r)r

n–)
, ()

which we call the r-decomposition ofm. If r = /, we simply write mπ , that is,

mπ (a,b) :=
∞∏
n=

m
(
a/

n
,b/

n)
.

In what follows, wewill see that themeanmπr satisfies good properties, the first of which
is announced as well.

Proposition . With the above, the following assertions hold true:
(i) For all a,b >  and  < r < , we have

mπr
(
a/(–r),b/(–r)

)
=mπr

(
ar/(–r),br/(–r)

)
m(a,b). ()

In particular (for r = /), we obtain mπ (a,b) =mπ (a,b)m(a,b).
(ii) Assume that m is homogeneous and let f and f πr be the associated functions of m

andmπr , respectively. Then, for every x > , one has

f πr
(
x/(–r)

)
= f πr

(
xr/(–r)

)
f (x). ()

In particular (for r = /), we obtain f π (x) = f π (x)f (x).

Proof
(i) By () we have successively

mπr
(
a/(–r),b/(–r)

)
=

∞∏
n=

m
(
ar

n– ,brn–
)

=m(a,b)
∞∏
n=

m
(
ar

n– ,brn–
)
=m(a,b)

∞∏
n=

m
(
ar

n ,brn
)
.

The desired result follows after a simple manipulation.
(ii) Follows from the fact that m(a,b) = bf (a/b) when combined with (i). The proof is

completed. �

From the above proposition, we can derive some interesting results. The first result con-
cerns an answer to the question that has been put in the above section.

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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Corollary . Let m be a symmetric and homogeneous mean such that (mπk )k is p-
convergent. Then its limit is mπ∞ = G, the geometric mean. In particular, (Lπk )k , (Pπk )k ,
(Iπk )k and (Aπk )k are decreasingly p-convergent to the same limit G.

Proof If (mπk )k is p-convergent, then the sequence (f πk )k is also p-convergent, where f πk

is the associated function of mπk . That is, there exists a function (corresponding to a
symmetric homogeneous mean) such that g(x) = limk f πk (x) for each x > . According to
Proposition .(ii) and the recursive definition ofmπk , we can write

∀x >  f πk
(
x

)
= f πk (x)f πk– (x).

Then we deduce, by letting k → ∞,

∀x >  g
(
x

)
= g(x)g(x) =

(
g(x)

).
It follows that g(x) =

√
x, which is the associated function of G, in this way proving the

first part of the proposition. For the second part, as already pointed before, the sequences
(Lπk )k , (Pπk )k , (Iπk )k and (Aπk )k are p-decreasing. It follows that they p-converge and by
the first part they have G as a common limit. The proof of the proposition is complete.

�

Corollary . Letm andm be two homogeneousmeans such thatmπr
 =mπr

 for a certain
r ∈ ], [. Then m =m.

Proof Let f and g be the associated functions of m and m, respectively. Assume that
mπr

 =mπr
 for some r ∈ ], [, then f πr (x) = gπr (x) for all x >  and so

f πr
(
xr/(–r)

)
= gπr

(
xr/(–r)

)
.

It follows that

f πr
(
xr/(–r)

)
f (x) = gπr

(
xr/(–r)

)
f (x),

and by Proposition .(ii), we obtain

f πr
(
x/(–r)

)
= gπr

(
xr/(–r)

)
f (x).

Since f πr (x) = gπr (x) for all x > , then

gπr
(
x/(–r)

)
= gπr

(
xr/(–r)

)
f (x),

or by Proposition .(ii) again,

gπr
(
xr/(–r)

)
g(x) = gπr

(
xr/(–r)

)
f (x).

We deduce that f (x) = g(x) for each x >  and som =m, which completes the proof. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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Now, let us observe the next question: Does () (resp ()) characterize mπr for a given
mean (resp. homogeneous mean) m? For the sake of simplicity, we assume that m is ho-
mogeneous and we will prove the following theorem.

Theorem. Letm be a homogeneousmeanwith its associated function f and let  < r < .
Assume that there exists a continuous function fr such that fr() =  and

∀x >  fr
(
xα

)
= fr

(
xα–)f (x), with α := /( – r) > . ()

Then fr is the associated function of mπr defined by ().

Proof Assume that () holds. It is equivalent to

∀x >  fr(x) = fr
(
xr

)
f
(
x–r

)
. ()

But we can apply this to write

∀x >  fr
(
xr

)
= fr

(
xr

)
f
(
xr–r

)
,

which when substituted in () yields

∀x >  fr(x) = fr
(
xr

)
f
(
xr(–r)

)
f
(
x–r

)
.

By a simple mathematical induction, we can establish that for all integer N ≥  we have

∀x >  fr(x) = fr
(
xr

N ) N∏
n=

f
(
x(–r)r

n–)
.

Since  < r < , then rN tends to  when N goes to +∞. Letting N → +∞ in the previous
equality, with the fact that fr is continuous and fr() = , we obtain

fr(x) =
∞∏
n=

f
(
x(–r)r

n–)
,

which, following Proposition .(ii), is the associated function ofmπr , in this way proving
the desired result. �

We now present some examples illustrating the above. In all these examples, r and α are
such that  < r < , α := /( – r) > .

Example . Let f (x) =
√
x be the associated function of G. We have f (xα)/f (xα–) =

√
x,

that is, Gπr =G for all  < r < , which has been already pointed before.

Example . Let f (x) = (x + )/ be the associated function of A. Clearly, we have

f (xα)
f (xα–)

=
xα + 
xα– + 

,
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which is the associated function ofGα–,α . Otherwise,Gπr
α–,α = A. In particular, with r = /

(and so α = ), we obtain Cπ = A. By Proposition ., we deduce C*π =H .

Example . Let f (x) = (x – )/ lnx, x > , with f () =  be the associated function of L.
A simple computation leads to

f (xα)
f (xα–)

=
α – 

α

xα – 
xα– – 

,

which is the associated function of Eα–,α , that is, Eπr
α–,α = L. In particular (if r = /, α = ),

we find Aπ = L and so Hπ = L*.

Example . Let f (x) = e–xx/(x–), x > , with f () =  be the associated function of I .
Similarly, we obtain

f (xα)
f (xα–)

= exp

[(
αxα

xα – 
–
(α – )xα–

xα– – 

)
lnx

]
.

To find out if this latter function corresponds to a certain homogeneous mean for all α > 
is left to the reader. For the particular case r = /, α = , the answer to this question is
obviously positive since f (x)/f (x) = xx/(x+) is the associated function of S. We then have
Sπ = I and so S*π = I*.

Example . Let f (x) = x–
arcsin x–

x+
, x > , with f () =  be the associated function of P. Ob-

viously, we have

f (x)
f (x)

= (x + )
arcsin x–

x+

arcsin x–
x+

.

The fact that this latter function is the associated function of a certain homogeneousmean
does not appear to be obvious. See the section below for a general point of view.

4 Decomposable means
For the sake of convenience, for concrete examples, we may introduce the following no-
tion.

Definition . Let m be a mean such that there exists a mean m and some r ∈ ], [
satisfying m = mπr

 . Then we say that m is (m, r)-decomposable. In the case r = /, we
simply saym ism-decomposable.

Proposition . With the above, the following properties are met:
(i) If m is (m, r)-decomposable, then for all s > , the generalized dual meanm*s is

(m*s
 , r)-decomposable.

(ii) If m is (m, r)-decomposable andm′ is (m, r)-decomposable, then for all α ∈ [, ],
m–αm′α is (m–α

 mα
 , r)-decomposable.

Proof
(i) Comes from Proposition .(ii).
(ii) It is an equivalent version of Proposition .(iv). �

http://www.journalofinequalitiesandapplications.com/content/2013/1/89
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Now, we will illustrate the above notions and results by some examples.

Example . We have already seen that Gπr = G for each r ∈ ], [. We say that G is self-
decomposable. Also, we can see that minπr =min and maxπr =max for every r ∈ ], [.

Example . The relationship (), written in a brief form Aπ = L, says that L is A-
decomposable. By Proposition .(i), we deduce that L* is H-decomposable. We have also
seen Sπ = I , that is, I is S-decomposable and so I* is S*-decomposable. We leave it to the
reader to see that A is C-decomposable and soH is C*-decomposable. Other examples, in
a more general point of view, will be stated below.

Example . In this example, we are interested in the link between two double-power
means, namely the Stolarsky andGini means. By virtue of this interest, we state its content
as an explicit result from which we will derive some interesting consequences.

Theorem. For all real numbers p, q, the Stolarskymean Ep,q is Gp,q-decomposable, that
is, the relationship

Ep,q = (Gp,q)π ()

holds for all real numbers p and q.

Proof Let

fp,q(x) =
(
xq – 
xp – 

)/(q–p)

, x > , with fp,q() = 

be the associated function of Ep,q, with convenient forms for p = q �=  and p �= , q = .
Using Proposition ., we obtain

f π
p,q(x)
f π
p,q(x)

=
(
xq – 
xp – 

.
xp – 
xq – 

)/(q–p)

,

which after simplification remains

f π
p,q(x)
f π
p,q(x)

=
(
xq + 
xp + 

)/(q–p)

.

This latter function is that associated to Gp,q, that is, Ep,q = Gπ
p,q. The proof is completed.

�

Corollary . The following chain of inequalities holds true:

Gπ =G < Lπ < Pπ < Iπ < Aπ = L < P < Sπ = I < Cπ = A < S < C. ()

Proof According to the above theorem, we immediately deduce the following:

Aπ = L, Cπ = A, Gπ =G, Sπ = I.
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Since G < L < P < I < A, Proposition .(iii) yields Gπ = G < Lπ < Pπ < Iπ < Aπ = L. The
desired inequalities follow by combining the two above chains of inequalities.
Another interesting consequence of the above theorem is that the increasemonotonicity

of Gp,q with both p, q implies that of Ep,q. In fact, by Proposition .(iii) and Theorem .,
we successively obtain

(p < p,q < q) =⇒ Gp,q <Gp,q =⇒ Gπ
p,q <Gπ

p,q

=⇒ Ep,q < Ep,q ,

in this way proving the desired aim. �

Theorem . contains more new applications: some extensions for Gp,q can imply anal-
ogous ones for Ep,q. See Section  below for more details concerning this latter situation.

Example . Similarly to the above, we leave it to the reader to establish thatMπ
p = Ep,,

whereMp refers to the Lehmer mean defined by

Mp(a,b) =
(
ap + ap/bp/ + bp



)/p

,

with M(a,b) = G(a,b). In particular, taking p = , we obtain (another decomposition of
L):

L =
(


A +



G

)π

.

We leave to the reader the routine task of formulating further examples in the aim to
obtain some links between other special means.
Now, a question arises naturally from the above: Is it true that every mean is (m, r)-

decomposable? In other words, let m be a given mean, do a mean m and a real number
 < r <  such that mπr

 =m exist? The answer to this latter question appears to be inter-
esting. In fact, for reason of simplicity, assume that m is homogeneous and we search for
a homogeneous meanm such thatmπ

 =m. According to Proposition ., it is equivalent
to have f (xα) = f (xα–)g(x) for all x > , where f denotes the associated function of the
given mean m and g will be that of the unknown mean m. That is to say, the function
x �–→ f (xα)/f (xα–) is the associated function to a certain mean m for some α > . Com-
bining this with Proposition ., we can state the next result, which gives an answer to the
above question.

Proposition . Let m be a homogeneous mean with its associated function f . For some
 < r < , we put

gr(x) = f
(
xα

)
/f

(
xα–), with α = /( – r) > .

Then the following assertions are equivalent:
(i) There exists a homogeneous mean m such that m is (m, r)-decomposable, that is,

m =mπ
 .
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(ii) The function x �–→ gr(x) is the associated function of a certain homogeneous mean.
(iii) The following inequalities:

f
(
xα–) ≤ f

(
xα

) ≤ xf
(
xα–)

hold for every x ≥ , with reversed inequalities for each x≤ .
If in the above the function x �–→ gr(x) is increasing and f is such that

∀x >  f
(
xα

)
f
(
x–α

)
= xf

(
x–α

)
f
(
xα–),

then the homogeneous mean m is symmetric and monotone.

The following corollary is immediate from the above proposition when combined with
Proposition ..

Corollary . Let m be a homogeneous mean with its associated function f and let us put
g(x) = f (x)/f (x). Then the following properties are equivalent:

(i) m is m-decomposable.
(ii) g is the associated function of a certain mean.
(iii) The double inequality

f (x)≤ f
(
x

) ≤ xf (x)

holds for all x≥ , with reversed inequalities for each x ≤ .
If,moreover, g is increasing and

∀x >  f
(
x

)
f (/x) = xf (x)f

(
/x

)
, ()

then m is a symmetric and monotone mean.

Corollary . Let m be a (symmetric) homogeneous monotone mean and let  < r <  be
a given real number. Then there exists a homogeneous mean m such that m is (m, r)-
decomposable. In particular, every (symmetric) homogeneous monotone mean m is m-
decomposable for some homogeneous mean m.

Proof Let f be the associated function ofm and set α = /( – r) > . Sincem is monotone,
then

m(x, )≤ m
(
xα , 

) ≤ m
(
xα ,x

)
for all x ≥ , with reversed inequalities for x ≤ . It follows that

f (x)≤ f
(
xα

) ≤ xf
(
xα–)

for every x ≥ , with reversed inequalities if x ≤ . By virtue of the above proposition, we
can conclude the first part of the announced result. Taking r = /, α = , we obtain the
second part and thus complete the proof. �
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In the above corollary, we explicitly notice that themeanm should bemonotone in order
to ensure that m is m-decomposable for some mean m, but m is not necessary mono-
tone. As an example, we have already seen that A is C-decomposable with A monotone
but C is not monotone.
We can formulate the above in another way. Let M, Mh,m, Ms,h,m denote the set of

means, homogeneous monotone means and symmetric homogeneous monotone means,
respectively. For fixed  < r < , let �r :M –→ M be defined by �r(m) = mπr for every
meanm. Clearly,�r(M) =Dr is the set of r-decomposablemeans and the followingmean-
chain of strict inclusions holds:

Ms,h,m ⊂Mh,m ⊂Dr ⊂M.

Example . The standard means A, H , G, L, I are all (symmetric) homogeneous and
monotone, then we find again that these means are decomposable. However, as already
pointed before, the contraharmonic mean C is not monotone and so we cannot apply
the above corollary. Let us try to apply directly Proposition .. We can easily verify that
the associated function f (x) = (x + )/(x + ) of C does not satisfy (iii) and so C is not
decomposable.

We leave it to the reader to check if the means S and P are decomposable or not.
The reader can easily verify that all the above standardmeansA,H ,G, L, I , P,C, S satisfy

relationship (). However, for the corresponding functions g , it is not alwaysmonotone as
in the case forA andH . In the general case, the following result gives a sufficient condition
for ensuring the increase monotonicity of g .

Proposition . Let m be a symmetric homogeneous monotone mean and f be its asso-
ciated function. Suppose that the function F(x) = f (x)/

√
x is strictly increasing. Then the

function g(x) = f (x)/f (x) will be strictly increasing.

Proof One has g(x) = F(x)k(x), where k(x) = x/f (x). Since f (/x) = f (x)/x is decreasing, we
get that k is increasing. Since F(x) is strictly increasing, we get that g is strictly increasing
(as a product of an increasing and a strictly increasing positive functions). �

Example . ThemeansG and L satisfy the conditions of the above proposition, whereas
the means A and H do not. This rejoins the fact that A is C-decomposable and H is C*-
decomposable with C and C* not monotone means. We leave it to the reader to verify if
the means I and P satisfy or not the conditions of the above proposition.

5 Application: means with several arguments
In this section, we investigate an application of our above theoretical study. This appli-
cation turns out the extension of some means from two variables to three or more argu-
ments.
As is well known, the definition of a mean involving three or more arguments can be

stated in a similar manner as that for bivariate mean. As special examples, the arithmetic,
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geometric and harmonic means with several variables are, respectively, given by

A(a,a, . . . ,ak) =
∑k

i= ai
k

,

G(a,a, . . . ,ak) = k

√√√√ k∏
i=

ai, H(a,a, . . . ,ak) =
(∑k

i= a–i
k

)–

.

Extensions of the weighted geometric mean S(a,b) and contraharmonic mean C(a,b) are
immediately given by

S(a,a, . . . ,ak) =
k∏
i=

aai/Ski with Sk =
k∑
i=

ai,

C(a,a, . . . ,ak) =
∑k

i= ai∑k
i= ai

.

The following result is well known in the literature.

Proposition . The following inequalities:

H(a,a, . . . ,ak) <G(a,a, . . . ,ak) < A(a,a, . . . ,ak)

< S(a,a, . . . ,ak) < C(a,a, . . . ,ak) ()

hold true for all distinct real numbers a,a, . . . ,ak .

However, the extension of the logarithm, identric and Seiffertmeans from two to three or
more variables does not appear to be obvious from the above expressions of these means.
In this sense, we refer the reader to [, –] for some extensions about the logarithmic
and identric means. Here, we will derive other extensions of these latter means from our
above study. In fact, the above transformation for means with two variables can be imme-
diately stated in a similar manner for means involving several variables. For instance, we
can define

mπ (a,a, . . . ,ak) =
∞∏
n=

m
(
a/

n
 ,a/

n
 , . . . ,a/

n
k

)
. ()

It is also simple to see that Gπ (a,a, . . . ,ak) =G(a,a, . . . ,ak) for all a,a, . . . ,ak .
The relationship L = Aπ , which has been stated as a result for two variables, allows us

to consider it as a definition for the logarithmic mean involving three or more arguments.
That is, we can suggest that

L(a,a, . . . ,ak) :=
∞∏
n=

A
(
a/

n
 ,a/

n
 , . . . ,a/

n
k

)

can be considered as a definition of the logarithmic mean with several variables. Now, the
fact that if this definition coincides or not with some other ones as these given in [, –
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] seems to be an interesting problem. We omit the details about this latter point which
is beyond our aim here.
Similarly, by virtue of the relation I = Sπ , we can put a definition for identric mean with

several variables

I(a,a, . . . ,ak) =
∞∏
n=

S
(
a/

n
 ,a/

n
 , . . . ,a/

n
k

)
.

The comparison of this definition of I(a,a, . . . ,ak) with that given in [, ] appears
also to be an interesting problem.
To give more justification for our above extensions, the following result, which extends

the inequalities G < L < I < A from two variables to several arguments, may be stated.

Proposition . With the above, the following inequalities:

G(a,a, . . . ,ak) < L(a,a, . . . ,ak) < I(a,a, . . . ,ak) < A(a,a, . . . ,ak)

hold for all distinct real numbers a,a, . . . ,ak .

Proof For the sake of simplicity, we write () in a brief form G < A < S < C. According
to (), we easily show that Gπ < Aπ < Sπ < Cπ . Since Gπ = G, Aπ = L, Sπ = I , we then
obtain G < L < I < Cπ . Using () again, a simple computation yields Cπ = A. The proof is
complete. �

More generally, the relationship Ep,q = Gπ
p,q appears to be a good tool for extending the

Stolarsky mean Ep,q(a,b) from two to three or more arguments. In fact, the Gini mean
Gp,q(a,b) seems simple to extend for several arguments as well:

Gp,q(a,a, . . . ,ak) =
(∑k

i= a
q
i∑k

i= a
p
i

)/(q–p)

,

with the convenient cases

Gp,p(a,a, . . . ,ak) = exp

(∑k
i= a

p
i lnai∑k

i= a
p
i

)
and G,(a,a, . . . ,ak) =G(a,a, . . . ,ak).

With this, we can suggest that the Stolarsky mean with several variables can be defined by

Ep,q(a,a, . . . ,ak) =
∞∏
n=

Gp,q
(
a/

n
 ,a/

n
 , . . . ,a/

n
k

)
.

Now, the question concerning the comparison of this definition of Ep,q(a,a, . . . ,ak) with
some other ones given in [, ] can be considered as an interesting purpose for future
research.
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