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Abstract
Using fixed point method, we establish the Hyers-Ulam stability of fuzzy
∗-homomorphisms in fuzzy C∗-algebras and fuzzy ∗-derivations on fuzzy C∗-algebras
associated to the following (m,n)-Cauchy-Jensen additive functional equation:

∑
1≤i1<···<im≤n

1≤kl ( �=ij ,∀j∈{1,...,m})≤n

f

(∑m
j=1 xij
m

+
n–m∑
l=1

xkl

)
=
(n –m + 1)

n

(
n

m

) n∑
i=1

f (xi).
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1 Introduction
The stability problem of functional equations originated from a question of Ulam [] con-
cerning the stability of group homomorphisms. Hyers [] gave the first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by
Rassias [] for linear mappings by considering an unbounded Cauchy difference.

Theorem . (T.M. Rassias) Let f : E → E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality ‖f (x + y) – f (x) – f (y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x, y ∈ E, where ε and p are constants with ε >  and  ≤ p < . Then the limit L(x) =
limn→∞ f (nx)

n exists for all x ∈ E, and L : E → E′ is the unique additive mapping which
satisfies

∥∥f (x) – L(x)
∥∥ ≤ ε

 – p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E, the function f (tx) is continuous in t ∈ R, then L is
R-linear.

The functional equation f (x+ y) + f (x– y) = f (x) + f (y) is called a quadratic functional
equation. In particular, every solution of the quadratic functional equation is said to be
a quadratic mapping. The Hyers-Ulam stability of the quadratic functional equation was
proved by Skof [] for mappings f : X → Y , where X is a normed space and Y is a Banach
space. Cholewa [] noticed that the theorem of Skof is still true if the relevant domain
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X is replaced by an Abelian group. Czerwik [] proved the Hyers-Ulam stability of the
quadratic functional equation.
The stability problems of several functional equations have been extensively investigated

by a number of authors, and there are many interesting results concerning this problem
(see [–]).
Katsaras [] defined a fuzzy norm on a vector space to construct a fuzzy vector topo-

logical structure on the space. Somemathematicians have defined fuzzy norms on a vector
space from various points of view (see [–]). In particular, Bag and Samanta [], fol-
lowing Cheng and Mordeson [], gave an idea of a fuzzy norm in such a manner that
the corresponding fuzzy metric is of Karmosil and Michalek type []. They established
a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated
some properties of fuzzy normed spaces [].
Now, we consider a mapping f : X → Y satisfying the following functional equation,

which is introduced by the first author:

∑
≤i<···<im≤n

≤kl ( �=ij ,∀j∈{,...,m})≤n

f

(∑m
j= xij
m

+
n–m∑
l=

xkl

)
=
(n –m + )

n

(
n
m

) n∑
i=

f (xi) ()

for all x, . . . ,xn ∈ X, where m,n ∈ N are fixed integers with n ≥ ,  ≤ m ≤ n. Especially,
we observe that in the case m = , equation () yields the Cauchy-type additive equation
f (

∑n
l= xkl ) =

∑n
l= f (xi). We observe that in the case m = n, equation () yields the Jensen-

type additive equation f (
∑n

j= xj
n ) = 

n
∑n

l= f (xi). Therefore, equation () is a generalized
form of the Cauchy-Jensen additive equation and thus every solution of equation () may
be analogously called a general (m,n)-Cauchy-Jensen additive. For the casem = , we have
established new theorems about the Hyers-Ulam stability in quasi β-normed spaces [].
Let X and Y be linear spaces. For each m with  ≤ m ≤ n, a mapping f : X → Y satisfies
equation () for all n≥  if and only if f (x)– f () = A(x) is a Cauchy additive, where f () = 
if m < n. In particular, we have f ((n –m + )x) = (n –m + )f (x) and f (mx) =mf (x) for all
x ∈ X.

2 Preliminaries
Definition . Let X be a real vector space. A functionN : X×R → [, ] is called a fuzzy
norm on X if for all x, y ∈ X and all s, t ∈R,
(N) N(x, t) =  for t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) =N(x, t

|c| ) if c �= ;
(N) N(x + y, c + t) ≥ min{N(x, s),N(y, t)};
(N) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = ;
(N) for x �= , N(x, ·) is continuous on R.

Example . Let (X,‖ · ‖) be a normed linear space and α,β > . Then

N(x, t) =

⎧⎨
⎩

αt
αt+β‖x‖ , t > ,x ∈ X,

, t ≤ ,x ∈ X

is a fuzzy norm on X.
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Definition . Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said
to be convergent or converge if there exists an x ∈ X such that limt→∞ N(xn – x, t) =  for
all t > . In this case, x is called the limit of the sequence {xn} in X and we denote it by
N- limt→∞ xn = x.

Definition . Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called
Cauchy if for each ε >  and each t > , there exists an n ∈ N such that for all n ≥ n and
all p > , we have N(xn+p – xn, t) >  – ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed vector space is called a fuzzy Banach space.
We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is con-

tinuous at a point x ∈ X if for each sequence {xn} converging to x ∈ X, the sequence {f (xn)}
converges to f (x). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be
continuous on X (see []).

Definition . Let X be a ∗-algebra and (X,N) be a fuzzy normed space.
() The fuzzy normed space (X,N) is called a fuzzy normed ∗-algebra if

N(xy, st)≥ N(x, s) ·N(y, t), N
(
x∗, t

)
=N(x, t)

for all x, y ∈ X and all positive real numbers s and t.
() A complete fuzzy normed ∗-algebra is called a fuzzy Banach ∗-algebra.

Example . Let (X,‖ · ‖) be a normed ∗-algebra. Let

N(x, t) =

⎧⎨
⎩

t
t+‖x‖ , t > ,x ∈ X,

, t ≤ ,x ∈ X.

Then N(x, t) is a fuzzy norm on X and (X,N) is a fuzzy normed ∗-algebra.

Definition . Let (X,‖ · ‖) be a normed C∗-algebra and N be a fuzzy norm on X.
() The fuzzy normed ∗-algebra (X,N) is called an induced fuzzy normed ∗-algebra.
() The fuzzy Banach ∗-algebra (X,N) is called an induced fuzzy C∗-algebra.

Definition . Let (X,N) and (Y ,N) be induced fuzzy normed ∗-algebras.
() A multiplicative C-linear mapping H : (X,N)→ (Y ,N) is called a fuzzy

∗-homomorphism if H(x∗) =H(x)∗ for all x ∈ X .
() A C-linear mapping D : (X,N)→ (X,N) is called a fuzzy ∗-derivation if

D(xy) =D(x)y + xD(y) and D(x∗) =D(x)∗ for all x, y ∈ X .

Definition . Let X be a nonempty set. A function d : X ×X → [,∞] is called a gener-
alized metric on X if d satisfies the following conditions:
() d(x, y) =  if and only if x = y for all x, y ∈ X ;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
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Theorem . Let (X,d) be a complete generalized metric space and J : X → X be a
strictly contractive mapping with a Lipschitz constant L < . Then, for all x ∈ X, either
d(Jnx, Jn+x) = ∞ for all nonnegative integers n or there exists a positive integer n such
that
() d(Jnx, Jn+x) < ∞ for all n ≥ n;
() the sequence {Jnx} converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jnx, y) <∞};
() d(y, y∗)≤ 

–Ld(y, Jy) for all y ∈ Y .

Throughout this paper, assume that X, Y are unital fuzzy Banach ∗-algebras.

3 Approximate homomorphisms in fuzzy Banach ∗-algebras
In this section, using fixed point method, we prove the Hyers-Ulam stability of homomor-
phisms in fuzzy Banach ∗-algebras related to functional equation ().

Theorem . Let ϕ : Xn → [,∞) be a function such that there exists an L < 
(n–m+)n–

with

ϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)
≤ Lϕ(x,x, . . . ,xn)

n –m + 

for all x, . . . ,xn ∈ X. Let f : X → Y with f () =  be a mapping satisfying

N

( ∑
≤i<···<im≤n

≤kl ( �=ij ,∀j∈{,...,m})≤n

f

(∑m
j= μxij
m

+
n–m∑
l=

μxkl

)
–
(n –m + )

(n
m
)∑n

i= μf (xi)
n

, t

)

≥ t
t + ϕ(x, . . . ,xn)

, ()

N
(
f (x · · ·xn–) – f (x) · · · f (xn–), t

) ≥ t
t + ϕ(x, . . . ,xn–, )

, ()

N
(
f
(
x∗

)
– f (x)∗, t

) ≥ t
t + ϕ(x, , . . . , )

()

for all x, . . . ,xn ∈ X and all t > . Then there exists a fuzzy ∗-homomorphism H : X → Y
such that

N
(
f (x) –H(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + Lϕ(x, . . . ,x)

()

for all x ∈ X and all t > .

Proof Letting μ =  and replacing (x, . . . ,xn) by (x, . . . ,x) in (), we have

N
((

n
m

)
f
(
(n –m + )x

)
–

(
n
m

)
(n –m + )f (x), t

)
≥ t

t + ϕ(x, . . . ,x)
()

for all x ∈ X and t > . Consider the set S := {g : X → Y ; g() = } and the generalized
metric d in S defined by

d(f , g) = inf

{
μ ∈R

+ :N
(
g(x) – h(x),μt

) ≥ t
t + ϕ(x, . . . ,x)

, ∀x ∈ X, t > 
}
,
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where inf∅ = +∞. It is easy to show that (S,d) is complete (see []). Now, we consider a
linear mapping J : S → S such that Jg(x) := (n –m + )g( x

n–m+ ) for all x ∈ X. Let g,h ∈ S be
such that d(g,h) = ε. Then N(g(x) – h(x), εt)≥ t

t+ϕ(x,...,x) for all x ∈ X and t > . Hence,

N
(
Jg(x) – Jh(x),Lεt

)
=N

( g( x
n–m+ )

n –m + 
–

h( x
n–m+ )

n –m + 
,Lεt

)

=N
(
g
(

x
n –m + 

)
– h

(
x

n –m + 

)
,

Lεt
n –m + 

)

≥
Lt

n–m+
Lt

n–m+ + ϕ( x
n–m+ , . . . ,

x
n–m+ )

≥
Lt

n–m+
Lt

n–m+ +
Lϕ(x,...,x)
n–m+

=
t

t + ϕ(x, . . . ,x)

for all x ∈ X and t > . Thus, d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that
d(Jg, Jh) ≤ Ld(g,h) for all g,h ∈ S. It follows from () that

N
( f ( x

n–m+ )
(n –m + )–

– f (x),
t(n
m
))

≥ t
t + ϕ( x

n–m+ , . . . ,
x

n–m+ )

≥ t
t + Lϕ(x,...,x)

n–m+

for all x ∈ X and all t > . So,

N
( f ( x

n–m+ )
(n –m + )–

– f (x),
Lt

(n –m + )
(n
m
))

≥ t
t + ϕ(x, . . . ,x)

.

This implies that d(f , Jf ) ≤ L
(n–m+)(nm)

. By Theorem ., there exists a mapping A : X → Y
satisfying the following:
() A is a fixed point of J , that is,

H
(

x
n –m + 

)
=

H(x)
n –m + 

()

for all x ∈ X. ThemappingH is a unique fixed point of J in the set� = {h ∈ S : d(g,h) < ∞}.
This implies that H is a unique mapping satisfying () such that there exists μ ∈ (,∞)
satisfying N(f (x) –H(x),μt)≥ t

t+ϕ(x,...,x) for all x ∈ X and t > .
() d(Jpf ,H) →  as p→ ∞. This implies the equality

N- lim
p→∞

f ( x
(n–m+)p )

(n –m + )–p
=H(x) ()

for all x ∈ X.
() d(f ,H) ≤ d(f ,Jf )

–L with f ∈ �, which implies the inequality

d(f ,H) ≤ L
(n –m + )

(n
m
)
– (n –m + )

(n
m
)
L
.
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This implies that the inequality () holds. Furthermore, it follows from () and () that

N

( ∑
≤i<···<im≤n

≤kl ( �=ij ,∀j∈{,...,m})≤n

H

(∑m
j= μxij
m

+
n–m∑
l=

μxkl

)
–
(n –m + )

n

(
n
m

) n∑
i=

H(μxi), t

)

=N- lim
p→∞

(
(n –m + )p

∑
≤i<···<im≤n

≤kl( �=ij ,∀j∈{,...,m})≤n

f

( ∑m
j= μxij

m(n –m + )p
+

n–m∑
l=

μxkl
(n –m + )p

)

–
(n –m + )p+

n

(
n
m

) n∑
i=

f
(

μxi
(n –m + )p

)
, t

)

≥ lim
p→∞

t
(n–m+)p

t
(n–m+)p + ϕ( x

(n–m+)p , . . . ,
xn

(n–m+)p )

≥ lim
p→∞

t
(n–m+)p

t
(n–m+)p +

Lnϕ(x,...,xn)
(n–m+)p

→ 

for all x, . . . ,xn ∈ X, all t >  and all μ ∈C. Hence,

∑
≤i<···<im≤n

≤kl ( �=ij ,∀j∈{,...,m})≤n

H

(∑m
j= μxij
m

+
n–m∑
l=

μxkl

)
=
(n –m + )

n

(
n
m

) n∑
i=

H(μxi)

for all x, . . . ,xn ∈ X. So, the mapping H : X → Y is additive and C-linear. By ()

N
( f ( x···xn–

(n–m+)(n–)p )

(n –m + )–(n–)p
–
f ( x

(n–m+)p ) · · · f ( xn–
(n–m+)p )

(n –m + )–(n–)p
,

t
(n –m + )–(n–)p

)

≥ t
t + ϕ( x

(n–m+)p , . . . ,
xn–

(n–m+)p )
()

for all x, . . . ,xn– ∈ X and all t > . Then

N
( f ( x···xn–

(n–m+)(n–)p )

(n –m + )–(n–)p
–
f ( x

(n–m+)p ) · · · f ( xn–
(n–m+)p )

(n –m + )–(n–)p
, t

)

≥
t

(n–m+)(n–)p
t

(n–m+)(n–)p + ϕ( x
(n–m+)p , . . . ,

xn–
(n–m+)p , )

≥
t

(n–m+)(n–)p

t
(n–m+)(n–)p +

Lpϕ(x,x,...,xn–,)
(n–m+)p

→  when p → +∞

for all x, . . . ,xn– ∈ X and all t > . So,

N
(
H(x · · ·xn–) –H(x) · · ·H(xn–), t

)
= 

for all x, . . . ,xn– ∈ X and all t > . Thus, H(x · · ·xn–) =H(x) · · ·H(xn–).
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On the other hand, by ()

N
( f ( x∗


(n–m+)p )

(n –m + )–p
–

f ( x
(n–m+)p )

(n –m + )–p

∗
,

t
(n –m + )–p

)
≥ t

t + ϕ( x
(n–m+)p , , . . . , )

for all x ∈ X and all t > . So,

N
( f ( x∗


(n–m+)p )

(n –m + )–p
–

f ( x
(n–m+)p )

(n –m + )–p

∗
, t

)
≥

t
(n–m+)p

t
(n–m+)p + ϕ( x

(n–m+)p , , . . . , )

≥
t

(n–m+)p
t

(n–m+)p +
Lp

(n–m+)p ϕ(x, , . . . , )

for all x ∈ X and all t > . Since limp→+∞
t

(n–m+)p
t

(n–m+)p +
Lp

(n–m+)p ϕ(x,,...,)
=  for all x ∈ X and

t > , we get

N
(
H

(
x∗

)
–H(x)∗, t

)
= 

for all x ∈ X and all t > . Thus, H(x∗
 ) = H(x)∗ for all x ∈ X. This completes the proof.

�

Theorem . Let ϕ : Xn → [,∞) be a function such that there exists an L <  with

ϕ(x, . . . ,xn)≤ (n –m + )Lϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)

for all x,x, . . . ,xn ∈ X. Let f : X → Y be a mapping satisfying f () = , ()-(). Then
the limit A(x) := N- limp→∞ f ((n–m+)px)

(n–m+)p exists for each x ∈ X and defines a fuzzy ∗-homo-
morphism H : X → Y such that

N
(
f (x) –H(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + ϕ(x, . . . ,x)

()

for all x ∈ X and all t > .

Proof Let (S,d) be a generalized metric space defined as in the proof of Theorem ..
Consider the linear mapping J : S → S such that Jg(x) := g((n–m+)x)

n–m+ for all x ∈ X. Let g,h ∈ S
be such that d(g,h) = ε. Then N(g(x) – h(x), εt)≥ t

t+ϕ(x,...,x) for all x ∈ X and t > . Hence,

N
(
Jg(x) – Jh(x),Lεt

)
= N

(
g((n –m + )x)

n –m + 
–
h((n –m + )x)

n –m + 
,Lεt

)

= N
(
g
(
(n –m + )x

)
– h

(
(n –m + )x

)
, (n –m + )Lεt

)
≥ (n –m + )Lt

(n –m + )Lt + ϕ((n –m + )x, . . . , (n –m + )x)

≥ (n –m + )Lt
(n –m + )Lt + (n –m + )Lϕ(x, . . . ,x)

=
t

t + ϕ(x, . . . ,x)
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for all x ∈ X and t > . Thus, d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that
d(Jg, Jh) ≤ Ld(g,h) for all g,h ∈ S. It follows from () that

N
(
f (x) –

f ((n –m + )x)
n –m + 

,
t

(n –m + )
(n
m
))

≥ t
t + ϕ(x, . . . ,x)

()

for all x ∈ X and t > . So, d(f , Jf ) ≤ 
(n–m+)(nm)

. By Theorem ., there exists a mapping
H : X → Y satisfying the following:
() A is a fixed point of J , that is,

(n –m + )H(x) =H
(
(n –m + )x

)
()

for all x ∈ X. ThemappingH is a unique fixed point of J in the set� = {h ∈ S : d(g,h) < ∞}.
This implies that H is a unique mapping satisfying () such that there exists μ ∈ (,∞)
satisfying N(f (x) –H(x),μt)≥ t

t+ϕ(x,...,x) for all x ∈ X and t > .
() d(Jpf ,H) →  as p→ ∞. This implies the equality

H(x) =N- lim
p→∞

f ((n –m + )px)
(n –m + )p

for all x ∈ X.
() d(f ,H) ≤ d(f ,Jf )

–L with f ∈ �, which implies the inequality

d(f ,H) ≤ 
(n –m + )

(n
m
)
– (n –m + )

(n
m
)
L
.

This implies that the inequality () holds.
The rest of the proof is similar to the proof of Theorem .. �

From now on, we assume that X has a unit e and a unitary group U (X) := {u ∈ X : u∗u =
uu∗ = e}.

Theorem . Let ϕ : Xn → [,∞) be a function such that there exists an L < 
(n–m+)n–

with

ϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)
≤ Lϕ(x,x, . . . ,xn)

n –m + 

for all x, . . . ,xn ∈ X. Let f : X → Y be a mapping satisfying f () = , () and

N
(
f (u · · ·un–) – f (u) · · · f (un–), t

) ≥ t
t + ϕ(u, . . . ,un–, )

, ()

N
(
f
(
u∗

)
– f (u)∗, t

) ≥ t
t + ϕ(u, , . . . , )

()

for all u, . . . ,un ∈ U (X) and all t > . Then there exists a fuzzy ∗-homomorphism H : X →
Y satisfying ().

http://www.journalofinequalitiesandapplications.com/content/2013/1/88
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Proof By the same reasoning as in the proof of Theorem ., there is a C-linear mapping
H : X → Y satisfying (). The mapping H : X → Y is given by

N- lim
p→∞

f ( x
(n–m+)p )

(n –m + )–p
=H(x)

for all x ∈ X. By ()

N
( f ( u···un–

(n–m+)(n–)p )

(n –m + )–(n–)p
–
f ( u

(n–m+)p ) · · · f ( un–
(n–m+)p )

(n –m + )–(n–)p
,

t
(n –m + )–(n–)p

)

≥ t
t + ϕ( u

(n–m+)p , . . . ,
un–

(n–m+)p )

for all u, . . . ,un– ∈ U (X) and all t > . Then

N
( f ( u···un–

(n–m+)(n–)p )

(n –m + )–(n–)p
–
f ( u

(n–m+)p ) · · · f ( un–
(n–m+)p )

(n –m + )–(n–)p
, t

)

≥
t

(n–m+)(n–)p
t

(n–m+)(n–)p + ϕ( u
(n–m+)p , . . . ,

un–
(n–m+)p , )

≥
t

(n–m+)(n–)p

t
(n–m+)(n–)p +

Lpϕ(u,u,...,un–,)
(n–m+)p

→ 

as p→ +∞ for all u, . . . ,un– ∈ U (X) and all t > . So,

N
(
H(u · · ·un–) –H(u) · · ·H(un–), t

)
= 

for all u, . . . ,un– ∈ U (X) and all t > . Thus,

H(u · · ·un–) =H(u) · · ·H(un–). ()

Since H is C-linear and each x ∈ X is a finite linear combination of unitary elements, i.e.,

x =
m∑
j=

λjuj
(
λj ∈ C,uj ∈U(X)

)
,

it follows from () that

H(xv) =H

( m∑
j=

λjujv

)
=

n∑
j=

λjH(ujv) =
n∑
j=

λjH(uj)H(v) =H

( m∑
j=

λjuj

)
H(v)

for all v ∈ U (X). So,H(xv) =H(x)H(v). Similarly, one can obtain thatH(xy) =H(x)H(y) for
all x, y ∈ X. Thus by induction, one can easily show that H(x · · ·xn–) = H(x) · · ·H(xn–).
By ()

N
( f ( u∗


(n–m+)p )

(n –m + )–p
–

f ( u
(n–m+)p )

(n –m + )–p

∗
,

t
(n –m + )–p

)
≥ t

t + ϕ( u
(n–m+)p , , . . . , )

http://www.journalofinequalitiesandapplications.com/content/2013/1/88
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for all u ∈ U (X) and all t > . So,

N
( f ( u∗


(n–m+)p )

(n –m + )–p
–

f ( u
(n–m+)p )

(n –m + )–p

∗
, t

)
≥

t
(n–m+)p

t
(n–m+)p + ϕ( u

(n–m+)p , , . . . , )

≥
t

(n–m+)p

t
(n–m+)p +

Lpϕ(u,,...,)
(n–m+)p

for all u ∈ U (X) and all t > . Since limp→+∞
t

(n–m+)p

t
(n–m+)p +

Lpϕ(u,,...,)
(n–m+)p

=  for all u ∈ U (X) and

all t > , we get

N
(
H

(
u∗

)
–H(u)∗, t

)
= 

for all u ∈ U (X) and all t > . Thus,

H
(
u∗

)
=H(u)∗ ()

for all u ∈ U (X) . Since H is C-linear and each x ∈ X is a finite linear combination of
unitary elements, i.e., x =

∑m
j= λjuj (λj ∈C,uj ∈ U (X)), it follows from () that

H
(
x∗) =H

( m∑
j=

λju∗
j

)
=

n∑
j=

λjH
(
u∗
j
)
=

n∑
j=

λjH(uj)∗ =H

( m∑
j=

λjuj

)∗
=H(x)∗

for all x ∈ X. So, H(x∗) = H(x)∗ for all x ∈ X. Therefore, the mapping H : X → Y is a
∗-homomorphism. �

Similarly, we have the following. We will omit the proof.

Theorem . Let ϕ : Xn → [,∞) be a function such that there exists an L <  with

ϕ(x, . . . ,xn)≤ (n –m + )Lϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)

for all x,x, . . . ,xn ∈ X. Let f : X → Y be a mapping satisfying f () = , (), () and
(). Then the limit A(x) :=N- limp→∞ f ((n–m+)px)

(n–m+)p exists for each x ∈ X and defines a fuzzy
∗-homomorphism H : X → Y such that

N
(
f (x) –H(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + ϕ(x, . . . ,x)

for all x ∈ X and all t > .

4 Approximate derivations on fuzzy Banach ∗-algebras
In this section, we assume that (X,N) is a fuzzy Banach ∗-algebra. Using fixed point
method, we prove the Hyers-Ulam stability of derivations on fuzzy Banach ∗-algebras re-
lated to functional equation ().

http://www.journalofinequalitiesandapplications.com/content/2013/1/88
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Theorem . Let ϕ : Xn → [,∞) be a function such that there exists an L < 
(n–m+)n–

with

ϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)
≤ Lϕ(x,x, . . . ,xn)

n –m + 

for all x, . . . ,xn ∈ X. Let f : X → X be a mapping satisfying f () = ,

N

( ∑
≤i<···<im≤n

≤kl ( �=ij ,∀j∈{,...,m})≤n

f

(∑m
j= μxij
m

+
n–m∑
l=

μxkl

)
–
(n –m + )

(n
m
)∑n

i= μf (xi)
n

, t

)

≥ t
t + ϕ(x, . . . ,xn)

, ()

N
(
f
(
x∗

)
– f (x)∗, t

) ≥ t
t + ϕ(x, , . . . , )

, ()

N

(
f

(n–∏
i=

xi

)
–

n–∑
i=

n–∑
j=,j �=i

xif (xj), t

)
≥ t

t + ϕ(x, . . . ,xn–, )
()

for all x, . . . ,xn– ∈ X and all t > . Then D(x) := N- limp→∞
f ( x

(n–m+)p )
(n–m+)–p exists for all x ∈ X

and defines a fuzzy ∗-derivation D : X → X such that

N
(
f (x) –D(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + Lϕ(x, . . . ,x)

for all x ∈ X and all t > .

Proof The proof is similar to the proof of Theorem .. �

Theorem . Let ϕ : Xn → [,∞) be a function such that there exists an L <  with

ϕ(x, . . . ,xn)≤ (n –m + )Lϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)

for all x,x, . . . ,xn ∈ X. Let f : X → X be a mapping satisfying f () = , (), () and
(). Then the limit D(x) := N- limp→∞ f ((n–m+)px)

(n–m+)p exists for all x ∈ X and defines a fuzzy
∗-derivation D : X → X such that

N
(
f (x) –D(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + ϕ(x, . . . ,x)

for all x ∈ X and all t > .
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