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1 Introduction
It is well known that Hardy’s inequality and its generalizations play important roles in
many areas of mathematics. The classical Hardy inequality is given by, for N ≥ ,

∫
RN

∣∣∇u(x)
∣∣ dx ≥

(
N – 


) ∫
RN

|u(x)|
|x| dx, (.)

where u ∈ C∞
 (RN ), the constant (N–

 ) is optimal and not attained.
Recently there has been a considerable interest in studying the Hardy-type and Rellich-

type inequalities. See, for example, [–]. In [] Caffarelli, Kohn and Nirenberg proved
a rather general interpolation inequality with weights. That is the following so-called
Caffarelli-Kohn-Nirenberg inequality. For any u ∈ C∞

 (RN ), there exists C >  such that

∥∥|x|γu∥∥
Lr ≤ C

∥∥|x|α|∇u|∥∥a
Lp · ∥∥|x|βu∥∥–a

Lq , (.)

where


r
+

γ

N
= a

(

p
+

α – 
N

)
+ ( – a)

(

q
+

β

N

)

and

p,q ≥ , r ≥ ,  ≤ a ≤ ,

p
+

α

N
> ,


q
+

β

N
> ,


r
+

γ

N
> , γ = aσ + ( – a)β .

In [] Costa proved the following L-case version for a class of Caffarelli-Kohn-
Nirenberg inequalities with a sharp constant by an elementary method. For all a,b ∈ R
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and u ∈ C∞
 (RN\{}),

Ĉ
∫
RN

|u|
|x|a+b+ dx≤

(∫
RN

|u|
|x|a dx

) 

(∫

RN

|∇u|
|x|b dx

) 

, (.)

where the constant Ĉ = Ĉ(a,b) := |N–(a+b+)|
 is sharp.

On the other hand, the Rellich inequality is a generalization of the Hardy inequality to
second-order derivatives, and the classical Rellich inequality in RN states that for N ≥ 
and u ∈ C∞

 (RN \ {}),
∫
RN

∣∣�u(x)
∣∣ dx ≥

(
N(N – )



) ∫
RN

|u(x)|
|x| dx. (.)

The constant N(N–)
 is sharp and never achieved. In [] Tetikas and Zographopoulos

obtained a corresponding stronger versions of the Rellich inequality which reads

(
N


) ∫
RN

|∇u|
|x| dx≤

∫
RN

|�u| dx (.)

for all u ∈ C∞
 andN ≥ . In [] Costa obtained a new class of Hardy-Rellich type inequal-

ities which contain (.) as a special case. If a + b +  ≤ N , then

Ĉ
∫
RN

|∇u|
|x|a+b+ dx≤

(∫
RN

|�u|
|x|b dx

) 

(∫

RN

|∇u|
|x|a dx

) 

, (.)

where the constant Ĉ = Ĉ(a,b) := |N+a+b–
 | is sharp.

The goal of this paper is to extend the above (.) and (.) to the general Lp case for
 < p < ∞ by a different and direct approach.

2 Main results
In this section, we will give the proof of the main theorems.

Theorem  For all a,b ∈ R and u ∈ C∞
 (RN \ {}), one has

C
∫
RN

|u|p
|x|a+b+ dx≤

(∫
RN

|∇u|p
|x|ap dx

) 
p
(∫

RN

|u|p
|x|b p

p–
dx

) p–
p
, (.)

where  < p < ∞ and the constant C = |N–(a+b+)
p | is sharp.

Proof Let u ∈ C∞
 (RN \ {}), a,b ∈ R and λ = a + b + . By integration by parts and the

Hölder inequality, one has

∫
RN

|u|p
|x|λ dx =


N – λ

∫
RN

|u|p div
(

x
|x|λ

)
dx

= –


N – λ

∫
RN

pu|u|p– x · ∇u
|x|λ dx

≤
∣∣∣∣ –p
N – λ

∣∣∣∣
∫
RN

|x · ∇u|
|x|λ |u|p– dx
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≤
∣∣∣∣ p
N – λ

∣∣∣∣
∫
RN

|∇u||u|p–
|x|a+b dx

≤
∣∣∣∣ p
N – λ

∣∣∣∣
(∫

RN

|∇u|p
|x|ap dx

) 
p
(∫

RN

|u|p
|x|b p

p–
dx

) p–
p
.

Then

∣∣∣∣N – λ

p

∣∣∣∣
∫
RN

|u|p
|x|λ dx≤

(∫
RN

|∇u|p
|x|ap dx

) 
p
(∫

RN

|u|p
|x|b p

p–
dx

) p–
p
. (.)

It remains to show the sharpness of the constant. By the condition with equality in the
Hölder inequality, we consider the following family of functions:

uε(x) = e–
Cε
β

|x|β , when β = a –
b

p – 
+  �= 

and

uε(x) =


|x|Cε
, when β = a –

b
p – 

+  = ,

where Cε is a positive number sequence converging to |N–(a+b+)
p | as ε → . By direct com-

putation and the limit process, we know the constant |N–(a+b+)|
p is sharp. �

Remark  When p = , the inequality (.) covers the inequality (.) in [].

Remark  When a = , b = p – , the inequality (.) is the classical Lp Hardy inequality:

(
N – p
p

)p ∫
RN

|u|p
|x|p dx ≤

∫
RN

|∇u|p dx. (.)

When we take special values for a, b, the following corollary holds.

Corollary  (i) When b = (a + )(p – ), the inequality (.) is just the weighted Hardy
inequality:

∣∣∣∣N – p(a + )
p

∣∣∣∣
p ∫

RN

|u|p
|x|(a+)p dx ≤

∫
RN

|∇u|p
|x|ap dx. (.)

(ii)When a + b +  = ap, according to the inequality (.), we have

∣∣∣∣N – ap
p

∣∣∣∣
∫
RN

|u|p
|x|ap dx≤

(∫
RN

|∇u|p
|x|ap dx

) 
p
(∫

RN

|u|p
|x|ap– p

p–
dx

) p–
p
. (.)

(iii)When a = –p and a + b +  = , we obtain the inequality

N
p

∫
RN

|u|p dx ≤
(∫

RN
|∇u|p|x|p dx

) 
p
(∫

RN

|u|p
|x|p dx

) p–
p
. (.)
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By a similar method, we can prove the following Lp case Hardy-Rellich type inequal-
ity.

Theorem Let  < p <N , p–Np– ≤ a+b+≤ .Then, for any u ∈ C∞
 (RN \{}), the following

holds:

Ĉ
∫
RN

|∇u|p
|x|a+b+ dx≤

(∫
RN

|�pu|p
|x|ap dx

) 
p
(∫

RN

|∇u|q
|x|bq dx

) 
q
, (.)

where 
p +


q = , Ĉ = (N–p+(p–)(a+b+)

p ) and �pu = div(|∇u|p–∇u) is the p-Laplacian opera-
tor.

Proof Set λ = a + b + , it is easy to see

∫
RN

|∇u|p
|x|λ dx =


N – λ

∫
RN

|∇u|p div
(

x
|x|λ

)
dx

= –


N – λ

∫
RN

p

|∇u|p– x

|x|λ · ∇(|∇u|)dx

=
p

(λ –N)

∫
RN

|∇u|p– x · ∇(|∇u|)
|x|λ dx. (.)

On the other hand,

∫
RN

�pu
x · ∇u
|x|λ dx =

∫
RN

div
(|∇u|p–∇u

)x · ∇u
|x|λ dx

= –
∫
RN

|∇u|p–∇u · ∇
(
x · ∇u
|x|λ

)
dx

= –
∫
RN

|∇u|p–
( |∇u|

|x|λ +

x · ∇(|∇u|)

|x|λ – λ
(x · ∇u)

|x|λ+
)
dx,

which means

∫
RN

|∇u|p– · x · ∇(|∇u|)
|x|λ dx

= 
(

λ

∫
RN

|∇u|p– (x · ∇u)

|x|λ dx –
∫
RN

|∇u|p
|x|λ dx –

∫
RN

�pu
x · ∇u
|x|λ

)
. (.)

Then, we can deduce from (.) and (.)

∫
RN

|∇u|p
|x|λ dx

=
p

λ –N

(
λ

∫
RN

|∇u|p– (x · ∇u)

|x|λ dx –
∫
RN

|∇u|p
|x|λ dx –

∫
RN

�pu
x · ∇u
|x|λ

)
. (.)

That is,

N – p – λ

p

∫
RN

|∇u|p
|x|λ dx + λ

∫
RN

|∇u|p– (x · ∇u)

|x|λ+ dx =
∫
RN

�pu
x · ∇u
|x|λ dx. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/84


Di et al. Journal of Inequalities and Applications 2013, 2013:84 Page 5 of 6
http://www.journalofinequalitiesandapplications.com/content/2013/1/84

By the Hölder inequality,

∫
RN

�pu
x · ∇u
|x|λ+ dx ≤

(∫
RN

|�pu|q
|x|aq

) 
q
(∫

RN

|∇u|p
|x|bp

) 
p
, (.)

note that p–N
p– ≤ λ ≤ . Thus

N – p + (p – )λ
p

∫
RN

|∇u|p
|x|λ dx≤

(∫
RN

|�pu|p
|x|ap

) 
p
(∫

RN

|∇u|q
|x|bq

) 
q
. (.)

We mention that we do not know whether the constant (N–p+(p–)(a+b+)
p ) in (.) is opti-

mal or not. �

Corollary  When a + b +  = , we have the following inequalities:
(i) when a = –, b = , the inequality (.) is equivalent to the inequality

(
N – p
p

)p ∫
RN

|∇u|p dx ≤
∫
RN

|�pu|p|x|p dx. (.)

(ii)When a = , b = –, we obtain the inequality

(
N – p
p

)∫
RN

|∇u|p dx ≤
(∫

RN

|�pu|p
|x|p dx

) 
p
(∫

RN
|∇u|q|x|q dx

) 
q
. (.)

(iii)When a = , b = –, we get

(
N – p
p

)∫
RN

|∇u|p dx ≤
(∫

RN
|�pu|p dx

) 
p
(∫

RN
|∇u|q|x|q dx

) 
q
. (.)
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