RESEARCH

Open Access

A note on a class of Hardy-Rellich type inequalities

Yanmei Di, Liya Jiang, Shoufeng Shen and Yongyang Jin*

*Correspondence: yongyang@zjut.edu.cn Department of Mathematics, Zhejiang University of Technology, Hangzhou, P.R. China

Abstract

In this note we provide simple and short proofs for a class of Hardy-Rellich type inequalities with the best constant, which extends some recent results. **MSC:** 26D15; 35A23

Keywords: Hardy inequality; Hardy-Rellich inequality; Caffarelli-Kohn-Nirenberg inequality

1 Introduction

It is well known that Hardy's inequality and its generalizations play important roles in many areas of mathematics. The classical Hardy inequality is given by, for $N \ge 3$,

$$\int_{\mathbb{R}^{N}} \left| \nabla u(x) \right|^{2} dx \ge \left(\frac{N-2}{2} \right)^{2} \int_{\mathbb{R}^{N}} \frac{|u(x)|^{2}}{|x|^{2}} dx, \tag{1.1}$$

where $u \in C_0^{\infty}(\mathbb{R}^N)$, the constant $(\frac{N-2}{2})^2$ is optimal and not attained.

Recently there has been a considerable interest in studying the Hardy-type and Rellichtype inequalities. See, for example, [1–7]. In [8] Caffarelli, Kohn and Nirenberg proved a rather general interpolation inequality with weights. That is the following so-called Caffarelli-Kohn-Nirenberg inequality. For any $u \in C_0^{\infty}(\mathbb{R}^N)$, there exists C > 0 such that

$$\| |x|^{\gamma} u \|_{L^{r}} \le C \| |x|^{\alpha} |\nabla u| \|_{L^{p}}^{a} \cdot \| |x|^{\beta} u \|_{L^{q}}^{1-a},$$
(1.2)

where

$$\frac{1}{r} + \frac{\gamma}{N} = a \left(\frac{1}{p} + \frac{\alpha - 1}{N} \right) + (1 - a) \left(\frac{1}{q} + \frac{\beta}{N} \right)$$

and

$$p,q \ge 1, \qquad r \ge 0, \qquad 0 \le a \le 1, \qquad \frac{1}{p} + \frac{\alpha}{N} > 0, \qquad \frac{1}{q} + \frac{\beta}{N} > 0,$$
$$\frac{1}{r} + \frac{\gamma}{N} > 0, \qquad \gamma = a\sigma + (1-a)\beta.$$

In [9] Costa proved the following L^2 -case version for a class of Caffarelli-Kohn-Nirenberg inequalities with a sharp constant by an elementary method. For all $a, b \in R$

© 2013 Di et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. and $u \in C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$,

$$\hat{C} \int_{\mathbb{R}^N} \frac{|u|^2}{|x|^{a+b+1}} dx \le \left(\int_{\mathbb{R}^N} \frac{|u|^2}{|x|^{2a}} dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^N} \frac{|\nabla u|^2}{|x|^{2b}} dx \right)^{\frac{1}{2}},\tag{1.3}$$

where the constant $\hat{C} = \hat{C}(a, b) := \frac{|N-(a+b+1)|}{2}$ is sharp.

On the other hand, the Rellich inequality is a generalization of the Hardy inequality to second-order derivatives, and the classical Rellich inequality in \mathbb{R}^N states that for $N \ge 5$ and $u \in C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$,

$$\int_{\mathbb{R}^{N}} \left| \Delta u(x) \right|^{2} dx \ge \left(\frac{N(N-4)}{4} \right)^{2} \int_{\mathbb{R}^{N}} \frac{|u(x)|^{2}}{|x|^{4}} dx.$$
(1.4)

The constant $\frac{N^2(N-4)^2}{16}$ is sharp and never achieved. In [10] Tetikas and Zographopoulos obtained a corresponding stronger versions of the Rellich inequality which reads

$$\left(\frac{N}{2}\right)^2 \int_{\mathbb{R}^N} \frac{|\nabla u|^2}{|x|^2} dx \le \int_{\mathbb{R}^N} |\Delta u|^2 dx \tag{1.5}$$

for all $u \in C_0^{\infty}$ and $N \ge 3$. In [11] Costa obtained a new class of Hardy-Rellich type inequalities which contain (1.5) as a special case. If $a + b + 3 \le N$, then

$$\hat{C} \int_{\mathbb{R}^N} \frac{|\nabla u|^2}{|x|^{a+b+1}} dx \le \left(\int_{\mathbb{R}^N} \frac{|\Delta u|^2}{|x|^{2b}} dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^N} \frac{|\nabla u|^2}{|x|^{2a}} dx \right)^{\frac{1}{2}},\tag{1.6}$$

where the constant $\hat{C} = \hat{C}(a, b) := |\frac{N+a+b-1}{2}|$ is sharp.

The goal of this paper is to extend the above (1.3) and (1.6) to the general L^p case for 1 by a different and direct approach.

2 Main results

In this section, we will give the proof of the main theorems.

Theorem 1 For all $a, b \in R$ and $u \in C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$, one has

$$C\int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{a+b+1}} dx \le \left(\int_{\mathbb{R}^{N}} \frac{|\nabla u|^{p}}{|x|^{ap}} dx\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{b\frac{p}{p-1}}} dx\right)^{\frac{p-1}{p}},$$
(2.1)

where $1 and the constant <math>C = \lfloor \frac{N-(a+b+1)}{p} \rfloor$ is sharp.

Proof Let $u \in C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$, $a, b \in \mathbb{R}$ and $\lambda = a + b + 1$. By integration by parts and the Hölder inequality, one has

$$\int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{\lambda}} dx = \frac{1}{N-\lambda} \int_{\mathbb{R}^{N}} |u|^{p} \operatorname{div}\left(\frac{x}{|x|^{\lambda}}\right) dx$$
$$= -\frac{1}{N-\lambda} \int_{\mathbb{R}^{N}} pu |u|^{p-2} \frac{x \cdot \nabla u}{|x|^{\lambda}} dx$$
$$\leq \left|\frac{-p}{N-\lambda}\right| \int_{\mathbb{R}^{N}} \frac{|x \cdot \nabla u|}{|x|^{\lambda}} |u|^{p-1} dx$$

$$\leq \left|\frac{p}{N-\lambda}\right| \int_{\mathbb{R}^N} \frac{|\nabla u||u|^{p-1}}{|x|^{a+b}} dx$$

$$\leq \left|\frac{p}{N-\lambda}\right| \left(\int_{\mathbb{R}^N} \frac{|\nabla u|^p}{|x|^{ap}} dx\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^N} \frac{|u|^p}{|x|^{b\frac{p}{p-1}}} dx\right)^{\frac{p-1}{p}}.$$

Then

$$\left|\frac{N-\lambda}{p}\right| \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{\lambda}} dx \leq \left(\int_{\mathbb{R}^{N}} \frac{|\nabla u|^{p}}{|x|^{ap}} dx\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{b\frac{p}{p-1}}} dx\right)^{\frac{p-1}{p}}.$$
(2.2)

It remains to show the sharpness of the constant. By the condition with equality in the Hölder inequality, we consider the following family of functions:

$$u_{\varepsilon}(x) = e^{-\frac{C_{\varepsilon}}{\beta}|x|^{\beta}}$$
, when $\beta = a - \frac{b}{p-1} + 1 \neq 0$

and

$$u_{\varepsilon}(x) = \frac{1}{|x|^{C_{\varepsilon}}}, \text{ when } \beta = a - \frac{b}{p-1} + 1 = 0,$$

where C_{ε} is a positive number sequence converging to $|\frac{N-(a+b+1)}{p}|$ as $\varepsilon \to 0$. By direct computation and the limit process, we know the constant $\frac{|N-(a+b+1)|}{p}$ is sharp.

Remark 1 When p = 2, the inequality (2.1) covers the inequality (2.4) in [9].

Remark 2 When a = 0, b = p - 1, the inequality (2.1) is the classical L^p Hardy inequality:

$$\left(\frac{N-p}{p}\right)^p \int_{\mathbb{R}^N} \frac{|u|^p}{|x|^p} dx \le \int_{\mathbb{R}^N} |\nabla u|^p dx.$$
(2.3)

When we take special values for *a*, *b*, the following corollary holds.

Corollary 1 (i) When b = (a + 1)(p - 1), the inequality (2.1) is just the weighted Hardy inequality:

$$\left|\frac{N-p(a+1)}{p}\right|^p \int_{\mathbb{R}^N} \frac{|u|^p}{|x|^{(a+1)p}} \, dx \le \int_{\mathbb{R}^N} \frac{|\nabla u|^p}{|x|^{ap}} \, dx.$$
(2.4)

(ii) When a + b + 1 = ap, according to the inequality (2.1), we have

$$\left|\frac{N-ap}{p}\right| \int_{\mathbb{R}^N} \frac{|u|^p}{|x|^{ap}} \, dx \le \left(\int_{\mathbb{R}^N} \frac{|\nabla u|^p}{|x|^{ap}} \, dx\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^N} \frac{|u|^p}{|x|^{ap-\frac{p}{p-1}}} \, dx\right)^{\frac{p-1}{p}}.$$
(2.5)

(iii) When a = -p and a + b + 1 = 0, we obtain the inequality

$$\frac{N}{p} \int_{\mathbb{R}^{N}} |u|^{p} dx \leq \left(\int_{\mathbb{R}^{N}} |\nabla u|^{p} |x|^{p^{2}} dx \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} dx \right)^{\frac{p-1}{p}}.$$
(2.6)

By a similar method, we can prove the following L^p case Hardy-Rellich type inequality.

Theorem 2 Let $1 , <math>\frac{p-N}{p-1} \le a+b+1 \le 0$. Then, for any $u \in C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$, the following holds:

$$\hat{C} \int_{\mathbb{R}^{N}} \frac{|\nabla u|^{p}}{|x|^{a+b+1}} dx \le \left(\int_{\mathbb{R}^{N}} \frac{|\Delta_{p} u|^{p}}{|x|^{ap}} dx \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^{N}} \frac{|\nabla u|^{q}}{|x|^{bq}} dx \right)^{\frac{1}{q}},$$
(2.7)

where $\frac{1}{p} + \frac{1}{q} = 1$, $\hat{C} = (\frac{N-p+(p-1)(a+b+1)}{p})$ and $\triangle_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator.

Proof Set $\lambda = a + b + 1$, it is easy to see

$$\int_{\mathbb{R}^{N}} \frac{|\nabla u|^{p}}{|x|^{\lambda}} dx = \frac{1}{N-\lambda} \int_{\mathbb{R}^{N}} |\nabla u|^{p} \operatorname{div}\left(\frac{x}{|x|^{\lambda}}\right) dx$$
$$= -\frac{1}{N-\lambda} \int_{\mathbb{R}^{N}} \frac{p}{2} |\nabla u|^{p-2} \frac{x}{|x|^{\lambda}} \cdot \nabla (|\nabla u|^{2}) dx$$
$$= \frac{p}{2(\lambda-N)} \int_{\mathbb{R}^{N}} |\nabla u|^{p-2} \frac{x \cdot \nabla (|\nabla u|^{2})}{|x|^{\lambda}} dx.$$
(2.8)

On the other hand,

$$\begin{split} \int_{\mathbb{R}^{N}} \triangle_{p} u \frac{x \cdot \nabla u}{|x|^{\lambda}} \, dx &= \int_{\mathbb{R}^{N}} \operatorname{div} \left(|\nabla u|^{p-2} \nabla u \right) \frac{x \cdot \nabla u}{|x|^{\lambda}} \, dx \\ &= -\int_{\mathbb{R}^{N}} |\nabla u|^{p-2} \nabla u \cdot \nabla \left(\frac{x \cdot \nabla u}{|x|^{\lambda}} \right) \, dx \\ &= -\int_{\mathbb{R}^{N}} |\nabla u|^{p-2} \left(\frac{|\nabla u|^{2}}{|x|^{\lambda}} + \frac{\frac{1}{2}x \cdot \nabla (|\nabla u|^{2})}{|x|^{\lambda}} - \lambda \frac{(x \cdot \nabla u)^{2}}{|x|^{\lambda+2}} \right) \, dx, \end{split}$$

which means

$$\int_{\mathbb{R}^{N}} |\nabla u|^{p-2} \cdot \frac{x \cdot \nabla(|\nabla u|^{2})}{|x|^{\lambda}} dx$$
$$= 2 \left(\lambda \int_{\mathbb{R}^{N}} |\nabla u|^{p-2} \frac{(x \cdot \nabla u)^{2}}{|x|^{\lambda}} dx - \int_{\mathbb{R}^{N}} \frac{|\nabla u|^{p}}{|x|^{\lambda}} dx - \int_{\mathbb{R}^{N}} \Delta_{p} u \frac{x \cdot \nabla u}{|x|^{\lambda}} \right).$$
(2.9)

Then, we can deduce from (2.8) and (2.9)

$$\int_{\mathbb{R}^{N}} \frac{|\nabla u|^{p}}{|x|^{\lambda}} dx$$
$$= \frac{p}{\lambda - N} \left(\lambda \int_{\mathbb{R}^{N}} |\nabla u|^{p-2} \frac{(x \cdot \nabla u)^{2}}{|x|^{\lambda}} dx - \int_{\mathbb{R}^{N}} \frac{|\nabla u|^{p}}{|x|^{\lambda}} dx - \int_{\mathbb{R}^{N}} \Delta_{p} u \frac{x \cdot \nabla u}{|x|^{\lambda}} \right).$$
(2.10)

That is,

$$\frac{N-p-\lambda}{p}\int_{\mathbb{R}^N}\frac{|\nabla u|^p}{|x|^{\lambda}}\,dx+\lambda\int_{\mathbb{R}^N}|\nabla u|^{p-2}\frac{(x\cdot\nabla u)^2}{|x|^{\lambda+2}}\,dx=\int_{\mathbb{R}^N}\triangle_p u\frac{x\cdot\nabla u}{|x|^{\lambda}}\,dx.$$
(2.11)

By the Hölder inequality,

$$\int_{\mathbb{R}^N} \Delta_p u \frac{x \cdot \nabla u}{|x|^{\lambda+2}} \, dx \le \left(\int_{\mathbb{R}^N} \frac{|\Delta_p u|^q}{|x|^{aq}} \right)^{\frac{1}{q}} \left(\int_{\mathbb{R}^N} \frac{|\nabla u|^p}{|x|^{bp}} \right)^{\frac{1}{p}},\tag{2.12}$$

note that $\frac{p-N}{p-1} \leq \lambda \leq 0$. Thus

$$\frac{N-p+(p-1)\lambda}{p} \int_{\mathbb{R}^N} \frac{|\nabla u|^p}{|x|^{\lambda}} dx \le \left(\int_{\mathbb{R}^N} \frac{|\Delta_p u|^p}{|x|^{ap}} \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^N} \frac{|\nabla u|^q}{|x|^{bq}} \right)^{\frac{1}{q}}.$$
(2.13)

We mention that we do not know whether the constant $(\frac{N-p+(p-1)(a+b+1)}{p})$ in (2.7) is optimal or not.

Corollary 2 When a + b + 1 = 0, we have the following inequalities:

(i) when a = -1, b = 0, the inequality (2.7) is equivalent to the inequality

$$\left(\frac{N-p}{p}\right)^p \int_{\mathbb{R}^N} |\nabla u|^p \, dx \le \int_{\mathbb{R}^N} |\Delta_p u|^p |x|^p \, dx. \tag{2.14}$$

(ii) When a = 1, b = -2, we obtain the inequality

$$\left(\frac{N-p}{p}\right)\int_{\mathbb{R}^N}|\nabla u|^p\,dx \le \left(\int_{\mathbb{R}^N}\frac{|\Delta_p u|^p}{|x|^p}\,dx\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^N}|\nabla u|^q|x|^{2q}\,dx\right)^{\frac{1}{q}}.$$
(2.15)

(iii) *When* a = 0, b = -1, we get

$$\left(\frac{N-p}{p}\right)\int_{\mathbb{R}^{N}}\left|\nabla u\right|^{p}dx \leq \left(\int_{\mathbb{R}^{N}}\left|\Delta_{p}u\right|^{p}dx\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^{N}}\left|\nabla u\right|^{q}\left|x\right|^{q}dx\right)^{\frac{1}{q}}.$$
(2.16)

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors jointly worked on the results and they read and approved the final manuscript.

Acknowledgements

This work is supported by NNSF of China (11001240), ZJNSF (LQ12A01023) and the foundation of the Zhejiang University of the Technology (20100229).

Received: 31 May 2012 Accepted: 18 February 2013 Published: 4 March 2013

References

- 1. Adimurthi, AS: Role of the fundamental solution in Hardy-Sobolev type inequalities. Proc. R. Soc. Edinb., Sect. A 136, 1111-1130 (2006)
- Garofalo, N, Lanconelli, E: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40, 313-356 (1990)
- 3. Goldstein, JA, Kombe, I: Nonlinear degenerate parabolic equations on the Heisenberg group. Int. J. Evol. Equ. 1, 1-22 (2005)
- 4. Goldstein, JA, Zhang, QS: On a degenerate heat equation with a singular potential. J. Funct. Anal. 186, 342-359 (2001)
- Jin, Y, Han, Y: Weighted Rellich inequality on *H*-type groups and nonisotropic Heisenberg groups. J. Inequal. Appl. 2010, Article ID 158281 (2010)
- 6. Jin, Y, Zhang, G: Degenerate *p*-Laplacian operators and Hardy type inequalities on *h*-type groups. Can. J. Math. **62**, 1116-1130 (2010)
- García Azorero, JP, Peral Alonso, I Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144, 441-476 (1998)

- 8. Caffarelli, L, Kohn, R, Nirenberg, L: First order interpolation inequalities with weights. Compos. Math. 53, 259-275 (1984)
- Costa, DG: Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities. J. Math. Anal. Appl. 337, 311-317 (2008)
- 10. Tertikas, A, Zographopoulos, NB: Best constants in the Hardy-Rellich inequalities and related improvements. Adv. Math. **209**, 407-459 (2007)
- 11. Costa, DG: On Hardy-Rellich type inequalities in R^N. Appl. Math. Lett. **22**, 902-905 (2009)

doi:10.1186/1029-242X-2013-84

Cite this article as: Di et al.: A note on a class of Hardy-Rellich type inequalities. Journal of Inequalities and Applications 2013 2013:84.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com