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Abstract
By introducing the asymptotic logarithmic likelihood ratio as a measure of the Markov
approximation of arbitrary random fields on a uniformly bounded tree, by
constructing a non-negative martingale on a uniformly bounded tree, a class of small
deviation theorems of functionals and a class of small deviation theorems of the
frequencies of occurrence of states for random fields on a uniformly bounded tree are
established. Some known results are generalized in this paper.
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1 Introduction
A tree is a graph G = {T ,E} which is connected and contains no circuits. Given any two
verticesα �= β ∈ T , letαβ be the unique path connectingα andβ . Define the graphdistance
d(α,β) to be the number of edges contained in the path αβ .
Let T be an infinite tree which is locally finite and has no leaves. We choose a vertex as

the root. We call the number of neighbors of a vertex of the tree the degree of this vertex.
When the degrees of any vertices of T are uniformly bounded, we say T is a uniformly
bounded tree. A tree is said to be a Bethe tree if each vertex hasN + neighboring vertices,
which is denoted by TB,N . A tree is said to be a Cayley tree if the root has onlyN neighbors
and the other vertices have N +  neighbors, which is denoted by TC,N . Both kinds of
trees are common homogeneous trees. Obviously, the two kinds of homogeneous trees
are the special cases of the uniformly bounded tree. When the context permits, uniformly
bounded trees are all denoted simply by T .
Let T be an infinite tree with root o. The set of all vertices with distance n from the root

is called the nth generation of T , which is denoted by Ln. We denote by T (n) the subtree
comprised of level  (the root o) through level n. For each vertex t, there is a unique path
from o to t, and |t| for the number of edges on this path. We denote the first predecessor
of t by t , the second predecessor of t by t , and denote by nt the nth predecessor of t. For
any two vertices s and t of tree T , write s ≤ t if s is on the unique path from the root o to t.
We denote by s∧ t the vertex farthest from o satisfying s∧ t ≤ s and s∧ t ≤ t.
Let (�,F ) be a measurable space, {Xt , t ∈ T} be a collection of random variables defined

on (�,F ) and taking values in S = {, , . . . ,b – }, where b is a positive integer. Let A be a
subgraph of T , XA = {Xt , t ∈ A}, and we denote by |A| the number of vertices of A. Let the
realization ofXT (n) be xT (n) . Letμ be a probabilitymeasure on themeasurable space (�,F ).
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We will call μ the random field on tree T . Let the distribution of {Xt , t ∈ T} under proba-
bility measureμ beμ(xT (n) ) = μ(XT (n) = xT (n) ).μ(xT (n) ) is actually themarginal distribution
of μ.

Definition  (see []) Let T be an infinite tree which is locally finite and has no leaves, S
be a finite state space, {Xt , t ∈ T} be a collection of S-valued random variables defined on
the measurable space (�,F ), and let

p =
{
p(x),x ∈ S

}
()

be a distribution on S,

P =
(
P(y|x)), x, y ∈ S, ()

be a stochastic matrix on S. Let μP be a probability measure on the measurable space
(�,F ). If for any vertex t ∈ T ,

μP(Xt = y|Xt = x and Xs for s∧ t ≤ t) = μP(Xt = y|Xt = x) = P(y|x), x, y ∈ S, ()

and

μP(X = x) = p(x), x ∈ S,

{Xt , t ∈ T} will be called S-valued Markov chains indexed by an infinite tree T with initial
distribution () and transition matrix () under probability measure μP .

Let {Xt , t ∈ T} beMarkov chains indexed by treeT under probabilitymeasureμP defined
above. It is easy to see that

μP
(
xT

(n))
= μP

(
XT (n)

= xT
(n))

= p(xo)
n∏

m=

∏
t∈Lm

P(xt|xt ). ()

In order to avoid technical problems, we always assume that μ(xT (n) ), P(y|x) and p(x) are
positive.

Definition  Let T be a uniformly bounded tree which has no leaves and {Xt , t ∈ T} be
a collection of S-valued random variables defined on (�,F ), P = (P(y|x)), x, y ∈ S be a
positive stochastic matrix,μ,μP be two probability measures on (�,F ), and {Xt , t ∈ T} be
Markov chains indexed by tree T under probability measureμP determined by P. Assume
that μ(xT (n) ) is always strictly positive. Let

ϕn(ω) =
μ(XT (n) )
μP(XT (n) )

, ()

ϕ(ω) = lim sup
n→∞


|T (n)| lnϕn(ω), ()

ϕ(ω) will be called the asymptotic logarithmic likelihood ratio.
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Remark  If μ = μP , then ϕ(ω) ≡ . In Lemma  we will show that in a general case
ϕ(ω)≥  μ-a.e., hence ϕ(ω) can be regarded as a measure of the Markov approximation
of an arbitrary random field on T .

The tree model has recently drawn increasing interest from specialists in physics, prob-
ability and information theory. Benjamini and Peres [] have given the notion of the tree-
indexed homogeneous Markov chains and studied the recurrence and ray-recurrence for
them. Berger and Ye [] have studied the existence of entropy rate for some stationary ran-
domfields on a homogeneous tree. Ye and Berger [] have studied the asymptotic equipar-
tition property (AEP) in the sense of convergence in probability for a PPG-invariant and
ergodic random field on a homogeneous tree. Recently, Yang [] has studied some strong
limit theorems for countable homogeneous Markov chains indexed by a homogeneous
tree and the strong law of large numbers and the asymptotic equipartition property (AEP)
for finite homogeneous Markov chains indexed by a homogeneous tree. Huang and Yang
[] have studied the strong law of large numbers for Markov chains indexed by an infinite
tree with uniformly bounded degree. Liu and Wang [] have studied the small deviation
theorems between the arbitrary random fields and the Markov chain fields on the Cayley
tree. Peng, Yang, and Wang [] have further studied a class of small deviation theorems
for functionals of random fields on a homogeneous tree which partially extend the result
of [].
In this paper, by introducing the asymptotic logarithmic likelihood ratio as a measure

of the Markov approximation of the arbitrary random field on a uniformly bounded tree,
and by constructing a non-negativemartingale, we obtain the following two results: a class
of small deviation theorems of functionals and a class of small deviation theorems of the
frequencies of occurrence of states for random fields on a uniformly bounded tree. In fact,
our present outcomes can imply the case in [] and [].

Lemma  Let T be a uniformly bounded tree which has no leaves. Let μ, μ be two prob-
ability measures on (�,F ), D ∈ F , {τn,n ≥ } be a sequence of positive random variables
such that

lim inf
n→∞

τn

|T (n)| >  μ-a.e. on D. ()

Then

lim sup
n→∞


τn

ln
μ(XT (n) )
μ(XT (n) )

≤  μ-a.e. on D. ()

Proof The proof of this lemma is similar to that of Lemma  of [], so we omit it. �

Remark  Let μ = μ, μ = μP and τn = |T (n)| in Lemma , by () there exists A ∈ F ,
μ(A) =  such that

lim sup
n→∞


|T (n)| ln

μP(XT (n) )
μ(XT (n) )

≤ , ω ∈ A, ()

hence we have ϕ(ω) ≥ , ω ∈ A.

http://www.journalofinequalitiesandapplications.com/content/2013/1/81


Wang and Yang Journal of Inequalities and Applications 2013, 2013:81 Page 4 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/81

From this remark, we know that D ∈F and the sequence of {τn,n≥ } are existent.
Let T be a uniformly bounded tree, k, l ∈ S. Let

Sn(k) =
∣∣{t ∈ T (n) : Xt = k

}∣∣, ()

Sn(k, l) =
∣∣{t ∈ (

T (n) \ {}) : (Xt ,Xt) = (k, l)
}∣∣, ()

that is,

Sn(k) =
∑
t∈T (n)

δk(Xt), Sn(k, l) =
n∑

m=

∑
t∈Lm

δk(Xt )δl(Xt),

where δk(·) (k ∈ S) is the Kronecker δ-function

δk(x) =

⎧⎨
⎩, if x = k,

, if x �= k.

Let the degree of each vertex σ (σ �= o) on the tree T be d(σ ). Since T is a uniformly
bounded tree which has no leaves, we know that there are two positive numbersm andM
such that  ≤ m ≤ d(σ )≤ M.

Lemma  Let T be a uniformly bounded tree which has no leaves, P = (P(y|x)), x, y ∈ S
be a positive stochastic matrix, μ, μP be two probability measures on (�,F ), {Xt , t ∈ T}
be Markov chains indexed by T under probability measure μP determined by P, ϕ(ω) be
denoted by (),M be defined as above,  ≤ c < ln( – ak)– be a constant, and

D(c) =
{
ω : ϕ(ω) ≤ c

}
, ()

Mk =max

{[
ln

 – ak
 – λ

+ c
]/

ln
λ( – ak)
bk( – λ)

,  < λ ≤  + (ak – )ec
}
, ()

where ak =min{P(k|i), i ∈ S}, bk =max{P(k|i), i ∈ S}. Then

lim inf
n→∞

Sn–(k)
|T (n)| ≥ Mk

M – 
μ-a.e. on D(c). ()

Proof By using a similar proof as that of Lemma of [], we can obtain

lim inf
n→∞

Sn(k)
|T (n)| ≥ Mk μ-a.e. on D(c). ()

Since 
|T (n+)| ≥ 

M–


|T (n)| , this corollary follows from (). �

In the following, we always let N ≥ , k ∈ S, d(t) = , and denote by dN (t) = |τ ∈ T :
Nτ = t|, where Nτ is defined as above. Let

SNk (A) =
∑
t∈A

δk(Xt)dN (t), ()

SNk,l(A) =
∑
t∈A

δk(Xt )δl(Xt)dN (t). ()
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Corollary  Let m,M be defined as above. Under the assumption of Lemma , we have

lim inf
n→∞

SN+
k (T (n–))

|T (n)| ≥ Mk(m – )N+

M – 
μ-a.e. on D(c). ()

Proof Because T is a uniformly bounded tree and has no leaves, then (m – )N ≤ dN (t) ≤
(M – )N . By Lemma  we have

lim inf
n→∞

SN+
k (T (n–))

|T (n)| = lim inf
n→∞

∑
t∈T (n–) δk(Xt)dN+(t)

|T (n)|

≥ (m – )N+ lim inf
n→∞

∑
t∈T (n–) δk(Xt)

|T (n)|
= (m – )N+ lim inf

n→∞
Sn–(k)
|T (n)|

≥ Mk(m – )N+

M – 
μ-a.e. on D(c). ()

The proof is finished. �

Lemma  Let T be a uniformly bounded tree which has no leaves, P = (P(y|x)), x, y ∈ S be
a positive stochastic matrix, μ, μP be two probability measures on (�,F ), {Xt , t ∈ T} be
Markov chains indexed by T under probability measure μP determined by P, {gt(x, y), t ∈
T} be functions defined on S, L = {o} (where o is the root of the tree T ), Fn = σ (XT (n) ), λ
be a real number. Let

tn(λ,ω) =
eλ

∑
t∈T(n)\{o} gt (Xt ,Xt )∏

t∈T (n)\{o} EμP [e
λgt (Xt ,Xt )|Xt ]

μP(XT (n) )
μ(XT (n) )

, ()

where EμP is the expectation under probability measure μP . Then (tn(λ,ω),Fn,n ≥ ) is a
non-negative martingale under probability measure μ.

Proof The proof of this lemma is similar to that of Lemma  of [], so we omit it. �

2 Small deviation theorem
Small deviation theorems are a class of strong limit theorems expressed by inequalities.
They are the extensions of strong limit theorems expressed by equalities. It is a new re-
search topic proposed by Liu (see []).
In this section, we will establish a class of small deviation theorems of functionals and

a class of small deviation theorems of the frequencies of occurrence of states for random
fields on a uniformly bounded tree.

Theorem  Let T be a uniformly bounded tree which has no leaves, P = (P(y|x)), x, y ∈ S
be a positive stochastic matrix, μ, μP be two probability measures on (�,F ), {Xt , t ∈
T} be Markov chains indexed by T under probability measure μP determined by P.
Let {gt(x, y), t ∈ T} be a collection of uniformly bounded functions defined on S. Let
{|gt(x, y)| ≤ K ,x, y ∈ S,∀t ∈ T}, and let ϕ(ω) be denoted by (). Let c ≥ , D(c) be defined

http://www.journalofinequalitiesandapplications.com/content/2013/1/81
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by (),

Fn(ω) =
∑

t∈T (n)\{o}
gt(Xt ,Xt), ()

Gn(ω) =
∑

t∈T (n)\{o}
EμP

[
gt(Xt ,Xt)|Xt

]
. ()

Then

lim sup
n→∞


|T (n)|

[
Fn(ω) –Gn(ω)

] ≤ K(c +
√
c) μ-a.e. on D(c), ()

lim inf
n→∞


|T (n)|

[
Fn(ω) –Gn(ω)

] ≥ –K(c +
√
c) μ-a.e. on D(c). ()

Proof Let tn(λ,ω) be defined by (). By Lemma , (tn(λ,ω),Fn,n ≥ ) is a non-negative
martingale under probability measure μ with Eμ(tn(λ,ω)) = . By Doob’s martingale con-
vergence theorem, we have

lim
n→∞ tn(λ,ω) = t(λ,ω) < ∞ μ-a.e. ()

Hence

lim sup
n→∞


|T (n)| ln tn(λ,ω)≤  μ-a.e. ()

We have by () and ()

lim sup
n→∞


|T (n)|

[ ∑
t∈T (n)\{o}

(
gt(Xt ,Xt)λ – lnEμP

(
eλgt (Xt ,Xt )|Xt

))
– ln

μ(XT (n) )
μP(XT (n) )

]

≤  μ-a.e. ()

By (), (), () and (), we have

lim sup
n→∞


|T (n)|

[ ∑
t∈T (n)\{o}

(
gt(Xt ,Xt)λ – lnEμP

(
eλgt (Xt ,Xt )|Xt

))]

≤ c μ-a.e. on D(c). ()

Taking λ > , we arrive at

lim sup
n→∞


|T (n)|

[ ∑
t∈T (n)\{o}

(
gt(Xt ,Xt) – EμP

(
gt(Xt ,Xt)|Xt

))]

(a)≤ lim sup
n→∞


|T (n)|

[ ∑
t∈T (n)\{o}

(
lnEμP (e

λgt (Xt ,Xt )|Xt )
λ

– EμP

(
gt(Xt ,Xt)|Xt

))]
+
c
λ

(b)≤ lim sup
n→∞


|T (n)|

[ ∑
t∈T (n)\{o}

(
EμP (e

λgt (Xt ,Xt )|Xt ) – 
λ

– EμP

(
gt(Xt ,Xt)|Xt

))]
+
c
λ

http://www.journalofinequalitiesandapplications.com/content/2013/1/81


Wang and Yang Journal of Inequalities and Applications 2013, 2013:81 Page 7 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/81

(c)≤ λ


lim sup
n→∞


|T (n)|

[ ∑
t∈T (n)\{o}

EμP

(
gt(Xt ,Xt)eλ|gt (Xt ,Xt )||Xt

)]
+
c
λ

(d)≤ λ


KeλK +

c
λ

(e)≤ λ


KeλK +

c
λeλK +Kc μ-a.e. on D(c), ()

where (a) follows by (), (b) follows by the inequality lnx ≤ x– (x > ), (c) follows by the
inequality  ≤ ex – x –  ≤ 

x
e|x|, (d) follows by |gt(x, y)| ≤ K , ∀t ∈ T , and (e) follows by

the inequality e–x ≥  – x. In the case c > , noticing that λ
K

eλK + c
λeλK attains its smallest

value
√
cK when λeλK =

√
c
K , by () we have

lim sup
n→∞


|T (n)|

[
Fn(ω) –Gn(ω)

] ≤ K(c +
√
c) μ-a.e. on D(c).

Hence () holds. In the case c = , () also holds by choosing λi → + (i → ∞) in ().
Taking λ <  and using a similar approach, we can prove (). This completes the proof of
Theorem . �

In the following, we will provide an example showing that D(c) maybe has a positive
probability, even has probability .

Example Let T be a Cayley tree TC,, μP and μ be two probability measures on the mea-
surable space (�,F ), and {Xt , t ∈ T} be a collection of random variables taking values in
the state space {, } defined on the measurable space (�,F ). Let {Xt , t ∈ T} be i.i.d. pro-
cess indexed by tree T under the probability measure μP with the common distribution
μP(Xt = ) = p, μP(Xt = ) =  – p,  < p < , and {Xt , t ∈ T} be also i.i.d. process indexed
by tree T under the probability measure μ with the common distribution μ(Xt = ) = q,
μ(Xt = ) =  – q,  < q < . It is easy to see that {Xt , t ∈ T} are Markov chains indexed by
tree T with the transitions matrices(

 – p p
 – p p

)
and

(
 – q q
 – q q

)

and stationary distributions ( – p,p) and ( – q,q) under the probability measures μP

and μ, respectively. It is also easy to see that

μP
(
XT (n)

= xT
(n))

= ps(T
(n))( – p)|T

(n)|–s(T (n)),

μ
(
XT (n)

= xT
(n))

= qs(T
(n))( – q)|T

(n)|–s(T (n)),

where S(T (n)) = S (T (n)), and s(T (n)) is its realization of S(T (n)). In this case

ϕn(ω) =
μ(XT (n) )
μP(XT (n) )

=
(
q
p

)S(T (n))(  – q
 – p

)|T (n)|–S(T (n))

.

By the strong law of large numbers for Markov chains indexed by tree (see []), we have

lim
n→∞

S(T (n))
|T (n)| = q μ-a.e.

http://www.journalofinequalitiesandapplications.com/content/2013/1/81


Wang and Yang Journal of Inequalities and Applications 2013, 2013:81 Page 8 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/81

Hence we have

ϕ(ω) = lim sup
n→∞


|T (n)| lnϕn(ω)

= lim
n→∞

S(T (n))
|T (n)| ln

q( – p)
p( – q)

+ ln
 – q
 – p

= q ln
q( – p)
p( – q)

+ ln
 – q
 – p

μ-a.e.

Let

f (q) = q ln
q( – p)
p( – q)

+ ln
 – q
 – p

,  < q < .

It is easy to see that f (p) =  and limq→– f (q) = ∞. Since f (q) is a continuous function, for
any  ≤ c < ∞, there exists q such that f (q) = c. Thus μ(D(c)) = .

Theorem  Let T be a uniformly bounded tree which has no leaves. Mk , m, M, D(c) are
defined as above. Let  ≤ c < ln( – ak)–. Under the assumption of Theorem , we have

lim sup
n→∞

[SNk,l(T (n) \ {o})
SN+
k (T (n–))

– P(l|k)
]

≤ (M – )N

(m – )N

(√
c(M – )P(l|k)

Mk(m – )
+

c(M – )
Mk(m – )

)
μ-a.e. on D(c), ()

lim inf
n→∞

[SNk,l(T (n) \ {o})
SN+
k (T (n–))

– P(l|k)
]

≥ –
(M – )N

(m – )N

(√
c(M – )P(l|k)

Mk(m – )
+

c(M – )
Mk(m – )

)
μ-a.e. on D(c). ()

Proof Letting gt(x, y) = δk(x)δl(y)dN (t) in Theorem , by () and (), we have

Fn(ω) =
∑

t∈T (n)\{o}
gt(Xt ,Xt) =

∑
t∈T (n)\{o}

δk(Xt )δl(Xt)dN (t) = SNk,l
(
T (n) \ {o}), ()

Gn(ω) =
∑

t∈T (n)\{o}
EμP

[
gt(Xt ,Xt)|Xt

]

=
∑

t∈T (n)\{o}

∑
xt∈S

δk(Xt )δl(xt)d
N (t)P(xt|Xt )

=
∑

t∈T (n)\{o}
δk(Xt )d

N (t)P(l|k)

=
∑

t∈T (n–)

δk(Xt)dN+(t)P(l|k)

= SN+
k

(
T (n–))P(l|k). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/81
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By (), when c≥ , we have

lim sup
n→∞


|T (n)|

[ ∑
t∈T (n)\{o}

(
λδk(Xt )δl(Xt)dN (t) – lnEμP

(
eλδk (Xt )δl(Xt )d

N (t)|Xt
))]

≤ c μ-a.e. on D(c). ()

By Corollary  and (), when  ≤ c < ln( – ak)–, we arrive at

lim sup
n→∞

∑
t∈T (n)\{o}(λδk(Xt )δl(Xt)dN (t) – lnEμP (e

λδk (Xt )δl(Xt )d
N (t)|Xt ))

SN+
k (T (n–))

≤ c(M – )
Mk(m – )N+ μ-a.e. on D(c). ()

Taking λ > , we have

lim sup
n→∞

[SNk,l(T (n) \ {o})
SN+
k (T (n–))

– P(l|k)
]

= lim sup
n→∞

∑
t∈T (n)\{o}(δk(Xt )δl(Xt)dN (t) – EμP [δk(Xt )δl(Xt)dN (t)|Xt ])

SN+
k (T (n–))

(f)≤ lim sup
n→∞


SN+
k (T (n–))

∑
t∈T (n)\{o}

(
lnEμP [e

λδk (Xt )δl(Xt )d
N (t)|Xt ]

λ

– EμP

[
δk(Xt )δl(Xt)dN (t)|Xt

])
+

c(M – )
λMk(m – )N+

(g)≤ λ


lim sup
n→∞

∑
t∈T (n)\{o} EμP [(δk(Xt )δl(Xt)dN (t))eλ|δk (Xt )δl(Xt )dN (t)||Xt ]

SN+
k (T (n–))

+
c(M – )

λMk(m – )N+

=
λ


lim sup
n→∞

∑
t∈T (n)\{o}

∑
xt (δk(Xt )δl(xt)dN (t))eλ|δk (Xt )δl(xt )dN (t)|P(xt|Xt )

SN+
k (T (n–))

+
c(M – )

λMk(m – )N+

=
λ


lim sup
n→∞

∑
t∈T (n)\{o}(δk(Xt )dN (t))eλ|δk (Xt )dN (t)|P(l|Xt )

SN+
k (T (n–))

+
c(M – )

λMk(m – )N+

(h)≤ λ(M – )Neλ(M–)N P(l|k)


lim sup
n→∞

∑
t∈T (n)\{o} δk(Xt )
SN+
k (T (n–))

+
c(M – )

λMk(m – )N+

(i)≤ λ(M – )Neλ(M–)N P(l|k)
(m – )N

+
c(M – )

λMk(m – )N+

(j)≤ 
(m – )N

(
λ(M – )Neλ(M–)N P(l|k)


+

c(M – )
λeλ(M–)NMk(m – )

+
c(M – )N+

Mk(m – )

)

μ-a.e. on D(c), ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/81
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where (f ) follows by (), (g), similarly to (b) and (c) of (), follows by the inequalities
lnx ≤ x –  (x > ) and  ≤ ex – x –  ≤ x

 e
|x|, (h) follows by the inequality (m – )N ≤

dN (t) ≤ (M – )N , (i) follows by the inequality
∑

t∈T (n)\{o} δk(Xt )
SN+
k (T (n–))

=
∑

t∈T (n–) δk(Xt)d(t)∑
t∈T (n–) δk(Xt)dN+(t)

≤ 
(m – )N

,

and (j) follows by the inequality e–x ≥  – x. In the case c > , notice that

λ(M – )Neλ(M–)N P(l|k)


+
c(M – )

λeλ(M–)NMk(m – )

attains its smallest value 
√

c(M–)N+P(l|k)
Mk (m–) when

λ(M – )Neλ(M–)N =

√
c(M – )

MkP(l|k)(m – )
.

By (), we have

lim sup
n→∞

[SNk,l(T (n) \ {o})
SN+
k (T (n–))

– P(l|k)
]

≤ (M – )N

(m – )N

(√
c(M – )P(l|k)

Mk(m – )
+

c(M – )
Mk(m – )

)
μ-a.e. on D(c).

Hence () holds. In the case c = , () also holds by choosing λi → + (i → ∞) in ().
Taking λ <  and using a similar approach, we can prove (). This completes the proof of
Theorem . �

Corollary  Under the assumption of Theorem , we have

lim sup
n→∞

[SNk,l(T (n) \ {o})
SN+
k (T (n–))

– P(l|k)
]
=  μ-a.e. on D(), ()

Proof Letting c = , () follows from () and (). �

Corollary  (see []) Under the assumption of Theorem , we have

lim sup
n→∞

[SNk,l(T (n) \ {o})
SN+
k (T (n–))

– P(l|k)
]
=  μP-a.e. ()

Proof Let μ = μP . Then ϕn(ω) ≡ , D() =�. Hence () follows () directly. �

Corollary  (see []) Under the assumptions of Theorem , if T is a TC,N , we have

lim sup
n→∞

[
Sn(k, l)

NSn–(k)
– P(l|k)

]
≤

√
cP(l|k)
Mk

+
c
Mk

μ-a.e. on D(c), ()

lim inf
n→∞

[
Sn(k, l)

NSn–(k)
– P(l|k)

]
≥ –

√
cP(l|k)
Mk

–
c
Mk

μ-a.e. on D(c). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/81
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Proof Since T is a TC,N , we can takeM –  =N,m –  =N. Since

Sk,l
(
T (n) \ {o}) = ∑

t∈T (n)\{o}
δk(Xt )δl(Xt) = Sn(k, l), ()

S+k
(
T (n–)) = ∑

t∈T (n–)

δk(Xt)d(t) =NSn–(k). ()

By (), (), () and (), we have

lim sup
n→∞

[
Sn(k, l)

NSn–(k)
– P(l|k)

]
≤

√
cNP(l|k)
MkN

+
cN

MkN

=

√
cP(l|k)
Mk

+
c
Mk

μ-a.e. on D(c),

lim inf
n→∞

[
Sn(k, l)

NSn–(k)
– P(l|k)

]
≥ –

√
cNP(l|k)
MkN

–
cN

MkN

= –

√
cP(l|k)
Mk

–
c
Mk

μ-a.e. on D(c).

This completes the proof of Corollary . �

Remark  Unfortunately, the upper and lower bounds obtained in Theorem  and The-
orem  are not tight. For example, if we let |gt(x, y)| ≤  and c =  in Theorem , then
lim supn→∞


|T (n)| |Fn(ω) –Gn(ω)| ≤ , but c +

√
c > .
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