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Abstract

By introducing the asymptotic logarithmic likelihood ratio as a measure of the Markov
approximation of arbitrary random fields on a uniformly bounded tree, by
constructing a non-negative martingale on a uniformly bounded tree, a class of small
deviation theorems of functionals and a class of small deviation theorems of the
frequencies of occurrence of states for random fields on a uniformly bounded tree are
established. Some known results are generalized in this paper.
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1 Introduction

A tree is a graph G = {T, E} which is connected and contains no circuits. Given any two
verticesa # B € T,let af be the unique path connecting o and 8. Define the graph distance
d(a, B) to be the number of edges contained in the path af.

Let T be an infinite tree which is locally finite and has no leaves. We choose a vertex as
the root. We call the number of neighbors of a vertex of the tree the degree of this vertex.
When the degrees of any vertices of T are uniformly bounded, we say T is a uniformly
bounded tree. A tree is said to be a Bethe tree if each vertex has N + 1 neighboring vertices,
which is denoted by T . A tree is said to be a Cayley tree if the root has only N neighbors
and the other vertices have N + 1 neighbors, which is denoted by T¢y. Both kinds of
trees are common homogeneous trees. Obviously, the two kinds of homogeneous trees
are the special cases of the uniformly bounded tree. When the context permits, uniformly
bounded trees are all denoted simply by T'.

Let T be an infinite tree with root o. The set of all vertices with distance # from the root
is called the nth generation of T, which is denoted by L,. We denote by T the subtree
comprised of level O (the root o) through level n. For each vertex ¢, there is a unique path
from o to ¢, and |¢| for the number of edges on this path. We denote the first predecessor
of ¢ by 1;, the second predecessor of ¢ by 2;, and denote by 7, the nth predecessor of . For
any two vertices s and ¢ of tree T, write s < ¢ if s is on the unique path from the root o to t.
We denote by s A ¢ the vertex farthest from o satisfyings At <sandsAt <t.

Let (€2, F) be a measurable space, {X;,t € T} be a collection of random variables defined
on (€2, F) and taking values in § = {0,1,...,b — 1}, where b is a positive integer. Let A be a
subgraph of T, X = {X,,t € A}, and we denote by |A| the number of vertices of A. Let the
realization of X7 be x™"” . Let 1 be a probability measure on the measurable space (2, F).
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We will call i the random field on tree T'. Let the distribution of {X;, ¢ € T} under proba-
bility measure u be ,u(xT(n)) =u(X T _ xT(”)). ;L(xT(")) is actually the marginal distribution
of u.

Definition 1 (see [1]) Let T be an infinite tree which is locally finite and has no leaves, S
be a finite state space, {X;, ¢ € T} be a collection of S-valued random variables defined on
the measurable space (€2, F), and let

p=1{p&),xeS} @

be a distribution on S,
P=(P(ylx)), xy€S, (2)

be a stochastic matrix on S2. Let up be a probability measure on the measurable space
(2, F). If for any vertext € T,

up(Xe =y Xy, =xand X, for s At <1;) = up(X; = y| X1, =x) =P(ylx), x,y€S, (3)
and
up(Xo =x) =p(x), x€S,

{X:,t € T} will be called S-valued Markov chains indexed by an infinite tree T with initial
distribution (1) and transition matrix (2) under probability measure wp.

Let {X;,t € T} be Markov chains indexed by tree T' under probability measure 11p defined
above. It is easy to see that

MP(xT(n)) _ MP(XT(W) _ xT(ﬂ)) - plx,) l—[ ]—[ Pclxy,). (4)

m=1teL,,

In order to avoid technical problems, we always assume that ,u(xT(n)), P(y|x) and p(x) are

positive.

Definition 2 Let T be a uniformly bounded tree which has no leaves and {X;,¢ € T} be
a collection of S-valued random variables defined on (2, F), P = (P(y|x)), x,y € S be a
positive stochastic matrix, i, up be two probability measures on (€2, F), and {X;, t € T} be
Markov chains indexed by tree T under probability measure up determined by P. Assume
that ,u(xT(n)) is always strictly positive. Let

_ nx™)
‘/’n(w) = m» (5)
o(@) = limsup —— Ing, (o), 6)

noo | T™]

¢(w) will be called the asymptotic logarithmic likelihood ratio.
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Remark 1 If i = pup, then ¢(w) = 0. In Lemma 1 we will show that in a general case
¢(w) > 0 p-a.e., hence p(w) can be regarded as a measure of the Markov approximation
of an arbitrary random field on 7.

The tree model has recently drawn increasing interest from specialists in physics, prob-
ability and information theory. Benjamini and Peres [1] have given the notion of the tree-
indexed homogeneous Markov chains and studied the recurrence and ray-recurrence for
them. Berger and Ye [2] have studied the existence of entropy rate for some stationary ran-
dom fields on a homogeneous tree. Ye and Berger [3] have studied the asymptotic equipar-
tition property (AEP) in the sense of convergence in probability for a PPG-invariant and
ergodic random field on a homogeneous tree. Recently, Yang [4] has studied some strong
limit theorems for countable homogeneous Markov chains indexed by a homogeneous
tree and the strong law of large numbers and the asymptotic equipartition property (AEP)
for finite homogeneous Markov chains indexed by a homogeneous tree. Huang and Yang
[5] have studied the strong law of large numbers for Markov chains indexed by an infinite
tree with uniformly bounded degree. Liu and Wang [6] have studied the small deviation
theorems between the arbitrary random fields and the Markov chain fields on the Cayley
tree. Peng, Yang, and Wang [7] have further studied a class of small deviation theorems
for functionals of random fields on a homogeneous tree which partially extend the result
of [6].

In this paper, by introducing the asymptotic logarithmic likelihood ratio as a measure
of the Markov approximation of the arbitrary random field on a uniformly bounded tree,
and by constructing a non-negative martingale, we obtain the following two results: a class
of small deviation theorems of functionals and a class of small deviation theorems of the
frequencies of occurrence of states for random fields on a uniformly bounded tree. In fact,
our present outcomes can imply the case in [5] and [7].

Lemmal Let T be a uniformly bounded tree which has no leaves. Let 11, (o be two prob-

ability measures on (2, F), D € F, {t,,n > 1} be a sequence of positive random variables

such that
liminf —2— >0 D @)
1;11)%)13 W > M1-a.e. on .
Then
1 (™)
limsup — In <0 pi-a.e.onD. (8)

n—oo Tn Ml(XT(n))
Proof The proof of this lemma is similar to that of Lemma 1 of [6], so we omit it. O

Remark 2 Let 14 = i, 2 = up and 7, = |T®| in Lemma 1, by (8) there exists A € F,
1(A) =1 such that

. ur(X™")
lim sup ) In——-—
oo [TV u(XT)

<0, weA, %)

hence we have ¢(w) >0, w € A.
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From this remark, we know that D € F and the sequence of {t,,n > 1} are existent.
Let T be a uniformly bounded tree, &,/ € S. Let

Suk)=|{te T™ : X, = k}|,
Sulk, 1) = [{t € (T \ {0}) : (1, X) = (K, D)},

(10)

(11)

that is,
Su(k) = Z S X0 Sulk )= 8k(X,)8(X0),
teT m=1teL,,

where 8;(+) (k € S) is the Kronecker §-function

1, ifx=k
Silx) =
0, ifx+k.

Let the degree of each vertex o (0 # 0) on the tree T be d(o). Since T is a uniformly
bounded tree which has no leaves, we know that there are two positive numbers m and M
such that 2 <m < d(o) <M.

Lemma 2 Let T be a uniformly bounded tree which has no leaves, P = (P(y|x)), x,y € S
be a positive stochastic matrix, |, (p be two probability measures on (2, F), {X;,t € T}
be Markov chains indexed by T under probability measure jp determined by P, p(w) be
denoted by (6), M be defined as above, 0 < ¢ < In(1 — ai)™* be a constant, and

D(c) = {a) tp(w) < c}, (12)

Mk—max{[ }/1 d-a) 0<A§1+(ak—1)ec}, (13)

br1-2)
where ay = min{P(k|i),i € S}, by = max{P(kli),i € S}. Then

S,k M
iming > &) o M
n—00 |T(7l)| M-1

u-a.e. on D(c). (14)

Proof By using a similar proof as that of Lemma of [6], we can obtain

S, (k
hnnlgjlf T(”))| > M j-a.e. on D(c). (15)
Since | T(’}“)l > ﬁ T(1”)| , this corollary follows from (15). O

In the following, we always let N > 0, k € S, d°(t) = 1, and denote by d¥(¢) = |t € T':
N, =t|, where N is defined as above. Let

SYA) =) 8(x)aN (e), (16)
teA
SpA) =Y 8k(X0,)81(X)d™ (0). (17)

teA
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Corollary 1 Let m, M be defined as above. Under the assumption of Lemma 2, we have

liming SC (L) Ml - DY
n—00 |T(”)| - M-1

u-a.e. on D(c). (18)

Proof Because T is a uniformly bounded tree and has no leaves, then (m — 1)V < d™(¢) <
(M —1)N. By Lemma 2 we have

SN+1 T(n—l) (X dN+1 ;
limjnfg - liminf ZteT( 1 8k (Xz) ()
noon | T n—o0 | T
n-1) Ok (X
> (m— )N i inf 2tere=) O4(Xe)
n—>00 | T™)|
Sn—l(k)

_ 1\WH 15043
On =D o)

Mk(m _ 1)N+1

> 1 u-a.e. on D(c). (19)

The proof is finished. 0

Lemma 3 Let T be a uniformly bounded tree which has no leaves, P = (P(y|x)), x,y € S be
a positive stochastic matrix, |1, iLp be two probability measures on (2, F), {X;,t € T} be
Markov chains indexed by T under probability measure up determined by P, {g;(x,y),t €
T} be functions defined on S?, Ly = {0} (where o is the root of the tree T), F,, = G(XT(n)), A
be a real number. Let

A X1,,X
¢ e (o) & X1:Xe) MP(XT(K))

nte 700\ (o) E,, [ekgt(X1t Xt) 1X3,] M(XT(n))

t,(h w) = (20)

where E,,, is the expectation under probability measure jip. Then (t,(\, ), Fyp,n>1) isa

non-negative martingale under probability measure ji.

Proof The proof of this lemma is similar to that of Lemma 3 of [7], so we omit it. O

2 Small deviation theorem
Small deviation theorems are a class of strong limit theorems expressed by inequalities.
They are the extensions of strong limit theorems expressed by equalities. It is a new re-
search topic proposed by Liu (see [8]).

In this section, we will establish a class of small deviation theorems of functionals and
a class of small deviation theorems of the frequencies of occurrence of states for random
fields on a uniformly bounded tree.

Theorem 1 Let T be a uniformly bounded tree which has no leaves, P = (P(y|x)), x,y € S
be a positive stochastic matrix, |, ip be two probability measures on (2, F), {X;,t €
T} be Markov chains indexed by T under probability measure up determined by P.
Let {g(x,),t € T} be a collection of uniformly bounded functions defined on S*. Let
{lg:(x, 0| < K,x,y € S,Vt € T}, and let p(w) be denoted by (6). Let ¢ > 0, D(c) be defined
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by (12),
Fiw)= Y alX,X), (21)
teTM\{o}
Ga(@)= Y EunplaX, X)IX,,]. (22)
teTM\ {0}
Then
11msup|T1 |[F (@) = Gu(@)] <K(c+~2¢)  p-a.e. on D(c), (23)
lhnigfl 1 |[ () - Gu(w )]2—1((c+\/2_c) u-a.e. on D(c). (24)

Proof Let t,(X, @) be defined by (20). By Lemma 3, (¢,(A, ®), F,, # > 1) is a non-negative
martingale under probability measure p with E, (¢,(A, )) = 1. By Doob’s martingale con-

vergence theorem, we have

lim t,(A, @) =t(h,w) <00 p-a.e. (25)
n—00
Hence
1
limsup ——— ln (L w) <0 p-ae. (26)
nsoo |T®
We have by (20) and (26)

1 Agt (X1,,Xt) H’(XT(”))
lim sup —— Z (ge(X1,, XA = InE,,, (XXX, )) —In —
n—00 |T | te TN (o) wp(XT™)

<0 pu-ae. (27)

By (5), (6), (12) and (27), we have

lim sup |T1 | [ Z (gt(Xlt’Xt))\ -InE,, (eAgt(Xlz'Xt)|Xlt)):|

n—00
te T\ {0}

<c¢ p-a.e.onD(c). (28)

Taking A > 0, we arrive at

1
fimsup - )|[ > (gt(Xh,Xt)—E,Lp(gt(Xh,thxh))]

n—0o0
te T\ {0}

(a 1 InE,, (e"X1eX0)| X, )
<thUP|Tn>|[ > ( - . _Eﬂp(gt(Xlz:Xt)|Xlz))]+

n—00 )\4
te T\ {0}

®) . 1 E, (28X X0 X, ) -1 c
< limsup —[ Z ( 1p : -E, (gt(Xlt:XtNXl[)) oy

nooo | T A
te T\ {0}

>l a
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(© A . 1 2 Alge(X1,,.Xe)|
2 timsp | Y Bl X0 )| 5
teT™\ (o}
d A c
2Lk
(e) A
2K2 )‘K+W+I((J u-a.e. on D(c), (29)

where (a) follows by (28), (b) follows by the inequality Inx <x—1 (x > 0), (c) follows by the
inequality 0 < &* —x — 1 < Lx2e”, (d) follows by |g;(x,y)| < K, Vt € T, and (e) follows by

the inequality e > 1—x. In the case ¢ > 0, noticing that 5 K*¢* + ¢ attains its smallest
value v/2¢cK when re* = 1<2 , by (29) we have

limsup ——— ! [ (W) — Gn(a))] <K(c++/2¢) p-ae. onD(c).

n—00 |T

Hence (23) holds. In the case ¢ = 0, (23) also holds by choosing A; = 0* (i — 00) in (29).
Taking X < 0 and using a similar approach, we can prove (24). This completes the proof of
Theorem 1. d

In the following, we will provide an example showing that D(c) maybe has a positive
probability, even has probability 1.

Example Let T be a Cayley tree T¢, (tp and p be two probability measures on the mea-
surable space (2, F), and {X;,t € T} be a collection of random variables taking values in
the state space {0,1} defined on the measurable space (2, F). Let {X;, ¢t € T} be i.i.d. pro-
cess indexed by tree T under the probability measure pp with the common distribution
upXy=1)=p, up(X; =0)=1-p,0<p<1,and {X;, ¢t € T} be also i.i.d. process indexed
by tree T under the probability measure x with the common distribution u(X; =1) = g,
w(X:=0)=1-¢q,0<g <1 Itis easy to see that {X;,¢ € T} are Markov chains indexed by
tree T with the transitions matrices

1-p p and 1-9g ¢
1-p p 1-9g ¢

and stationary distributions (1 — p,p) and (1 — ¢,q) under the probability measures up
and u, respectively. It is also easy to see that

(n) _ (”l)
,LLP(XT T ) sl(T (1 P)lT s1(T" )’

M(XT” ) ety ">) q)|T<"|—s1(T">),

where S;(T%") = SY(T™), and s;(T™) is its realization of S;(T"). In this case

(X7 q STt oq _ q |70 |51 (T()
o () )
T e \p 1-p

By the strong law of large numbers for Markov chains indexed by tree (see [4]), we have

S1(T™)

n—>00 |T(”)|

=q p-ae.
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Hence we have
(@) = limsup —— 1n g,(®)
=limsup ——— In
pl\w nﬁoop |T(n)| Onlw

Sy (T 1- 1-
 lim (T™) nq( p) 4
n—oo |TM| " p(1-¢q) 1-p

q(1-p) l1-¢q
+In——

=gqln JL-a.e.
T pa-g " 1-p
Let
qd-p)  1-gq
() =gqln +In——, O<g<l
f@=q pl-q) 1-p 1

It is easy to see that f(p) = 0 and lim,_, - f(g) = oo. Since f(g) is a continuous function, for
any 0 < ¢ < 0o, there exists g such that f(g) = ¢. Thus u(D(c)) = 1.

Theorem 2 Let T be a uniformly bounded tree which has no leaves. My, m, M, D(c) are

defined as above. Let 0 < ¢ < In(1 — ax) L. Under the assumption of Theorem 1, we have

. [SkN,I(T(”) \ {o})
lim

SY(T0D) 'P(l'k)]

=

(M -1)N ( 2c(M -1)P(l|k) (M -1)

(m—1)N Me(m—1) + M= 1)) p-a.e. on D(c), (30)
N ()
liminf|:M

SkN+1(T(n—1)) - P(”k)]

n—00

(M- N ( 2c(M -1)P(llk) (M -1)

(m—1)N Mem—1) + Ml = 1)> pn-a.e. on D(c). (31)

Proof Letting g;(x, y) = 8¢ (x)8;(y)dN (¢) in Theorem 1, by (21) and (22), we have

Fiw)= Y @X,X)= > 8&X)8X)d (@) = ST\ {o}), (32)
teTM\{o} teT\{o0}

Ga(@)= Y EulaX, X)X,
teTM\{o}

= Y 80,8 (P X,,)

teTM\ {0} %tES

= Y &X)dV(@©)P(Ik)

te T\ {0}
= Y &X)ad  OPUK)
teTn-1)

= Sy (T D) PK). (33)

Page 8 of 12
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By (28), when ¢ > 0, we have

1

lim su

nnel [TO)]
te T\ {0}

<c¢ p-a.e.onD(c).

By Corollary 1 and (34), when 0 < ¢ < In(1 — ax)~%, we arrive at

Y et o) A8k (X181 (X)dN (8) = In E,, (XXX "01x,,))

[ 3 (A8k(XG)8(X)AN (£) ~ InE,, (¢4 n 0D |X1t))]

lim su
ey SNA(T0D)

M-1
< ]\ﬁ u-a.e. on D(c).

Taking A > 0, we have

lim su
n—0o0

[SkN,,(T(”) \ {0})

S )

D tero o) Sk (X1 )81 (X)aN (8) = Epup [8x (X1, )81(X)dN (£)1 X, )

= limsup
n—>00 SN”(T” )

@ . 1 lnE [g)”‘sk (X108 (XN ( |X1 ]
< lim sup W Z ( ;

n— o0
teT0\ {0}

c(M-1)

E.p [(Sk(Xlt)5l(Xt)dN(t) |X1t]) + W

© A Y o0 (o) Eup (86001, )8,(X)dN (£)) 2 X050 0 x|
< —limsup
2 n—00 SN+1( (n 1))
c(M-1)

+ —_—
AM(m — PN+

N
Zte T\ (o) th (8x (Xlt)8l(xt)dN(t))2e>\|5k(X1t)SZ(xt)d (t)|P(xt |X13)

= — limsup
n—00

c(M-1)
+ —_—
AM(m — 1N+

S;:”l(T("_l))

A D et o) (S (X0, )AN (£))%e Mok Ol p(y )
= —limsup ol

2 oo Sk+ (T" 1)) )\_Mk(m—l)N+1
(h) A(M — 1)2NM-DN p(f| ) D et o Sk (X1,) c(M-1)
< lim su +
= 2 noco  SYPH(TCD) IM(m — 1N+
) A(M - 1)2N e M-D" p(J) k) oM -1)

+

- 2(m —1)N AM(m —1)N+1
w_ 1 AM = 1)2N M-DN p(j ) c(M-1)
~ (m-1)N 2 A M-DN AL (m - 1)

n-a.e. on D(c),

(34)

(35)

(36)

Page 9 of 12
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where (f) follows by (35), (g), similarly to (b) and (c) of (29), follows by the inequalities
Inx <x-1x>0)and0<ée*-x-1< ";e‘x‘, (h) follows by the inequality (m — 1)N <
dN(t) < (M - 1)V, (i) follows by the inequality

D et (o Sk (X1,) _ Y reronn Sk (Xe)d (2) o1
ST D) ezt Sk(X)dNT () ~ (m—1N’

and (j) follows by the inequality e™* > 1 — x. In the case ¢ > 0, notice that

AM = 1)2N W=D p(j ) (M —1)
+
2 reM-DN AL (1 — 1)

c(M—-1)2N+1p(]|k)
2Mj (m-1)

R e
MU = Mk om 1)

By (36), we have

attains its smallest value 2 when

ST\ (o))

lim sup[
S;(\Hl ( T(n_l))

n— 00

P(l|k)]

=

M -1)N ( 2c(M -1)P(l|k) (M -1)

1N Miom 1) + MG = 1)) u-a.e. on D(c).

Hence (30) holds. In the case ¢ = 0, (30) also holds by choosing A; — 0* (i — 00) in (36).
Taking A < 0 and using a similar approach, we can prove (31). This completes the proof of
Theorem 2. |

Corollary 2 Under the assumption of Theorem 2, we have

. SE(T™\ {o})
h:;ioo [W — P(l|k)] =0 Mm-a.e. on D(O), (37)
Proof Letting ¢ = 0, (37) follows from (30) and (31). O

Corollary 3 (see [5]) Under the assumption of Theorem 2, we have

. SE(T™\ {o})
llillsololp[w —P(l|k)] =0 MUp-a.e. (38)
Proof Let = up. Then ¢,(w) =0, D(0) = Q. Hence (38) follows (37) directly. O

Corollary 4 (see [7]) Under the assumptions of Theorem 2, if T is a Tcn,, we have

. Sn(k, 1) ] 2cP(Ik) ¢

limsu 7—1)1]( < + — -a.e. Ol’lDC, 39
nmp[NIS“(k) Uk | = i M © (39)
Lo S,(k,1) :| 2¢P(llk) ¢

liminf ——Plk > [ — — — -a.e. on D(c). 40
o [len_l(k) R i VA VA © (40)
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Proof Since T is a Tc,n;, we can take M —1=N;, m —1 = N;. Since

SoTP\ (o)) = D 8k(X1,)81(X) = Su(k, D), (41)
teTM\{o}

SENTIV) = D SX)d (0) = NiS- (k). 42)
teT(n-1)

By (30), (31), (41) and (42), we have

Su(k, L 2cN P(l|k N,
limsup[#—P(llk)] < [2NPUR) - cNy
n—00 len—l(k) MkNl MkNl
2¢P(l|k
= %}J) + A%k u-a.e. on D(c),
Sulk, ! 2cN Pl k N,
timint| S2&D__ pgpy | 5 [2NPUR) ey
n—o0 | N1§y-1(k) MiNy MiNy
2¢P(l)k
= - %k') - j%k u-a.e. on D(c).
This completes the proof of Corollary 4. d

Remark 3 Unfortunately, the upper and lower bounds obtained in Theorem 1 and The-
orem 2 are not tight. For example, if we let |g;(x,y)] <1 and ¢ =1 in Theorem 1, then
limsup, _, o, ﬁ |E (@) — Gu(w)] <2, but ¢+ +/2¢ > 2.
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