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Abstract
In this paper, we discuss the strong convergence of the viscosity approximation
method in Hilbert spaces relatively to the computation of fixed points of an operator
in �-strictly pseudononspreading. Under suitable conditions, some strong
convergence theorems are proved. Our work improves previous results for
nonspreading mappings.
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1 Introduction
Throughout this paper, we always assume that H is a real Hilbert space endowed with
an inner product and its induced norm denoted by 〈·, ·〉 and | · |, respectively. Let C be a
nonempty, closed and convex subset of H and let A : C → H be a nonlinear mapping.

Definition . A is said to be
(i) monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C;

(ii) strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

For such a case, A is said to be α-strongly-monotone;
(iii) inverse-strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is said to be α-inverse-strongly-monotone;
(iv) k-Lipschitz continuous if there exists a constant k ≥  such that

‖Ax –Ay‖ ≤ k‖x – y‖, ∀x, y ∈ C.
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Remark . Let F = μB– γ f , where B is a θ -Lipschitz and η-strongly monotone operator
on H with θ >  and f is a Lipschitz mapping on H with coefficient L > ,  < γ ≤ μη

L . It is
a simple matter to see that the operator F is (μη – γL)-strongly monotone over H , i.e.,

〈Fx – Fy,x – y〉 ≥ (μη – γL)‖x – y‖, ∀(x, y) ∈H ×H .

The classical variational inequality, which is denoted by VI(A,C), is to find x ∈ C such
that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The variational inequality has been extensively studied in literature (see [–] and the
references therein).
A mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping T is said to be firmly nonexpansive if

‖Tx – Ty‖ ≤ 〈x – Tx, y – Ty〉, ∀x, y ∈ C;

see, for instance, [–]. It is known that a mapping T : C → C is firmly nonexpansive if
and only if

‖Tx – Ty‖ + ∥∥(I – T)x – (I – T)y
∥∥ ≤ ‖x – y‖, ∀x, y ∈ C.

T is said to be nonspreading in [] if

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖Ty – x‖, ∀x, y ∈ C. (.)

It is shown in [] that (.) is equivalent to

‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉, ∀x, y ∈ C.

These mappings are generalization of a firmly nonexpansive mapping in a Hilbert space.
T : C → C is said to be firmly nonexpansive if

‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉, ∀x, y ∈ C.

See [–] for more information on firmly nonexpansive mappings.

Definition . T :H → H is called demicontractive on H if there exists a constant α < 
such that

‖Tx – q‖ ≤ ‖x – q‖ + α‖x – Tx‖, ∀(x,q) ∈H × Fix(T). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/80
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Definition . [] T : D(T) ⊆ H → H is �-strictly pseudononspreading if there exists
� ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + �
∥∥x – Tx – (y – Ty)

∥∥ + 〈x – Tx, y – Ty〉, (.)

for all x, y ∈ D(T).

Remark . It is easy to claim that firmly nonexpansive mapping ⇒ nonspreading map-
ping ⇒ �-strictly pseudononspreading mapping.
Indeed, from the definition of those mappings, ∀x, y ∈ C, we obtain

‖Tx – Ty‖ ≤ 〈x – Tx, y – Ty〉, T is firmly nonexpansive mapping.

⇓
‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉, T is nonspreading mapping.

⇓
‖Tx – Ty‖ ≤ ‖x – y‖ + �

∥∥x – Tx – (y – Ty)
∥∥ + 〈x – Tx, y – Ty〉,

T is �-strictly pseudononspreading mapping.

Clearly, every nonspreading mapping is �-strictly pseudononspreading. The following
example shows that the class of �-strictly pseudononspreading mappings is more general
than the class of nonspreadingmappings. Let us give an example of a�-strictly pseudonon-
spreading mapping satisfying the condition of Definition ..

Example . Let X = l with the norm ‖ · ‖ defined by

‖x‖ =
√√√√

∞∑
i=

xi , ∀x = (x,x, . . . ,xn, . . .) ∈ X,

C = {x = (x,x, . . . ,xn, . . .)|xi ∈ R, i = , , . . .}, and let C be an orthogonal subspace of X
(i.e., ∀x, y ∈ C, we have 〈x, y〉 = ). Then it is obvious that C is a nonempty closed convex
subset ofX. Now, for any x = (x,x, . . . ,xn, . . .) ∈ C, define amappingT : C → C as follows:

Tx =

⎧⎨
⎩
(x,x, . . . ,xn, . . .),

∏∞
i= xi < ,

(–x, –x, . . . , –xn, . . .),
∏∞

i= xi ≥ .
(.)

To see that T is 
 -strictly pseudononspreading, we break the process of proof into three

cases. ∀x, y ∈ C,
Case :

∏∞
i= xi <  and

∏∞
i= yi < , observe that

‖Tx – Ty‖ ≤ ‖x – y‖ + 

∥∥x – Tx – (y – Ty)

∥∥ + 〈x – Tx, y – Ty〉, 


∈ [, ),

since ‖Tx – Ty‖ = ‖x – y‖ and 
‖x – Tx – (y – Ty)‖ = 〈x – Tx, y – Ty〉 = .

Case :
∏∞

i= xi ≤  and
∏∞

i= yi ≥ , we obtain ‖Tx – Ty‖ = ‖x + y‖ = ‖x‖ + 〈x, y〉 +
‖y‖, 〈x – Tx, y – Ty〉 =  and 

‖x – Tx – (y – Ty)‖ = ‖y‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/80
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Hence,

‖x – y‖ + 

∥∥x – Tx – (y – Ty)

∥∥ + 〈x – Tx, y – Ty〉
= ‖x‖ – 〈x, y〉 + ‖y‖

= ‖x‖ + 〈x, y〉 + ‖y‖ – 〈x, y〉
= ‖x‖ + 〈x, y〉 + ‖y‖ (〈x, y〉 = 

)

= ‖x + y‖ = ‖Tx – Ty‖.

Case :
∏∞

i= xi ≥  and
∏∞

i= yi ≥ , we have ‖Tx–Ty‖ = ‖x–y‖, ‖x–Tx–(y–Ty)‖ =
‖x – y‖ and 〈x – Tx, y – Ty〉 = 〈x, y〉 = . Thus

‖Tx – Ty‖ = ‖x – y‖

= ‖x – y‖ + 

∥∥x – Tx – (y – Ty)

∥∥

≤ ‖x – y‖ + 

∥∥x – Tx – (y – Ty)

∥∥ + 〈x – Tx, y – Ty〉.

From (), () and (), we obtain that T is 
 -strictly pseudononspreading, i.e.,

‖Tx – Ty‖ = ‖x – y‖ + 

∥∥x – Tx – (y – Ty)

∥∥ + 〈x – Tx, y – Ty〉, ∀x, y ∈ R.

We can easily know that Fix(T) = {(x,x, . . . ,xn, . . .),∏∞
i= xi < } ∪ {}, where Fix(T) is de-

fined by the set of fixed points of T .
T is not nonspreading, since for x = {,, . . . , , . . .}, y = {, , . . . , , . . .}, we have ‖Tx –

Ty‖ = , ‖x – y‖ =  and 〈x – Tx, y – Ty〉 = , we obtain

‖Tx – Ty‖ =  >  = ‖x – y‖ + 〈x – Tx, y – Ty〉.

Since our class of maps contains the class of nonspreading mappings, it also contains the
class of firmly nonexpansive mappings.

Remark . [] Let T be an α-demicontractive mapping on H with Fix(T) �= ∅ and Tω =
( –ω)I +ωT for ω ∈ (,∞):
(A) T α-demicontractive is equivalent to

〈x – Tωx,x – q〉 ≥ ω


‖x – Tx‖, ∀(x,q) ∈H × Fix(T).

(A) Fix(T) = Fix(Tω) if ω �= .

Remark . Observe that if T is �-strictly pseudononspreading and Fix(T) �= ∅, then ∀x ∈
D(T) and ∀p ∈ Fix(T), we obtain

‖Tx – p‖ ≤ ‖x – p‖ + �‖x – Tx‖.

Thus, every �-strictly pseudononspreading mapping with a nonempty fixed point set
Fix(T) is demicontractive (see [, ]).

http://www.journalofinequalitiesandapplications.com/content/2013/1/80
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Remark . According to Remark .(A) and the fact that the �-strictly pseudonon-
spreading mapping of T is demicontractive, let I – Tω = ω(I – T). Then we obtain

〈x – Tωx,x – q〉 ≥ ω( – �)


‖x – Tx‖, ∀(x,q) ∈H × Fix(T). (.)

In , Osilike and Isiogugu [] introduced the following propositions and proved a
strong convergence theorem somewhat related to a Halpern-type iteration algorithm for
a �-strictly pseudononspreading mapping in Hilbert spaces.

Proposition . [] Let C be a nonempty closed convex subset of a real Hilbert space
H and let T : C → C be a �-strictly pseudononspreading mapping. If Fix(T) �= ∅, then it is
closed and convex.

Proposition . [] Let C be a nonempty closed convex subset of a real Hilbert space H
and let T : C → C be a �-strictly pseudononspreading mapping. Then (I –T) is demiclosed
at .

Theorem . [] Let C be a nonempty closed convex subset of a real Hilbert space H and
let T : C → C be a �-strictly pseudononspreading mapping with a nonempty fixed point set
Fix(T). Let α ∈ [�, ) and let {αn}∞n= be a real sequence in [, ) such that limn→∞ αn =  and∑∞

n= αn = ∞. Let u ∈ C, {xn} and {zn} be sequences in C generated from an arbitrary x ∈ C
by

⎧⎨
⎩
xn+ = αnu + (I – αn)zn, n > ,

zn = 
n
∑n–

k= Tk
αxn, n≥ .

(.)

Then {xn} and {zn} converge strongly to PFix(T)u, where PFix(T) :H → Fix(T) is a metric pro-
jection of H onto Fix(T).

In , Tian [] introduced the following theorem for finding an element of a set of
solutions to the fixed point of a nonexpansive mapping in a Hilbert space.

Theorem . [] Let f be a contraction on a real Hilbert space H and T be a nonex-
pansive mapping on H . Starting with an arbitrary initial x ∈ H , define a sequence {xn}
generated by

xn+ = αnγ f (xn) + (I –μαnB)Txn, n≥ , (.)

where B is a θ -Lipschitz and η-strongly monotone operator on H with θ > , η >  and  <
μ < η/θ. Assume also that a sequence {αn} is a sequence in (, ) satisfying the following
conditions:
(c) limn→∞ αn =  and

∑∞
n= αn = ∞,

(c)
∑∞

n= |αn+ – αn| <∞ or limn→∞ αn+/αn = .
Then the sequence {xn} generated by (.) converges strongly to the unique solution x* ∈
Fix(T) of the variational inequality

〈
(γ f –μB)x*,x – x*

〉 ≤ , ∀x ∈ Fix(T). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/80
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In this paper, we combine Theorem . and Theorem . and introduce the following
general iterative algorithm for a �-strictly pseudononspreading mapping T .

Algorithm . Let x ∈H be arbitrary

⎧⎨
⎩
xn+ = αnγ f (xn) + (I –μαnB)zn, n > ,

zn = 
n
∑n

k=Tk
αxn, n≥ ,

where B :H →H is η-strongly monotone and boundedly Lipschitzian, f is an L-Lipschitz
mapping on H with coefficient L >  and Tk

α = ( – α)I + αTk , α ∈ (�k ,  ).

Under suitable conditions, some strong convergence theorems are proved in the follow-
ing chapter.

2 Preliminaries
Throughout this paper, we write xn ⇀ x to indicate that the sequence {xn} converges
weakly to x. xn → x implies that {xn} converges strongly to x. The following lemmas are
useful for main results.

Definition . A mapping T is said to be demiclosed if for any sequence {xn} which
weakly converges to y, and if the sequence {Txn} strongly converges to z, then T(y) = z.

Lemma . [] Assume {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn, n≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence in R such that
(i)

∑∞
n= γn = ∞,

(ii) lim supn→∞
δn
γn

=  or
∑∞

n= |δn| < ∞.
Then limn→∞ αn = .

Lemma . [] Let {Tn} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {Tnj}j≥ of {Tn} which satisfies Tnj < Tnj+ for all
j ≥ . Also, consider the sequence of integers {δ(n)}n≥n defined by

δ(n) =max{k ≤ n|Tk < Tk+}. (.)

Then {δ(n)}n≥n is a nondecreasing sequence verifying limn→∞ δ(n) = ∞, ∀n ≥ n. It holds
that Tδ(n) < Tδ(n)+, and we have

Tn < Tδ(n)+.

Lemma . Let K be a closed convex subset of a real Hilbert space H given x ∈ H and
y ∈ K . Then y = PKx if and only if the following inequality holds:

〈x – y, y – z〉 ≥ , ∀z ∈ K .

http://www.journalofinequalitiesandapplications.com/content/2013/1/80
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3 Main results
Let C be a nonempty closed convex subset of a real Hilbert space H and let Tk : C → C
be a �k-strictly pseudononspreading mapping with a common nonempty fixed point set⋂n

k Fix(Tk). Let f be an L-Lipschitz mapping on H with coefficient L > . Assume the set⋂n
k Fix(Tk) is nonempty. Since

⋂n
k Fix(Tk) is closed and convex, the nearest point projec-

tion from C onto
⋂n

k Fix(Tk) is well defined. Recall B : H → H is η-strongly monotone
and θ -Lipschitzian on H with θ > , η > . Let  < μ < η/θ,  < γ < μ(η – μθ

 )/L = τ /L,
consider the following sequence {xn} defined by

⎧⎨
⎩
xn+ = αnγ f (xn) + (I –μαnB)zn, n > ,

zn = 
n
∑n

k=Tk
αxn, n≥ ,

(.)

where Tk
α = ( – α)I + αTk , α ∈ (�k ,  ), k = {, , . . . ,n}, and {αn} is a sequence in (, )

satisfying the following conditions:
(c) limn→∞ αn = ,
(c)

∑∞
n= αn = ∞ or limn→∞ αn+/αn = .

Remark . [] Let H be a real Hilbert space. Let B be a θ -Lipschitzian and η-strongly
monotone operator on H with θ > , η > . Let  < μ < η/θ, let S = (I – tμB) and μ(η –
μθ

 ) = τ , then for t ∈ (,min{, 
τ
}), S is a contraction with a constant  – tτ .

Before stating ourmain result, we introduce some lemmas for algorithm (.) as follows.

Lemma . The sequence {xn} is generated by (.) with Tk being a �-strictly pseudonon-
spreading mapping on H and {αn} ⊂ (, ). Then {xn} is bounded.

Proof Let Tk
αx = ( – α)x + αTkx and  < �k < α < 

 . Then ∀x, y ∈ C, we have

∥∥Tk
αx – Tk

αy
∥∥ = α‖x – y‖ + ( – α)

∥∥Tkx – Tky
∥∥ – α( – α)

∥∥x – Tkx –
(
y – Tky

)∥∥

≤ α‖x – y‖ + ( – α)
[‖x – y‖ + �k

∥∥x – Tkx –
(
y – Tky

)∥∥

+ 
〈
x – Tkx, y – Tky

〉]
– α( – α)

∥∥x – Tkx –
(
y – Tky

)∥∥

= ‖x – y‖ + ( – α)
〈
x – Tkx, y – Tky

〉

– ( – α)(α – �k)
∥∥x – Tkx –

(
y – Tky

)∥∥

≤ ‖x – y‖ + ( – α)
〈
x – Tkx, y – Tky

〉

= ‖x – y‖ + ( – α)
α

〈
x – Tk

αx, y – Tk
αy

〉
. (.)

From p ∈ ⋂n
k Fix(Tk) and (.), we also have

∥∥Tk
αxn – p

∥∥ ≤ ‖xn – p‖. (.)

According to (.), (.) and Remark ., we obtain

‖zn – p‖ =
∥∥∥∥

n

n∑
k=

Tk
αxn – p

∥∥∥∥ ≤ 
n

n∑
k=

∥∥Tk
αxn – p

∥∥ ≤ 
n

n∑
k=

‖xn – p‖ = ‖xn – p‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/80
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Thus,

‖xn+ – p‖ =
∥∥αnγ

(
f (xn) – f (p)

)
+ αn

(
γ f (p) –μBp

)
+ (I –μαnB)(zn – p)

∥∥
≤ αnγ

∥∥f (xn) – f (p)
∥∥ + αn

∥∥γ f (p) –μBp
∥∥ + ( – αnτ )‖zn – p‖

≤ αnγ
∥∥f (xn) – f (p)

∥∥ + αn
∥∥γ f (p) –μBp

∥∥ + ( – αnτ )‖xn – p‖, (.)

which combined with ‖f (xn) – f (p)‖ ≤ L‖xn – p‖ amounts to

‖xn+ – p‖ ≤ (
 – αn(τ – γL)

)‖xn – p‖ + αn
∥∥γ f (p) –μBp

∥∥. (.)

PuttingM =max{‖x –p‖,‖γ f (p)–μBp‖}, we clearly obtain ‖xn–p‖ ≤ M. Hence {xn}∞n=
and {zn}∞n= are bounded. From (.), we have that {Tk

αxn}∞n= is also bounded. �

Now we are in a position to claim the main result.

Theorem . Assume C is a nonempty closed convex subset of a real Hilbert space H and
let Tk : C → C be a �k-strictly pseudononspreading mapping with a common nonempty
fixed point set

⋂n
k Fix(Tk). Let f be an L-Lipschitz mapping on H with coefficient L > 

and B : H → H be η-strongly monotone and θ -Lipschitzian on H with θ > , η > . Let
 < μ < η/θ,  < γ < μ(η – μθ

 )/L = τ /L. Consider the sequences {xn}∞n= and {zn}∞n= to
be sequences in C generated from an arbitrary x ∈ C by (.), where Tk

α = ( – α)I + αTk ,
α ∈ (�k ,  ), k = {, , . . . ,n}, {αn}∞n= ∈ [, ) and limn→∞ αn = . Then {xn}∞n= and {zn}∞n=
converge strongly to the unique element x* in

⋂n
k Fix(Tk) verifying

P⋂n
k Fix(Tk )(I –μB + γ f )x* = x*, (.)

which equivalently solves the following variational inequality problem:

x* ∈
n⋂
k

Fix
(
Tk), 〈

(γ f –μB)x*, v – x*
〉 ≤ , ∀v ∈

n⋂
k

Fix
(
Tk). (.)

Proof According to Lemma ., it is simple to know that {xn}∞n=, {zn}∞n= and {Tk
αxn}∞n= are

bounded. Thus, for ∀y ∈ C and ∀k = , , , . . . ,n –  and according to (.) and (.), we
have

∥∥Tk+
α xn – Tαy

∥∥ =
∥∥Tα

(
Tk

αxn
)
– Tαy

∥∥

≤ ∥∥Tk
αxn – y

∥∥ +


( – α)
〈
Tk

αxn – Tk+
α xn, y – Tαy

〉

=
∥∥Tk

αxn – Tαy
∥∥ + ‖Tαy – y‖ + 

〈
Tk

αxn – Tαy,Tαy – y
〉

+


( – α)
〈
Tk

αxn – Tk+
α xn, y – Tαy

〉
. (.)

Summing (.) from k =  to n and dividing by n, we obtain


n

∥∥Tk+
α xn – Tαy

∥∥ ≤ 
n

‖xn – Tαy‖ + ‖Tαy – y‖ + 〈zn – Tαy,Tαy – y〉

+


n( – α)
〈
xn – Tn

αxn,Tαy – y
〉
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/80
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Since {zn}∞n= is bounded, then there exists a subsequence {znj}∞j= of {zn}∞n= which converges
weakly to ω ∈ C. Replacing n by nj in (.), we obtain


nj

∥∥Tk
αxnj – Tαy

∥∥

≤ 
nj

‖xnj – Tαy‖ + ‖Tαy – y‖ + 〈znj – Tαy,Tαy – y〉

+


nj( – α)
〈
xnj – Tnj

α xnj ,Tαy – y
〉
. (.)

Since {xn}∞n= and {Tn
αxn}∞n= are bounded, letting j → ∞ in (.) yields

 ≤ ‖Tαy – y‖ + 〈ω – Tαy,Tαy – y〉. (.)

Let y = ω in (.). We obtain that ω ∈ Fix(Tα) = Fix(T).
Observe that since {xn}∞n= and {zn}∞n= are bounded, and limn→∞ αn = , then

‖xn+ – zn‖ = αn
∥∥γ f (xn) –μBzn

∥∥
≤ αnγ

∥∥f (xn) – f (p)
∥∥ + αn

∥∥γ f (p) –μBp
∥∥ + αn

∥∥μB(zn – p)
∥∥

≤ αnγL‖xn – p‖ + αn
∥∥γ f (p) –μBp

∥∥ + αnτ‖zn – p‖,

then

lim
n→∞‖xn+ – zn‖ = . (.)

We next show that

lim sup
n→∞

〈
(γ f –μB)z,xn+ – z

〉 ≤ . (.)

Indeed, take {xnj+}∞n= of {xn+}∞n= such that

lim sup
n→∞

〈
(γ f –μB)x*,xn+ – x*

〉
= lim

j→∞
〈
(γ f –μB)x*,xnj+ – x*

〉
,

where x* is obtained in (.). We may assume that xnj+ ⇀ z as j → ∞. From (.), we
have znj ⇀ z as j → ∞, then to arbitrary bounded linear functional g on H , we have

∥∥g(znj ) – g(z)
∥∥ ≤ ∥∥g(znj ) – g(xnj+)

∥∥ +
∥∥g(xnj+) – g(z)

∥∥
≤ ‖g‖‖znj – xnj+‖ +

∥∥g(xnj+) – g(z)
∥∥

→ , as j → .

Thus, we obtain znj → z as j → , and z ∈ Fix(T). Hence, we have

lim
j→∞

〈
(γ f –μB)x*,xnj+ – x*

〉
=

〈
(γ f –μB)x*, z – x*

〉 ≤ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/80
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Moreover, from (.), (.) and (.), we have

lim sup
n→∞

〈
(γ f –μB)z, zn – z

〉

= lim sup
n→∞

〈
(γ f –μB)z,xn+ – z

〉
+ lim sup

n→∞
〈
(γ f –μB)z, zn – xn+

〉

≤ lim sup
n→∞

〈
(γ f –μB)z,xn+ – z

〉 ≤ . (.)

As required, finally we show that xn → x* and zn → x*.
According to (.), (.) and (.), we obtain

∥∥xn+ – x*
∥∥ =

∥∥αn
(
γ f (xn) –μBx*

)
+ (I –μαnB)zn – (I –μαnB)x*

∥∥

= α
n
∥∥γ f (xn) –μBx*

∥∥ +
∥∥(I –μαnB)zn – (I –μαnB)x*

∥∥

+ αn
〈
(I –μαnB)zn – (I –μαnB)x*,γ f (xn) –μBx*

〉

≤ α
n
∥∥γ f (xn) –μBx*

∥∥ + ( – αnτ )
∥∥zn – x*

∥∥

+ αn
[〈
zn – x*,γ f (xn) –μBx*

〉
–μαn

〈
Bzn – Bx*,γ f (xn) –μBx*

〉]

≤ [
( – αnτ ) + αnγL

]∥∥xn – x*
∥∥ + αn

[

〈
zn – x*,γ f (xn) –μBx*

〉

+ αn
∥∥γ f (xn) –μBx*

∥∥ + μαn
∥∥Bzn – Bx*

∥∥∥∥γ f (xn) –μBx*
∥∥]

≤ [
 – αn(τ – γL)

]∥∥xn – x*
∥∥ + αn

[

〈
xn – x*,γ f (xn) –μBx*

〉

+ αn
∥∥γ f (xn) –μBx*

∥∥ + μαn
∥∥Bzn – Bx*

∥∥∥∥γ f (xn) –μBx*
∥∥

+ αnτ
∥∥xn – x*

∥∥]

= ( – ᾱn)
∥∥xn – x*

∥∥ + ᾱnβ̄n,

where ᾱn = αn(τ – γL),

β̄n =


(τ – γL)
[

〈
xn – x*,γ f (xn) –μBx*

〉
+ αn

∥∥γ f (xn) –μBx*
∥∥

+ μαn
∥∥Bzn – Bx*

∥∥∥∥γ f (xn) –μBx*
∥∥ + αnτ

∥∥xn – x*
∥∥].

It is easily seen that limn→∞ ᾱn,
∑

ᾱn = ∞ and lim supn→∞ β̄n ≤ . By Lemma ., we
conclude that xn → x* as n→ ∞, and zn also converges strongly to the unique element x*

in Fix(T). In addition, the variational inequality (.) can be written as

〈
(I –μB + γ f )x* – x*, z – x*

〉 ≥ , z ∈
n⋂
k

Fix
(
Tk).

So, by Lemma ., it is equivalent to the fixed point equation

P⋂n
k Fix(Tk )(I –μB + γ f )x* = x*. �

Remark . For a nonspreading mapping T , we have � =  in Theorem . to obtain the
following corollary.
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Corollary . Assume C is a nonempty closed convex subset of a real Hilbert space H
and let Tk : C → C be a nonspreading mapping with a common nonempty fixed point set⋂n

k Fix(Tk). Let f be an L-Lipschitz mapping on H with coefficient L >  and B : H → H
be η-strongly monotone and θ -Lipschitzian on H with θ > , η > . Let  < μ < η/θ,  <
γ < μ(η – μθ

 )/L = τ /L, consider the sequences {xn}∞n= and {zn}∞n= to be sequences in C
generated from an arbitrary x ∈ C by

⎧⎨
⎩
xn+ = αnγ f (xn) + (I –μαnB)zn, n > ,

zn = 
n
∑n

k=Tk
αxn, n≥ ,

where Tk
α = ( – α)I + αTk , α ∈ (,  ), {αn}∞n= ∈ [, ) and limn→∞ αn = . Then {xn}∞n= and

{zn}∞n= converge strongly to the unique element x* in
⋂n

k Fix(Tk) verifying

P⋂n
k Fix(Tk )(I –μB + γ f )x* = x*,

which equivalently solves the following variational inequality problem:

x* ∈
n⋂
k

Fix
(
Tk), 〈

(γ f –μB)x*, v – x*
〉 ≤ , ∀v ∈

n⋂
k

Fix
(
Tk).
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