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Abstract
We investigate a class of functions with nondecreasing increments of higher order.
A generalization of Brunk’s theorem is proved for that class of functions. Also, we
consider functions with nondecreasing increments of order three, we obtain the
Levinson-type inequality, a generalization of Burkill-Mirsky-Pečarić’s results, and a
result for the integral mean of a function with nondecreasing increments of higher
order.
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1 Introduction
Let Rk denote the k-dimensional vector lattice of points x = (x, . . . ,xk), xi be real for i =
, . . . ,k, with the partial ordering x = (x, . . . ,xk) ≤ y = (y, . . . , yk) if and only if xi ≤ yi for
i = , . . . ,k. We denote

ax + by = (ax + by, . . . ,axk + byk),

where a,b ∈ R, and k-tuple (, . . . , ) is denoted by .
For a,b ∈ R

k , a ≤ b, a set {x ∈ R
k : a ≤ x ≤ b} is called an interval [a,b]. The following

definition of a function with nondecreasing increments is given in [].

Definition . A real-valued function f on an interval I⊂R
k is said to have nondecreas-

ing increments if

f (a + h) – f (a)≤ f (b + h) – f (b), ()

whenever a ∈ I, b + h ∈ I,  ≤ h ∈R
k , a ≤ b.

In the same paper [], Brunk gave some properties of that family of functions. The most
remarkable result for functions with nondecreasing increments is the following Brunk
theorem (see also [, p.]).

Theorem . Let I be an interval in R
k ; X(t) = (X(t), . . . ,Xk(t)) be a vector of functions

where Xi’s ( ≤ i ≤ k), are nondecreasing and continuous from the right on [a,b). Let H be
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continuous from the left and of bounded variation on [a,b) with H(a) = . Then

∫
[a,b)

f
(
X(t)

)
dH(t) ≥ 

holds for every continuous function f : I→R with nondecreasing increments if and only if

H(b) = ,∫
[a,b)

H(u)dX(u) = ,

and ∫
[a,t]

H(u)dX(u) ≥  for [a, t]⊂ [a,b],

where
∫
H dX = (

∫
H dX, . . . ,

∫
H dXk).

More results about functions with nondecreasing increments can be found in papers
[] and []. The following theorem is the Jensen-Steffensen type inequality for a function
with nondecreasing increments and it is proved in [].

Theorem . Let G : [a,b]→R be a function of bounded variation such that

G(a)≤ G(x) ≤ G(b), G(b) >G(a), ()

and let X(t) be a continuous nondecreasing map from the real interval [a,b] to the interval
I ⊂R

k . If f : I →R is a continuous function with nondecreasing increments, then

f
(∫ b

a X(t)dG(t)∫ b
a dG(t)

)
≤

∫ b
a f (X(t))dG(t)∫ b

a dG(t)
, ()

where
∫ b
a XdG is the vector (

∫ b
a X dG, . . . ,

∫ b
a Xk dG).

The following theorem gives us a Jensen-type inequality for a functionwith nondecreas-
ing increments when the finite sequence of k-tuples (X, . . . ,Xn) is monotone inmeans [].
It is a Pečarić’s generalization of Burkill-Mirsky’s result. Firstly, let us describe a mono-
tonicity in means. Let pi, i = , . . . ,n, be positive numbers, [a,b] be an interval in R

k . A fi-
nite sequence (X, . . . ,Xn) ∈ [a,b]n is said to be nondecreasing in means with respect to
weights p = (p, . . . ,pn) if

X ≤ A(X;p) ≤ · · · ≤ An(X;p), ()

where

Aj(X;p) =

Pj

j∑
i=

piXi, Pj =
n∑
i=

pi.

If inequalities are reversed in (), then (X, . . . ,Xn) is nonincreasing in means.
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Theorem . Let I be an interval in R
k , f : I → R be a continuous function with nonde-

creasing increments and let p, . . . ,pn be positive numbers. If

(X, . . . ,Xn) (Xi ∈ I; i = , . . . ,n)

is nondecreasing or nonincreasing in means with respect to weights p = (p, . . . ,pn), then the
Jensen-type inequality

f

(

Pn

n∑
i=

piXi

)
≤ 

Pn

n∑
i=

pif (Xi)

holds.

In this paper, we extend the idea of functions with nondecreasing increments. Namely,
we define a new class of functions with nondecreasing increments of higher order and
prove a result similar to the above-mentioned Brunk theorem. In the third section, we
consider functions with nondecreasing increments of order three. Finally, in the last sec-
tion, a result for an arithmetic integral mean of a function with nondecreasing increments
of higher order is given.

2 Functions with nondecreasing increments of order n
Let I be an interval from R

k . Let us write

�h f (x) = f (x + h) – f (x)

and inductively,

�h�h · · ·�hn f (x) = �h
(
�h · · ·�hn f (x)

)
,

where x,x + h + · · · + hn ∈ I,  ≤ hi ∈ R
k (i = , . . . ,n). Using this notation with h = h,

s = h, b = a + s, a condition () from the definition of a function with nondecreasing
increments becomes

�h�h f (a) ≥ .

Let us extend that definition to the following.

Definition . A real-valued function f on an interval I ⊂ R
k is a function with nonde-

creasing increments of order n if

�h · · ·�hn f (x) ≥ ,

whenever x,x + h + · · · + hn ∈ I, ≤ hi ∈ R
k (i = , . . . ,n).

Brunk observed that even if k =  and n = , this does not imply continuity (see []).
Indeed, every solution of Cauchy’s equation f (x + y) = f (x) + f (y) is a function with non-
decreasing increments of order n with null increments, i.e., �h · · ·�hn f (x) = . If the nth
partial derivatives fi···in (x) =

∂n

∂xi ···xin
f (x) exist, they are nonnegative. If f is a continuous

function with nondecreasing increments of order n, it may be approximated uniformly

http://www.journalofinequalitiesandapplications.com/content/2013/1/8
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on I by polynomials having nonnegative nth partial derivatives. To see this, let us set, for
convenience, I = [,],  = (, . . . , ). It is known that the Bernstein polynomials

n∑
i=

· · ·
nk∑
ik=

f
(
i
n

, . . . ,
ik
nk

) k∏
j=

(
nj
ij

)
xijj ( – xj)nj–ij

converge uniformly to f on I as n → ∞, . . . ,nk → ∞, if f is continuous. Furthermore, if f is
a functionwith nondecreasing increments of order n, these polynomials have nonnegative
nth partial derivatives, as may be shown by repeated application of the formula (see [])

d
dx

n∑
i=

(
n
i

)
aixi( – x)n–i = n

n–∑
i=

(
n – 
i

)
(ai+ – ai)xi( – x)n––i.

The aim of the rest of this section is to prove a result similar to Theorem .. Let us
introduce some further notations.
Let p, . . . ,pr be positive integers and let p + · · · + pr = w. Let (ip · · · iprr )p be a set of all

permutations with repetitions whose elements are from the multiset

S = {i, . . . , i︸ ︷︷ ︸
p-times

, i, . . . , i︸ ︷︷ ︸
p-times

, . . . , ir , . . . , ir︸ ︷︷ ︸
pr-times

}, i < · · · < ir , i, . . . , ir ∈ {, . . . ,k}.

There are w!
p!p!···pr ! elements in the class (ip · · · iprr )p.

For  < p ≤ p ≤ · · · ≤ pr , p + · · ·+pr = w, let (p · · ·pr)c be a set whose elements are de-
scribed in the following way.We say that permutation j · · · jw belongs to the set (p · · ·pr)c
iff there exist i, i, . . . , ir ∈ {, , . . . ,k}, i < i < · · · < ir and permutation σ of the multiset
{p · · ·pr} such that j · · · jw ∈ (iσ (p) · · · iσ (pr )r )p. Family of all classes (p · · ·pr)c is denoted
with Ck

w.
For illustration, we describe the above notation on one example. Let k =  and w = .

Classes (p · · ·pr)c are the following: (, , , )c, (, , )c, (, )c, (, )c and ()c. Let us de-
scribe the elements of the set (, , )c. There are three different permutations of the mul-
tiset {, , }. These are(

  
  

)
,

(
  
  

)
,

(
  
  

)
.

So, (iσ (p) · · · iσ (pr )r )p are (i, i, i, i)p, (i, i, i, i)p, (i, i, i, i)p, where i < i < i and
i, i, i ∈ {, , , , }. If, for example, (i, i, i, i)p = (, , , )p, then it contains all permu-
tations with repetitions of elements , , , , i.e., (, , , )p = {, , , . . . , }
and it has !

! =  elements.
In the following text, H is a function of bounded variation on [a,b] with H(a) =  and

i, i, . . . , in ∈ {, , . . . ,k}. Let Kn
i···in be a function such that

Kn
i···in (t) =

∫ t

a
Kn–
i···in– (xn)dXin (xn) for n≥ 

and

K 
i (t) =

∫ t

a
H(x)dXi (x).

http://www.journalofinequalitiesandapplications.com/content/2013/1/8
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Further we write

∏
(S)(x) =

∏
j∈S

(
Xj(t) –Xj(x)

)
,

∏
(φ)(x) = ,

where S is a multiset with elements from {, , . . . ,k}.
It is obvious that

d
{∏

(S)(x)
}
= –

∑
j∈S

dXj(x)
∏(

S \ {j})(x),
and

dKn
i···in (t) = Kn–

i···in– (t)dXin (t).

Now, the following result holds.

Lemma . Let w be a fixed positive integer. Then

∫ t

a

∏({i, . . . , iw})(x)dH(x)

=
w∑

j=

w∑
j=
j �=j

· · ·
w∑

jm=
jm �=jk
k<m

∫ t

a

∏({i, . . . , iw} \ {ij , . . . , ijm})(x)dKm
ij ···ijm (x)

holds for every m ∈ {, , . . . ,w}.

Proof We prove it using induction bym. Form = , using integration by parts, we have

∫ t

a

∏({i, . . . , iw})(x)dH(x) = –
∫ t

a
H(x)d

(∏({i, . . . , iw})(x))

=
∫ t

a
H(x)

w∑
j=

dXj (x)
∏({i, . . . , im} \ {ij}

)
(x)

=
w∑

j=

∫ t

a

∏({i, . . . , iw} \ {ij}
)
(x)dK 

ij
(x).

Let us suppose that the statement holds form –  and let us apply integration by parts on
the right-hand side of the formula.

∫ t

a

∏({i, . . . , iw})(x)dH(x)

=
w∑

j=

· · ·
w∑

jm–=
jm– �=jk
k<m–

∫ t

a

∏({i, . . . , iw} \ {ij , . . . , ijm–}
)
(x)dKm–

ij ,...,ijm–
(x)
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=
w∑

j=

· · ·
w∑

jm–=
jm– �=jk
k<m–

(–)
∫ t

a
Km–
ij ,...,ijm–

(x)d
(∏({i, . . . , iw} \ {ij , . . . , ijm–}

)
(x)

)

=
w∑

j=

· · ·
w∑

jm–=
jm– �=jk
k<m–

(–)
∫ t

a
Km–
ij ,...,ijm–

(x)

× (–)
w∑

jm=
jm �=jk
k<m

dXijm (x)
∏({i, . . . , iw} \ {ij , . . . , ijm})(x)

=
w∑

j=

· · ·
w∑

jm=
jm �=jk
k<m

∫ t

a

∏({i, . . . , iw} \ {ij , . . . , ijm})(x)Km–
ij ···ijm–

(x)dXijm (x)

=
w∑

j=

· · ·
w∑

jm=
jm �=jk
k<m

∫ t

a

∏({i, . . . , iw} \ {ij , . . . , ijm})(x)dKm
ij ···ijm (x).

�

Especially form = w, we have

∫ t

a

∏({i, . . . , iw})(x)dH(x) =
w∑

j=

· · ·
w∑

jw=
jw �=jk
k<w

∫ t

a
dKw

ij ···ijw (x)

=
w∑

j=

· · ·
w∑

jw=
jw �=jk
k<w

Kw
ij ···ijw (t)

= p!p! · · ·pr !
∑

ij ···ijw∈(ip ···iprr )p

Kw
ij ···ijw (t), ()

where {ij , . . . , ijw} = {i, . . . , i︸ ︷︷ ︸
p-times

, . . . , ir , . . . , ir︸ ︷︷ ︸
pr-times

}, i < i < · · · < ir ; i, i, . . . , ir ∈ {, , . . . ,k}, p +

· · · + pr = w.

Example . If w = , i = i = , i = , then

∫ t

a

∏({, , })(x)dH(x) =
∑

j=

∑
j=
j �=j

∑
j=

j �=j,j

K
ij ij ij

(t)

= !!
(
K
 +K

 +K


)
.

Furthermore, if we suppose

∫ b

a
Xj (u) · · ·Xjs (u)dH(u) = 

(
j, . . . , js ∈ {, . . . ,k}, s = , . . . ,w

)
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/8
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then

p! · · ·pr !
∑

Kw
ij ···ijw (b) =

∫ b

a

∏({i, . . . , iw})(x)dH(x)

=
∑

(–)s
∫ b

a
Xj (x) · · ·Xjs (x)Xjs+ (b) · · ·Xjw (b)dH(x) = . ()

Theorem . Let X : [a,b] → I ⊂ R
k be a continuous function. Let H be a function of

bounded variation on [a,b]with H(a) =H(b) =  and let f have continuous (n–)th partial
derivatives, n≥ . Then the following statement holds: if

∫ b

a
Xi (u) · · ·Xim (u)dH(u) = 

(
i, . . . , im ∈ {, . . . ,k},m = , , . . . ,n – 

)
,

then

∫ b

a
f
(
X(t)

)
dH(t) = (–)n–

∑
(p···pr )c∈Ck

n–


p! · · ·pr !

×
∑

(ip ···iprr )p⊆(p···pr )c

∫ b

a
fi · · · i︸ ︷︷ ︸
p-times

··· ir · · · ir︸ ︷︷ ︸
pr-times

(
X(t)

)

× d
(∫ t

a

∏({
ip , . . . , iprr

})
(x)dH(x)

)
. ()

Proof For n = , we have

∫ b

a
f
(
X(t)

)
dH(t) = –

k∑
i=

∫ b

a
fi
(
X(t)

)
H(t)dXi(t)

= –
k∑
i=

∫ b

a
fi
(
X(t)

)
dK 

i (t)

= –
k∑
i=

∫ b

a
fi
(
X(t)

)
d
(∫ t

a
H(x)dXi(x)

)

= –
k∑
i=

∫ b

a
fi
(
X(t)

)
d
(∫ t

a
H(x)d

(
Xi(x) –Xi(t)

))

=
k∑
i=

∫ b

a
fi
(
X(t)

)
d
(∫ t

a
H(x)d

(
Xi(t) –Xi(x)

))

= –
k∑
i=

∫ b

a
fi
(
X(t)

)
d
(∫ t

a

(
Xi(t) –Xi(x)

)
dH(x)

)

= –
k∑
i=

∫ b

a
fi
(
X(t)

)
d
(∫ t

a

∏({i})(x)dH(x)
)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/8
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If we have
∫ b
a Xi (u) · · ·Xim (u)dH(u) =  for m = , , . . . ,n – , i, . . . , im ∈ {, . . . ,k} and if

we suppose that () holds for (n – ), then

∫ b

a
f
(
X(t)

)
dH(t)

= (–)n–
∑

(p···pr )c∈Ck
n–


p! · · ·pr !

∑
(ip ···iprr )p⊆(p···pr )c

∫ b

a
fip ···iprr

(
X(t)

)

× d
(∫ t

a

∏({
ip , . . . , iprr

})
(x)dH(x)

)

= (–)n–
∑

(p···pr )c∈Ck
n–


p! · · ·pr !

∑
(ip ···iprr )p

∫ b

a
fip ···iprr

(
X(t)

)

× d
(
p! · · ·pr !

∑
ij ···ijn–∈(ip ···iprr )p

Kn–
ij ···ijn– (t)

)

= (–)n–
∑

(p···pr )c∈Ck
n–

∑
(ip ···iprr )p

∫ b

a
dfip ···iprr

(
X(t)

)

×
∑

ij ···ijn–∈(ip ···iprr )p

Kn–
ij ···ijn– (t)

= (–)n–
∑

(p···pr )c∈Ck
n–

∑
(ip ···iprr )p

∫ b

a

k∑
in–=

fip ···iprr in–

(
X(t)

)

× dXin– (t)
( ∑
ij ···ijn–

Kn–
ij ···ijn– (t)

)

= (–)n–
∑

(s···sg )c∈Ck
n–

s+···+sg=n–

∑
(is ···isgg )p⊂(s···sg )c

∫ b

a
fis ···isgg

(
X(t)

)

×
( ∑
l···ln–∈(is ···isgg )p

Kn–
l···ln– (t)dXln– (t)

)

= (–)n–
∑

(s···sg )c∈Ck
n–

∑
(is ···isgg )p

∫ b

a
fis ···isgg

(
X(t)

)
d
( ∑
l···ln–

Kn–
l···ln– (t)

)

= (–)n–
∑

(s···sg )c∈Ck
n–

∑
(is ···isgg )p

∫ b

a
fis ···isgg

(
X(t)

)

× d
(


s! · · · sg !

∫ b

a

∏({
is · · · isgg

})
dH(x)

)

by () and (). �

Theorem . Let X be a nondecreasing continuous map from the real interval [a,b] into
an interval I ⊂ R

k , and let H be a function of bounded variation on [a,b] with H(a) = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/8
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Then∫ b

a
f
(
X(t)

)
dH(t)≥  ()

for every continuous function f with nondecreasing increments of order n on I if and only if

H(b) = , ()∫ b

a
Xi (t) · · ·Xim (t)dH(t) =  ()

for i, . . . , im ∈ {, . . .k},m = , , . . . ,n –  and

(–)n
∫ t

a

∏({i, . . . , in–})(u)dH(u) ≥  ()

for all t ∈ [a,b], i, . . . , in– ∈ {, . . .k}.

Proof Necessity: The validity of () for constant functions f =  and f = – implies ().
From () for f (x) = xi · · ·xis and f (x) = –xi · · ·xis (s = , . . . ,n – ), we have ().
Inequality () is obtained from () on setting, for fixed t ∈ [a,b] and fixed i · · · in– ∈

{, . . . ,k},

f (x) = –
[
xi –Xi (t)

]– · · · [xin– –Xin–(t)]
–, where c– =min{c, }, (c ∈R).

Sufficiency: Since f may be approximated uniformly on I by functions with continuous
nonnegative nth partial derivatives, we may assume that the nth partials fi···in exist and
are continuous and nonnegative. By Theorem . and (), we have

∫ b

a
f
(
X(t)

)
dH(t)

= (–)n
∑

(p···pr )c∈Ck
n–


p! · · ·pr !

∑
(ip ···iprr )p⊆(p,...,pr )c

k∑
in=

∫ b

a
fip ···iprr in

(
X(t)

)

× dXin (t)
∫ t

a

∏{
ip · · · iprr

}
(x)dH(x).

By (), each term in the sum is nonnegative so that () is verified. �

3 Functions with nondecreasing increments of order three
3.1 On inequalities of Levinson type
Levinson [] proved that if a real-valued function f defined on [, a] ⊂ R has a nonneg-
ative third derivative, then


Pn

n∑
k=

pkf (xk) – f

(

Pn

n∑
k=

pkxk

)

≤ 
Pn

n∑
k=

pkf (yk) – f

(

Pn

n∑
k=

pkyk

)
()

for  < xk < a, yk = a – xk , pk >  ( ≤ k ≤ n), Pn =
∑n

k= pk .

http://www.journalofinequalitiesandapplications.com/content/2013/1/8
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If a = 
 , p = · · · = pn =  and f (x) = logx, then Levinson’s inequality () becomes the

famous Ky-Fan inequality

Gn

G′
n

≤ An

A′
n
,

where An = 
n
∑n

k= xk , A′
n =


n
∑n

k=( – xk), Gn = (
∏n

k= xk)/n and G′
n = (

∏n
k=( – xk))/n.

In [] Pečarić showed that instead of variables the sum of which is equal to a, we can
use variables the difference of which is constant, and that result becomes a source of some
further generalizations [, pp., ]. In fact, he proved that if f is a real-valued -convex
function on [a,b] and xk , yk (≤ k ≤ n), n points on [a,b] such that

y – x = y – x = · · · = yn – xn > 

and pk >  ( ≤ k ≤ n), then () is valid.
The following theorem is a generalization of the Levinson inequality.

Theorem . Let G : [a,b] → R be a function of bounded variation such that () holds,
and let X(t) be a continuous and nondecreasing map from [a,b] ⊂ R to an interval I =
[,d] ⊂ R

k , d > . If f is a continuous function with nondecreasing increments of order
three on J = [, d], then

∫ b
a f (X(t))dG(t)∫ b

a dG(t)
– f

(∫ b
a X(t)dG(t)∫ b

a dG(t)

)

≤
∫ b
a f (d –X(t))dG(t)∫ b

a dG(t)
– f

(∫ b
a (d –X(t))dG(t)∫ b

a dG(t)

)
.

Proof If f is a function with nondecreasing increments of order three on J, then

�h�t�sf (x) ≥ 
(
x,x + h + t + s ∈ J,≤ h, t, s ∈R

k),
i.e.,

�h�t
(
f (x + s) – f (x)

) ≥ . ()

If x ∈ I and s = d – x, we have

�h�t
(
f (d – x) – f (x)

) ≥ ,

i.e., the function x �→ f (d – x) – f (x) is a function with nondecreasing increments of
order two, i.e., it is a function with nondecreasing increments. Now, using Theorem .,
we obtain Theorem .. �

Theorem . Let G : [a,b] → R be a function of bounded variation such that () holds,
and let f be a continuous function with nondecreasing increments of order three on

http://www.journalofinequalitiesandapplications.com/content/2013/1/8
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[c,d] ⊂R
k . Let  < a < d – c. If X(t) : [a,b] → [c,d – a] is a continuous and nondecreasing

map, then∫ b
a f (X(t))dG(t)∫ b

a dG(t)
– f

(∫ b
a X(t)dG(t)∫ b

a dG(t)

)

≤
∫ b
a f (a +X(t))dG(t)∫ b

a dG(t)
– f

(∫ b
a (a +X(t))dG(t)∫ b

a dG(t)

)
.

Proof Using () for s = a = constant ∈R
k , we have that the function x �→ f (a+ x) – f (x) is

a function with nondecreasing increments, so from Theorem ., we obtain Theorem ..
For k = , we have a result from []. �

Corollary . (i) Let X satisfy the assumptions of Theorem .. Then

 ≤
(∫ b

a
dG(t)

)k– ∫ b

a

k∏
i=

Xi(t)dG(t) –
k∏
i=

∫ b

a
Xi(t)dG(t)

≤
(∫ b

a
dG(t)

)k– ∫ b

a

k∏
i=

(
di –Xi(t)

)
dG(t) –

k∏
i=

∫ b

a

(
di –Xi(t)

)
dG(t).

(ii) If X satisfies the assumptions of Theorem ., then

 ≤
(∫ b

a
dG(t)

)k– ∫ b

a

k∏
i=

Xi(t)dG(t) –
k∏
i=

∫ b

a
Xi(t)dG(t)

≤
(∫ b

a
dG(t)

)k– ∫ b

a

k∏
i=

(
ai +Xi(t)

)
dG(t) –

k∏
i=

∫ b

a

(
ai +Xi(t)

)
dG(t),

where all components of X are nonnegative.

Proof The function f (x) = x · · ·xk is a function with nondecreasing increments of orders
two and three for xi ≥  (i = , . . . ,k). So, using Theorems ., ., and ., we obtain Corol-
lary .. �

3.2 Generalization of Burkill-Mirsky-Pečarić result
In this subsection, we consider a sequence of k-tuples (X, . . . ,Xn) which is monotone in
means.

Theorem . Let f be a continuous function with nondecreasing increments of order three
on J = [, d], d > , and let p, . . . ,pn be positive numbers. If

(X, . . . ,Xn)
(
Xi ∈ I = [,d]

)
is nondecreasing or nonincreasing in means with respect to positive weights pi (i = , . . . ,n),
then


Pn

n∑
i=

pif (Xi) – f

(

Pn

n∑
i=

piXi

)
≤ 

Pn

n∑
i=

pif (d –Xi) – f

(

Pn

n∑
i=

pi(d –Xi)

)

holds.

http://www.journalofinequalitiesandapplications.com/content/2013/1/8
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Proof Since f is a function with nondecreasing increments of order three on J, so a func-
tion x �→ f (d – x) – f (x) is a function with nondecreasing increments. Then by Theo-
rem ., we obtain the required result. �

Theorem . Let f be a continuous function with nondecreasing increments of order three
on J = [c,d] and let p, . . . ,pn be positive numbers. Let  < a < d – c. If

(X, . . . ,Xn)
(
Xi ∈ I = [c,d – a]

)
is nondecreasing or nonincreasing in means with respect to positive weights pi (i = , . . . ,n),
then


Pn

n∑
i=

pif (Xi) – f

(

Pn

n∑
i=

piXi

)
≤ 

Pn

n∑
i=

pif (a +Xi) – f

(

Pn

n∑
i=

pi(a +Xi)

)

holds.

Proof By following the proof of Theorem ., we obtain Theorem . by simply replacing
‘Theorem .’ by ‘Theorem .’ in the proof of Theorem .. �

Corollary . (i) Let X satisfy the assumptions of Theorem .. Then

 ≤ Pk–
n

n∑
i=

pki

( k∏
j=

xij

)
–

k∏
j=

( n∑
i=

pixij

)

≤ Pk–
n

n∑
i=

pki

( k∏
j=

(dj – xij)

)
–

k∏
j=

( n∑
i=

pi(dj – xij)

)
.

(ii) If X satisfies the assumptions of Theorem .. Then

 ≤ Pk–
n

n∑
i=

pki

( k∏
j=

xij

)
–

k∏
j=

( n∑
i=

pixij

)

≤ Pk–
n

n∑
i=

pki

( k∏
j=

(aj + xij)

)
–

k∏
j=

( n∑
i=

pi(aj + xij)

)
,

where all components of X are nonnegative.

Proof We consider again the function f (x) = x · · ·xk which is a function with nondecreas-
ing increments of orders two and three for xi ≥  (i = , . . . ,k). So, using Theorems ., .,
and ., we obtain Corollary .. �

4 Arithmetic integral mean
It is known that if f : [,a] → R, a > , is nonnegative and nondecreasing, then the func-
tion F ,

F(x) =

x

∫ x


f (u)du,
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is also a nondecreasing function on [,a]. Let us observe that F is an arithmetic integral
mean of a function f on an interval [,a]. This result was generalized in [] considering a
real-valued function f for which �m

h f (x)≥  holds for any h > . �m
h is defined as follows:

�
hf (x) = f (x), �m

h f (x) = �m–
h f (x + h) –�m–

h f (x).
Here, we extend the above-mentioned result to functions with nondecreasing incre-

ments of higher order.

Theorem . Let the function f : [a,b]→R be continuous and with nondecreasing incre-
ments of order n. Then the function

F(x) =

( k∏
i=

(xi – ai)

)– ∫ x

a
· · ·

∫ xk

ak
f (u)du,

where u = (u, . . . ,uk) and du = du · · ·duk , is a function with nondecreasing increments of
order n on [a,b].

Proof Let x > a = (a, . . . ,ak). Then

F(x) =
∫ 


· · ·

∫ 


f
(
a + s(x – a)

)
ds,

where we used the substitutions ui = ai + si(xi – ai) ( ≤ i ≤ k,  ≤ si ≤ ), and where
a + s(x – a) = (a + s(x – a), . . . ,ak + sk(xk – ak)), ds = ds · · ·dsk . Now, we have

�h · · ·�hnF(x) = �h · · ·�hn

∫ 


· · ·

∫ 


f
(
a + s(x – a)

)
ds

=
∫ 


· · ·

∫ 


�h · · ·�hn f

(
a + s(x – a)

)
ds ≥ 

because if f (x) is a function with nondecreasing increments of order n, then the function
f (a + s(x – a)) is also a function with nondecreasing increments of order n. �
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