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Abstract
In this paper, we establish some strong convergence theorems of the modified
Ishikawa and Mann iterations with errors of uniformly L-Lipschitzian asymptotically
pseudocontractive mappings in real Banach spaces. Our results not only provide the
new proof method, but also extend the known corresponding results given in (Chang
in Proc. Am. Math. Soc. 129:845-853, 2001; Chang et al. in Appl. Math. Lett. 22:121-125,
2009; Goebel and Kirk in Proc. Am. Math. Soc. 35:171-174, 1972; Ofoedu in J. Math.
Anal. Appl. 321:722-728, 2006; Schu in J. Math. Anal. Appl. 158:407-413, 1991). In order
to get some applications of our results, we also provide specific examples.
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1 Introduction and preliminaries
Let E be a real Banach space and let J denote the normalized duality mapping from E into
E* defined by

J(x) =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ = ‖f ‖}

for all x ∈ E, where E* denotes the dual space of E and 〈·, ·〉 denotes the generalized du-
ality pairing, respectively. The normalized duality mapping J has the following proper-
ties:
() J is an odd mapping, i.e., J(–x) = –J(x).
() J is positive homogeneous, i.e., for any λ > , J(λx) = λJ(x).
() J is bounded, i.e., for any bounded subset A of E, J(A) is a bounded subset of E*.
() If E is smooth (or E* is strictly convex), then J is single-valued.
In the sequel, we denote the single-valued normalized duality mapping by j. In a Hilbert

space H , j is the identity mapping.
Let D be a nonempty closed convex subset of E. A mapping T : D → D is said to be

asymptotically nonexpansive with a sequence {kn} ⊂ [, +∞) and limn→∞ kn =  if, for all
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x, y ∈D,

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ (.)

for all n≥ . ThemappingT is said to be asymptotically pseudocontractivewith a sequence
{kn} ⊂ [, +∞) and limn→∞ kn =  if, for any x, y ∈ D, there exists j(x– y) ∈ J(x– y) such that

〈
Tnx – Tny, j(x – y)

〉 ≤ kn‖x – y‖ (.)

for all n≥ . Furthermore, the mapping T is said to be uniformly L-Lipschitzian if, for any
x, y ∈D, there exists a constant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖ (.)

for all n ≥ .
It is easy to see that if T is an asymptotically nonexpansive mapping, then it is both

asymptotically pseudocontractive and uniformly L-Lipschitzian. The converse is not true
in general. Therefore, it is interesting to study these mappings in fixed point theory and its
applications. In fact, the asymptotically nonexpansive and asymptotically pseudocontrac-
tive mappings were first introduced by Goebel-Kirk [] and Schu [], respectively. Since
then, some authors have studied several iterative sequences for asymptotically nonexpan-
sive and asymptotically pseudocontractive mappings in Hilbert spaces and Banach spaces
(see [–]).
In [], Schu proved the following theorem.

Theorem . [] Let H be a Hilbert space, K be a nonempty bounded closed convex subset
of H and T : K → K be a completely continuous, uniformly L-Lipschitzian and asymptot-
ically pseudocontractive mapping with a sequence {kn} ⊂ [, +∞) satisfying the following
conditions:
(a-) kn →  as n → ∞;
(a-)

∑∞
n=(qn – ) < ∞, where qn = kn – .

Suppose further that {αn} and {βn} are two sequences in [, ] such that ε < αn < b for all
n ≥ , where ε >  and b ∈ (,L–[( + L)/ – ]). For any x ∈ K , let {xn} be an iterative
sequence defined by

xn+ = ( – αn)xn + αnTnxn

for all n ≥ . Then {xn} converges strongly to a fixed point of T in K .

In [], Chang extended above Theorem . to the setting of real uniformly smooth
Banach spaces and proved the following.

Theorem . [] Let E be a uniformly smooth Banach space, K be a nonempty bounded
closed convex subset of E and T : K → K be an asymptotically pseudocontractive mapping
with a sequence {kn} ⊂ [, +∞), limn→∞ kn =  and F(T) �= ∅, where F(T) is the set of fixed
points of T in K . Let {αn} be a sequence in [, ] satisfying the following conditions:
(a-) αn →  as n→ ∞;
(a-)

∑∞
n= αn = ∞.
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For any x ∈ K , let {xn} be an iterative sequence defined by

xn+ = ( – αn)xn + αnTnxn

for all n ≥ . If there exists a strictly increasing function� : [, +∞)→ [, +∞)with�() =
 such that

〈
Tnx – x*, j

(
x – x*

)〉 ≤ kn
∥∥x – x*

∥∥ –�
(∥∥x – x*

∥∥)

for all x ∈ K and n≥ , where x* ∈ F(T), then xn → x* as n→ ∞.

In [], Ofoedu extendedTheorem . in a uniformly smooth Banach space to the setting
of arbitrary real Banach spaces and dropped the boundedness assumption in Theorem ..

Theorem . [] Let E be a real Banach space, K be a nonempty closed convex subset of E
and T : K → K be a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with a sequence {kn} ⊂ [, +∞), limn→∞ kn =  and x* ∈ F(T). Let {αn} be a sequence in
[, ] satisfying the following conditions:
(a-)

∑∞
n= αn = ∞;

(a-)
∑∞

n= α
n < ∞;

(a-)
∑∞

n= αn(kn – ) < ∞.
For any x ∈ K , let {xn} be an iterative sequence defined by

xn+ = ( – αn)xn + αnTnxn

for all n ≥ . If there exists a strictly increasing function� : [, +∞)→ [, +∞)with�() =
 such that

〈
Tnx – x*, j

(
x – x*

)〉 ≤ kn
∥∥x – x*

∥∥ –�
(∥∥x – x*

∥∥)

for all x ∈ K and n≥ . Then
() {xn} is bounded;
() {xn} converges strongly to x* ∈ F(T).

Theorem . [] Let E be a real Banach space. Let K be a nonempty closed and convex
subset of E, T : K → K be a uniformly L-Lipschitzian asymptotically pseudocontractive
mapping with a sequence {kn} ⊂ [, +∞) with limn→∞ kn =  and x* ∈ F(T). Let {an}, {bn}
and {cn} be real sequences in [, ] satisfying the following conditions:
(a-) an + bn + cn = ;
(a-)

∑
n≥(bn + cn) = ∞;

(a-)
∑

n≥(bn + cn) <∞;
(a-)

∑
n≥(bn + cn)(kn – ) < ∞;

(a-)
∑

n≥ cn <∞.
For arbitrary x ∈ K , let {xn} be a sequence in K iteratively defined by

xn+ = anxn + bnTnxn + cnun
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for all n ≥ , where {un} is a bounded sequence in K . Suppose that there exists a strictly
increasing continuous function � : [, +∞) → [, +∞) with �() =  such that

〈
Tnx – x*, j

(
x – x*

)〉 ≤ kn
∥∥x – x*

∥∥ –�
(∥∥x – x*

∥∥)

for all x ∈ K . Then {xn}n≥ converges strongly to x* ∈ F(T).

Very recently, in [], Chang et al. proved the following theorem.

Theorem . [] Let E be a real Banach space. Let K be a nonempty closed convex subset
of E, Ti : K → K be two uniformly Li-Lipschitzian mappings with F(T) ∩ F(T) �= ∅ and
x* ∈ F(T)∩ F(T). Let {kn} ⊂ [, +∞) be a sequence with limn→∞ kn = . Let {αn} and {βn}
be two sequences in [, ] satisfying the following conditions:

(a-)
∑∞

n= αn = ∞;
(a-)

∑∞
n= α

n <∞;
(a-)

∑∞
n= βn < ∞;

(a-)
∑∞

n= αn(kn – ) < ∞.
For any x ∈ K , let {xn} be an iterative sequence in K defined by

⎧⎨
⎩
xn+ = ( – αn)xn + αnTn

 yn,

yn = ( – βn)xn + βnTn
 xn

for all n ≥ . If there exists a strictly increasing function � : [, +∞) → [, +∞) with
�() =  such that

〈
Tn
i x – x*, j

(
x – x*

)〉 ≤ kn
∥∥x – x*

∥∥ –�
(∥∥x – x*

∥∥)

for all j(x – x*) ∈ J(x – x*) and x ∈ K , i = , , then {xn} converges strongly to x*.

Also, some authors have studied the modified Halpern, Mann and Ishikawa iterative
sequences for nonlinear mappings in Hilbert spaces and Banach spaces (see [, ]).
The aim of this paper is to give some strong convergence theorems for uniformly

L-Lipschitzian and asymptotically pseudo contractive mappings in Banach spaces. Our
results not only include the past ones known in [–], but also provide quite a different
proof method.
For our main purpose, we recall some concepts and lemmas.

Definition . [] For arbitrary x ∈D, the sequence {xn} in D defined by

⎧⎨
⎩
yn = ( – bn – dn)xn + bnTnxn + dnvn,

xn+ = ( – an – cn)xn + anTnyn + cnun
(.)

for all n ≥  is called the modified Ishikawa iteration with errors, where {an}, {bn}, {cn},
{dn} are four real sequences in [, ] satisfying an + cn ≤ , bn + dn ≤  and {un}, {vn} are
any bounded sequences in D.
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In particular, if bn = dn =  in (.), then the sequence {xn} defined by

xn+ = ( – an – cn)xn + anTnxn + cnun (.)

for all n ≥  is called themodified Mann iteration with errors.
If cn = dn =  in (.) and (.), then the sequence {xn} defined by

⎧⎨
⎩
yn = ( – bn)xn + bnTnxn,

xn+ = ( – an)xn + anTnyn
(.)

and

xn+ = ( – an)xn + anTnxn (.)

for all n ≥  is called the modified Ishikawa iteration and the modified Mann iteration,
respectively.

Lemma . [] Let E be a real Banach space and J : E → E* be a normalized duality
mapping. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉

for all x, y ∈ E and j(x + y) ∈ J(x + y).

Lemma . [] Let {δn}, {λn} and {γn} be three nonnegative real sequences and � :
[, +∞) → [, +∞) be a strictly increasing continuous function with �() =  satisfying
the following inequality:

δn+ ≤ δn – λn�(δn+) + γn

for all n ≥ , where λn ∈ [, ] with
∑∞

n= λn = ∞ and γn = o(λn). Then δn →  as n → ∞.

2 Main results
Now, we give our main results in this paper.

Theorem . Let E be a real Banach space, D be a nonempty closed convex subset of E
and T : D → D be a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with a sequence {kn} ⊂ [, +∞), limn→∞ kn =  and q ∈ F(T) = {x ∈D : Tx = x} �= ∅. Let {an},
{bn}, {cn} and {dn} be four real sequences in [, ] satisfying the following conditions:
(A-) an,bn,dn →  as n→ ∞;
(A-)

∑∞
n= an = ∞;

(A-) cn = o(an).
For some x ∈ D, let {xn} be a modified Ishikawa iterative sequence with errors defined

by (.). Suppose that there exists a strictly increasing continuous function � : [, +∞) →
[, +∞) with �() =  such that

〈
Tnx – q, j(x – q)

〉 ≤ kn‖x – q‖ –�
(‖x – q‖) (.)

for all n ≥ , where j(x– q) ∈ J(x– q). Then {xn} converges strongly to the fixed point q of T .
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Proof Step . For any n≥ , {xn} is a bounded sequence.
Set sup{kn : n ≥ } = k. Then there exists x ∈ D with x �= Tx such that r = (k + L)‖x –

q‖ ∈ R(�). Indeed, for any taking x ∈ D and x �= Tx, we denote r = (k + L)‖x – q‖. If
�(r) → +∞ as r → +∞, then r ∈ R(�). If sup{�(r) : r ∈ [, +∞)} = r < +∞ with r < r,
then there exists a sequence {ξn} ⊂ D such that ξn → q as n → ∞ with ξn �= q, thus there
exists a positive integer n such that (k+L)‖ξn–q‖ < r

 for all n≥ n.We redefine x = ξn
and (k + L)‖x – q‖ ∈ R(�).
Set R = �–(r). Then we obtain ‖x – q‖ ≤ R. Denote

B =
{
x ∈D : ‖x – q‖ ≤ R

}
, B =

{
x ∈D : ‖x – q‖ ≤ R

}
,

M = sup
n

{‖un – q‖ + ‖vn – q‖}.

Next, we prove that xn ∈ B for any n ≥ . If n = , then x ∈ B. Now, we assume that it
holds for some n, i.e., xn ∈ B. We prove that xn+ ∈ B. Suppose that this does not hold.
Then ‖xn+ – q‖ > R. Now, we denote

τ =min

{
,

R
LR +M

,
�(R)
R ,

�(R)
MR

,
�(R)

R[LR + LR + L(M + R)]

}
. (.)

Since an,bn, cn, cnan ,dn,kn – →  as n→ ∞, without loss of generality, let ≤ an,bn, cn, cnan ,
dn,kn –  ≤ τ for any n≥ . Thus, we have

‖yn – q‖ ≤ ( – bn – dn)‖xn – q‖ + bn
∥∥Tnxn – Tnq

∥∥ + dn‖vn – q‖
≤ ( – bn – dn + bnL)‖xn – q‖ + dnM

≤ ( + bnL)R + dnM

≤ R + τ(LR +M)

< R, (.)

‖xn+ – q‖ ≤ ( – an – cn)‖xn – q‖ + an
∥∥Tnyn – Tnq

∥∥ + cn‖un – q‖
≤ ‖xn – q‖ + anL‖yn – q‖ + cn‖un – q‖
≤ R + anL

[
( + bnL)R + dnM

]
+ cnM

≤ R + anLR + cnM

≤ R + τ(LR +M)

≤ R (.)

and

∥∥Tnxn+ – Tnyn
∥∥

≤ L‖xn+ – yn‖
≤ anL

∥∥Tnyn – xn
∥∥ + cnL‖un – xn‖ + bnL

∥∥xn – Tnxn
∥∥ + dnL‖xn – vn‖

≤ anL
(‖xn – q‖ + ∥∥Tnyn – Tnq

∥∥)
+ cnL

(‖un – q‖ + ‖xn – q‖)
+ bnL

(‖xn – q‖ + ∥∥Tnxn – Tnq
∥∥)

+ dnL
(‖vn – q‖ + ‖xn – q‖)
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≤ anL
(‖xn – q‖ + L‖yn – q‖) + cnL(M + R) + bnL( + L)‖xn – q‖ + dnL(M + R)

≤ anL( + L)R + cnL(M + R) + bnL( + L)R + dnL(M + R)

≤ τ
[
L( + L)R + L(M + R) + L( + L)R + L(M + R)

]
≤ τ

[
LR + LR + L(M + R)

]

≤ �(R)
R

. (.)

Applying Lemma . and the formulas above, we obtain

‖xn+ – q‖ =
∥∥( – an – cn)(xn – q) + an

(
Tnyn – q

)
+ dn(un – q)

∥∥

≤ ( – an)‖xn – q‖ + an
〈
Tnyn – q, j(xn+ – q)

〉
+ cn

〈
un – q, j(xn+ – q)

〉
= ( – an)‖xn – q‖ + an

〈
Tnxn+ – q, j(xn+ – q)

〉
+ an

〈
Tnyn – Tnxn+, j(xn+ – q)

〉
+ cn

〈
un – q, j(xn+ – q)

〉
≤ ( – an)‖xn – q‖ + an

[
kn‖xn+ – q‖ –�

(‖xn+ – q‖)]
+ an

∥∥Tnxn+ – Tnyn
∥∥ · ‖xn+ – q‖ + cn‖un – q‖ · ‖xn+ – q‖

≤ ( – an)R + an
[
kn‖xn+ – q‖ –�(R)

]
+
an
R

�(R)R + cnMR

≤ ( – an)R + an
[
kn‖xn+ – q‖ –�(R)

]
+
an


�(R). (.)

Since an →  and kn →  as n → ∞, we have knan →  as n→ ∞. Thus, without loss of
generality, let  – knan >  for any n≥ . Then (.) implies that

‖xn+ – q‖

≤ R +
an

 – knan

[
(kn – ) +

an


]
R –

an
 – knan

�(R) +
an

 – knan

[


�(R)

]

≤ R –
an

( – knan)
�(R)

≤ R, (.)

which is a contradiction. Hence, xn+ ∈ B, i.e., {xn} is a bounded sequence.
Step . We prove that ‖xn – q‖ →  as n→ ∞.
By Step , we obtain {‖xn – q‖} is a bounded sequence and so is {‖yn – q‖}. Let

M = sup
n

{‖xn – q‖} + sup
n

{‖yn – q‖} + sup
n

{‖un – q‖} + sup
n

{‖vn – q‖}.

Observe that

‖xn+ – yn‖ ≤ anL
∥∥Tnyn – xn

∥∥ + cnL‖un – xn‖ + bnL
∥∥xn – Tnxn

∥∥ + dnL‖xn – vn‖
≤ anL

(‖xn – q‖ + ∥∥Tnyn – Tnq
∥∥)

+ cnL
(‖un – q‖ + ‖xn – q‖)

+ bnL
(‖xn – q‖ + ∥∥Tnxn – Tnq

∥∥)
+ dnL

(‖vn – q‖ + ‖xn – q‖)
≤ (an + bn)L( + L)M + (cn + dn)LM. (.)
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Using Lemma ., (.) and (.), we have

‖xn+ – q‖

≤ ( – an – cn)‖xn – q‖ + an
〈
Tnyn – q, j(xn+ – q)

〉
+ cn

〈
un – q, j(xn+ – q)

〉
≤ ( – an)‖xn – q‖ + an

〈
Tnxn+ – q, j(xn+ – q)

〉
+ an

〈
Tnyn – Tnxn+, j(xn+ – q)

〉
+ cn

〈
un – q, j(xn+ – q)

〉
≤ ( – an)‖xn – q‖ + an

[
kn‖xn+ – q‖ –�

(‖xn+ – q‖)]
+ an

∥∥Tnxn+ – Tnyn
∥∥ · ‖xn+ – q‖ + cn‖un – q‖ · ‖xn+ – q‖

≤ ‖xn – q‖ + an(kn – )M
 + anM


 – an�

(‖xn+ – q‖)
+ anL‖xn+ – yn‖M + cnM



≤ ‖xn – q‖ + an(kn – )M
 + anM


 – an�

(‖xn+ – q‖)
+ anL

[
(an + bn)L( + L)M + (cn + dn)LM

]
M + cnM



≤ ‖xn – q‖ – an�
(‖xn+ – q‖) +An, (.)

where

An = an(kn – )M
 + anM


 + anL

[
(an + bn)L( + L)M + (cn + dn)LM

]
M + cnM

.

Let δn = ‖xn – q‖, λn = an and γn = An. Then (.) leads to

δn+ ≤ δn – λn�(δn+) + γn.

Therefore, by Lemma ., we obtain limn→∞ δn = , i.e., xn → q as n→ ∞. This completes
the proof. �

From Theorem ., we have the following corollary.

Corollary . Let E be a real Banach space. Let D be a nonempty closed convex subset
of E, T :D → D be a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with a sequence {kn} ⊂ [, +∞), limn→∞ kn =  and q ∈ F(T). Let {an} and {cn} be two real
sequences in [, ] satisfying the following conditions:
(A-) an →  as n→ ∞;
(A-)

∑∞
n= an = ∞;

(A-) cn = o(an).
For some x ∈ D, let {xn} be a modified Mann iterative sequence with errors defined

by (.). Suppose that there exists a strictly increasing function� : [, +∞) → [, +∞)with
�() =  such that

〈
Tnx – q, j(x – q)

〉 ≤ kn‖x – q‖ –�
(‖x – q‖) (.)

for all n ≥ , where j(x– q) ∈ J(x– q). Then {xn} converges strongly to the fixed point q of T .

http://www.journalofinequalitiesandapplications.com/content/2013/1/79
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Proof In Theorem ., letting bn = , dn = , we can get the convergence of the modified
Mann iteration (.). �

Theorem . Let E be a real Banach space. Let D be a nonempty closed convex subset of
E and Ti : K → K be two uniformly Li-Lipschitzian mappings with q ∈ F(T) ∩ F(T). Let
{kn} ⊂ [, +∞) be a sequence with kn →  as n → ∞. Let {an}, {bn}, {cn} and {dn} be four
real sequences in [, ] satisfying the following conditions:
(A-) an,bn →  as n→ ∞;
(A-)

∑∞
n= an = ∞;

(A-) cn = o(an), dn →  as n→ ∞.
For some x ∈D, let {xn} be an iterative sequence with errors defined by

⎧⎨
⎩
yn = ( – bn – dn)xn + bnTn

 xn + dnvn,

xn+ = ( – an – cn)xn + anTn
 yn + cnun

(.)

for all n ≥ . Suppose that there exists a strictly increasing function � : [, +∞)→ [, +∞)
with �() =  such that

〈
Tn
i x – q, j(x – q)

〉 ≤ kn‖x – q‖ –�
(‖x – q‖) (.)

for all n ≥  and i = , , where j(x – q) ∈ J(x – q). Then {xn} converges strongly to the fixed
point q of T ∩ T.

Proof Similarly, we can obtain the result of Theorem . by using the proof method of
Theorem .. �

Remark . Theorem . extends, improves and unifies Theorems ., ., . of [] and
Theorem . of [] in the following sense:
() The modified Mann iteration and modified Ishikawa iteration are replaced by the

modified Ishikawa iteration with errors introduced by Xu [].
() The proof method of Theorem . is quite different from the method of [, ].
() In [], the author did not require the function � to be surjective. Since x is an

arbitrary point chosen in D, it is possible that �–(a) is not well defined.
() The conditions

∑∞
n= α

n < ∞,
∑∞

n= αn(kn – ) < ∞,
∑∞

n= βn < ∞ in [,
Theorem ., Theorem .] and [, Theorem .] are replaced by the more general
conditions αn,βn →  as n→ ∞. Also, the conditions

∑
n≥(bn + cn) < ∞,∑

n≥(bn + cn)(kn – ) < ∞,
∑

n≥ cn <∞ in [, Theorem .] are replaced by
bn →  as n→ ∞ and cn = o(bn) of Corollary ..

Remark . A mapping T is said to be weak uniformly Lipschitzian if there exists a con-
stant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖ (.)

for all n ≥ , x ∈ D and y ∈ F(T). Then, using the same methods, we can also prove that
Theorem . holds for the more general class of weak uniformly Lipschitzian asymptot-
ically pseudocontractive mappings. In practical application, it can be seen from the fol-
lowing example.

http://www.journalofinequalitiesandapplications.com/content/2013/1/79
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Example . Let E = � be the set of real numbers with the usual norm and D = [,+∞).
Define a mapping T :D →D by

Tx =
x

 + x

for all x ∈ D. Then T has a fixed point q =  ∈ D and T is a strictly monotone increasing
mapping. Thus, Tx ≤ x for any x ∈ D, which implies that Tnx≤ Tn–x≤ · · · ≤ Tx. Define a
function � : [, +∞) → [, +∞) by �(t) = t

+t . Then � is a strictly increasing continuous
function with �() = . For all x ∈D and q ∈ F(T), if kn =  and L = , then we obtain

〈
Tnx – Tnq, j(x – q)

〉
=

〈
Tnx – , j(x – )

〉
=

〈
Tnx,x

〉
≤ 〈Tx,x〉

=
〈

x

 + x
,x

〉

=
x

 + x

= kn|x – q| – |x – q|
 + |x – q|

= kn|x – q| –�
(|x – q|) (.)

and

∣∣Tnx – Tnq
∣∣ = ∣∣Tnx – 

∣∣
≤ |Tx – |

=
∣∣∣∣ x

 + x
– 

∣∣∣∣
≤ |x – |
≤ L|x – q|. (.)

Therefore, T is weakly uniform Lipschitzian and satisfies (.) of Theorem ..
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