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Abstract
The purpose of this paper is to prove that every 2-isometry without any other
conditions from a fuzzy 2-normed linear space to another fuzzy 2-normed linear
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1 Introduction
A satisfactory theory of -norm and n-norm on a linear space has been introduced and
developed by Gähler in [, ]. Freese and Cho [] gave some isometry conditions in lin-
ear -normed spaces. Raja and Vaezpour [] introduced the notion of -normed hyperset
in a hypervector and also constructed some special -normed hypersets of strong homo-
morphisms over hypervector spaces. Different authors introduced the definitions of fuzzy
norms on a linear space. For reference, one may see []. Following Cheng and Mordeson
[], Bag and Samanta [] introduced the concept of fuzzy norm on a linear space.
Somasundaram and Beaula [] introduced the concept of -fuzzy -normed linear space

or fuzzy -normed linear space of the set of all fuzzy sets of a set. They gave the notion of
α--norm on a linear space corresponding to a -fuzzy -norm with the help of [] and
also gave some fundamental properties of this space.
Let X and Y be metric spaces. A mapping f : X → Y is called an isometry if f satisfies

dY (f (x), f (y)) = dX(x, y) for all x, y ∈ X, where dX(·, ·) and dY (·, ·) denote the metrics in the
spaces X and Y , respectively. Two metric spaces X and Y are defined to be isometric if
there exists an isometry of X onto Y . In , Mazur and Ulam [] proved the following
theorem.

Mazur-Ulam theorem Every isometry of a real normed linear space onto a real normed
linear space is a linear mapping up to translation.

Baker [] showed that an isometry from a real normed linear space into a strictly convex
real normed linear space is affine. Also, Jian [] investigated the generalizations of the
Mazur-Ulam theorem in F∗-spaces. Th.M. Rassias and Wagner [] described all volume

© 2013 Park and Alaca; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/78
mailto:cihangiralaca@yahoo.com.tr
http://creativecommons.org/licenses/by/2.0


Park and Alaca Journal of Inequalities and Applications 2013, 2013:78 Page 2 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/78

preserving mappings from a real finite dimensional vector space into itself and Väisälä
[] gave a short and simple proof of the Mazur-Ulam theorem. Chu [] proved that the
Mazur-Ulam theoremholds whenX is a linear -normed space. Chu et al. [] generalized
the Mazur-Ulam theorem when X is a linear n-normed space, that is, the Mazur-Ulam
theorem holds, when the n-isometry mapped to a linear n-normed space is affine. They
also obtained extensions of Th.M. Rassias and Šemrl’s theorem []. The Mazur-Ulam
theorem has been extensively studied by many authors in different aspects (see [, –
]).
Recently, Cho et al. [] investigated the Mazur-Ulam theorem on probabilistic -

normed spaces. Moslehian and Sadeghi [] investigated the Mazur-Ulam theorem in
non-Archimedean spaces. Choy and Ku [] proved that the barycenter of a triangle car-
ries the barycenter of a corresponding triangle. They showed the Mazur-Ulam problem
on non-Archimedean -normed spaces using the above statement. Chen and Song []
introduced the concept of weak n-isometry, and then they got that under some condi-
tions a weak n-isometry is also an n-isometry. Alaca [] gave the concepts of -isometry,
collinearity, -Lipschitz mapping in -fuzzy -normed linear spaces. Also, he gave a new
generalization of the Mazur-Ulam theorem when X is a -fuzzy -normed linear space
or �(X) is a fuzzy -normed linear space. Park and Alaca [] introduced the concept of
-fuzzy n-normed linear space or fuzzy n-normed linear space of the set of all fuzzy sets
of a non-empty set. They defined the concepts of n-isometry, n-collinearity, n-Lipschitz
mapping in this space. Also, they generalized the Mazur-Ulam theorem, that is, when X
is a -fuzzy n-normed linear space or �(X) is a fuzzy n-normed linear space, the Mazur-
Ulam theorem holds. Moreover, it is shown that each n-isometry in -fuzzy n-normed
linear spaces is affine. Ren [] showed that every generalized area n preserving mapping
between real -normed linear spaces X and Y which is strictly convex is affine under some
conditions.
In the present paper, we give a new version of Mazur-Ulam theoremwith a newmethod

when X is a -fuzzy -normed linear space or �(X) is a fuzzy -normed linear space.

2 On 2-fuzzy 2-normed linear spaces
In this section, at first we give the concept of linear -normed space and later the concept
of -fuzzy -normed linear space and its fundamental properties with help of []. Formore
details, we refer the readers to [, , , ].

Definition . [] Let X be a real vector space of dimension greater than  and let ‖•,•‖
be a real-valued function on X ×X satisfying the following four properties:
() ‖x, y‖ =  if and only if x and y are linearly dependent,
() ‖x, y‖ = ‖y,x‖,
() ‖x,αy‖ = |α|‖x, y‖ for any α ∈R,
() ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖,
‖•,•‖ is called a -norm on X and the pair (X,‖•,•‖) is called a linear -normed space.

Definition . [] Let X be a linear space over S (a field of real or complex numbers).
A fuzzy subset N of X ×R (R, the set of real numbers) is called a fuzzy norm on X if and
only if:
(N) For all t ∈R with t ≤ , N(x, t) = ,
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(N) For all t ∈R with t > , N(x, t) =  if and only if x = ,
(N) For all t ∈R with t > , N(λx, t) =N(x, t

|λ| ), if λ �= , λ ∈ S,
(N) For all s, t ∈R, x, y ∈ X , N(x + y, s + t) ≥ min{N(x, s),N(y, t)},
(N) N(x, ·) is a non-decreasing function of t ∈R and limt→∞ N(x, t) = .
Then (X,N) is called a fuzzy normed linear space or, in short, f-NLS.

Theorem . [] Let (X,N) be an f-NLS. Assume the condition that
(N) N(x, t) >  for all t >  implies x = .
Define ‖x‖α = inf{t : N(x, t) ≥ α}, α ∈ (, ). Then {‖ • ‖α : α ∈ (, )} is an ascending

family of norms on X.We call these norms α-norms on X corresponding to the fuzzy norm
on X.

Definition . Let X be any non-empty set and �(X) be the set of all fuzzy sets on X. For
U ,V ∈ �(X) and λ ∈ S the field of real numbers, define

U +V =
{
(x + y,ν ∧ μ) : (x,ν) ∈U , (y,μ) ∈ V

}
and λU = {(λx,ν) : (x,ν) ∈U}.

Definition . A fuzzy linear space X̂ = X × (, ] over the number field S, where the
addition and scalar multiplication operation on X are defined by (x,ν) + (y,μ) = (x+ y,ν ∧
μ), λ(x,ν) = (λx,ν) is a fuzzy normed space if to every (x,ν) ∈ X̂, there is associated a non-
negative real number, ‖(x,ν)‖, called the fuzzy norm of (x,ν), in such a way that

(i) ‖(x,ν)‖ =  iff x =  the zero element of X , ν ∈ (, ],
(ii) ‖λ(x,ν)‖ = |λ|‖(x,ν)‖ for all (x,ν) ∈ X̂ and all λ ∈ S,
(iii) ‖(x,ν) + (y,μ)‖ ≤ ‖(x,ν ∧ μ)‖ + ‖(y,ν ∧ μ)‖ for all (x,ν), (y,μ) ∈ X̂ ,
(iv) ‖(x,∨t νt)‖ =

∧
t ‖(x,νt)‖ for all νt ∈ (, ].

Definition . [] Let X be a non-empty and �(X) be the set of all fuzzy sets in X. If f ∈
�(X), then f = {(x,μ) : x ∈ X and μ ∈ (, ]}. Clearly, f is a bounded function for |f (x)| ≤ .
Let S be the space of real numbers, then �(X) is a linear space over the field S where the
addition and multiplication are defined by

f + g =
{
(x,μ) + (y,η)

}
=

{
(x + y,μ ∧ η) : (x,μ) ∈ f and (y,η) ∈ g

}
and

λf =
{
(λx,μ) : (x,μ) ∈ f

}
,

where λ ∈ S.
The linear space �(X) is said to be a normed space if for every f ∈ �(X), there is associ-

ated a non-negative real number ‖f ‖ called the norm of f in such a way that
(i) ‖f ‖ =  if and only if f = . For

‖f ‖ = 

⇐⇒ {∥∥(x,μ)∥∥ : (x,μ) ∈ f
}
= 

⇐⇒ x = , μ ∈ (, ] ⇐⇒ f = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/78


Park and Alaca Journal of Inequalities and Applications 2013, 2013:78 Page 4 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/78

(ii) ‖λf ‖ = |λ|‖f ‖, λ ∈ S. For

‖λf ‖ =
{∥∥λ(x,μ)

∥∥ : (x,μ) ∈ f ,λ ∈ S
}

=
{|λ|∥∥(x,μ)∥∥ : (x,μ) ∈ f

}
= |λ|‖f ‖.

(iii) ‖f + g‖ ≤ ‖f ‖ + ‖g‖ for every f , g ∈ �(X). For

‖f + g‖ =
{∥∥(x,μ) + (y,η)

∥∥ : x, y ∈ X,μ,η ∈ (, ]
}

=
{∥∥(x + y), (μ ∧ η)

∥∥ : x, y ∈ X,μ,η ∈ (, ]
}

=
{∥∥(x,μ ∧ η)

∥∥ +
∥∥(y,μ ∧ η)

∥∥ : (x,μ) ∈ f , (y,η) ∈ g
}

= ‖f ‖ + ‖g‖.

Then (�(X),‖ • ‖) is a normed linear space.

Definition . [] A -fuzzy set on X is a fuzzy set on �(X).

Definition . [] Let �(X) be a linear space over the real field S. A fuzzy subset N of
�(X) × �(X) × R (R, a set of real numbers) is called a -fuzzy -norm on X (or a fuzzy
-norm on �(X)) if and only if
(-N) for all t ∈R with t ≤ , N(f, f, t) = ,
(-N) for all t ∈R with t > , N(f, f, t) =  if and only if f and f are linearly

dependent,
(-N) N(f, f, t) is invariant under any permutation of f, f,
(-N) for all t ∈R with t > , N(f,λf, t) =N(f, f, t

|λ| ), if λ �= , λ ∈ S,
(-N) for all s, t ∈R,

N(f, f + f, s + t) ≥ min
{
N(f, f, s),N(f, f, t)

}
,

(-N) N(f, f, ·) : (,∞) → [, ] is continuous,
(-N) limt→∞ N(f, f, t) = .
Then (�(X),N) is a fuzzy -normed linear space or (X,N) is a -fuzzy -normed linear

space.

Remark . In a -fuzzy -normed linear space (X,N), N(f, f, ·) is a non-decreasing
function of R for all f, f ∈ �(X).

Theorem . [] Let (�(X),N) be a fuzzy -normed linear space. Assume that
(-N) N(f, f, t) >  for all t >  implies f and f are linearly dependent.
Define ‖f, f‖α = inf{t :N(f, ft) ≥ α,α ∈ (, )}.
Then {‖•,•‖α : α ∈ (, )} is an ascending family of -norms on �(X). These -norms are

called α--norms on �(X) corresponding to the -fuzzy -norm on X.

3 On theMazur-Ulam theorem
Recently, Alaca [] introduced the concept of -isometry which is suitable to represent
the notion of area-preserving mappings in fuzzy -normed linear spaces as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/78
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For f , g,h ∈ �(X) and α,β ∈ (, ), ‖f – h, g – h‖α is called an area of f , g and h. We call
� a -isometry if ‖f – h, g – h‖α = ‖�(f ) – �(h),�(g) – �(h)‖β for all f , g,h ∈ �(X) and
α,β ∈ (, ).
A version of the Mazur-Ulam theorem has been obtained in [] as follows.

Theorem . [] Assume that �(X) and �(Y ) are fuzzy -normed linear spaces. If � :
�(X) → �(Y ) is a -isometry and satisfies �(f ), �(g) and �(h) are collinear when f , g and
h are collinear, then � is affine.

A natural question is whether the -isometry in the fuzzy -normed linear spaces is
also affine without the condition of preserving collinearity. In this section, we find a reply
to this question when X is a -fuzzy -normed linear space or �(X) is a fuzzy -normed
linear space.

Lemma . [] For all f , g ∈ �(X), α ∈ (, ) and λ ∈R. Then

‖f , g‖α = ‖f , g + λf ‖α .

Lemma . Let f , g,h ∈ �(X) and α ∈ (, ). Then v = f +g
 is the unique element of �(X)

satisfying

‖f – h, f – v‖α = ‖g – v, g – h‖α =


‖f – h, g – h‖α

with ‖f – h, g – h‖α �=  and v ∈ {kf + ( – k)g : k ∈R}.

Proof From Lemma ., it is obvious that v = f +g
 satisfies

‖f – h, f – v‖α = ‖g – v, g – h‖α =


‖f – h, g – h‖α

with ‖f – h, g – h‖α �=  and v ∈ {kf + ( – k)g : k ∈R}.
For the uniqueness of v, assume that u ∈ �(X) also satisfies

‖f – h, f – u‖α = ‖g – u, g – h‖α =


‖f – h, g – h‖α

with ‖f – h, g – h‖α �=  and u ∈ {kf + ( – k)g : k ∈R}. Let u = kf + ( – k)g for some k ∈R.
From Lemma ., we have

‖f – h, g – h‖α = ‖f – h, f – u‖α

= 
∥∥f – h, f –

(
kf + ( – k)g

)∥∥
α

= | – k|‖f – h, f – g‖α

= | – k|‖f – h, g – h‖α

and

‖f – h, g – h‖α = ‖g – h, g – u‖α

= 
∥∥g – h, g –

(
kf + ( – k)g

)∥∥
α

http://www.journalofinequalitiesandapplications.com/content/2013/1/78
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= |k|‖g – h, g – f ‖α

= |k|‖f – h, g – h‖α .

Since ‖f – h, g – h‖α �= , we have  = | – k| = |k|. So, k = 
 and u = v = f +g

 . �

Theorem . Let �(X) and �(Y ) be fuzzy -normed linear spaces. If � : �(X) → �(Y ) is
a -isometry, then � is affine.

Proof Let �(f ) = �(f ) –�(). Obviously, �() =  and � is a -isometry. Now, we prove
that � is linear.
Firstly, we show that � is additive. For f , g,h ∈ �(X), α,β ∈ (, ) with ‖f – h, g – h‖α �= ,

‖�(f ) –�(h),�(g) –�(h)‖β �=  and from Lemma ., we have∥∥∥∥�(f ) –�(h),�(f ) –�

(
f + g


)∥∥∥∥
β

=
∥∥∥∥f – h, f –

f + g


∥∥∥∥
α

=
∥∥∥∥f – h,

f – g


∥∥∥∥
α

=


‖f – h, f – g‖α

=


‖f – h, g – h‖α

=


∥∥�(f ) –�(h),�(g) –�(h)

∥∥
β
.

Similarly,∥∥∥∥�(g) –�(h),�(g) –�

(
f + g


)∥∥∥∥
β

=


∥∥�(f ) –�(h),�(g) –�(h)

∥∥
β
.

And ∥∥∥∥�

(
f + g


)
–�(g),�(f ) –�(g)

∥∥∥∥
β

=
∥∥∥∥ f + g


– g, f – g

∥∥∥∥
α

=


‖f – g, f – g‖α = .

So, we get

�

(
f + g


)
–�(g) = k

(
�(f ) –�(g)

)
for some k ∈R by Definition .. That is,

�

(
f + g


)
= k�(f ) + ( – k)�(g).

Thus, from Lemma .,

�

(
f + g


)
=

�(f ) +�(g)


for all f , g ∈ �(X).

http://www.journalofinequalitiesandapplications.com/content/2013/1/78
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Since �() = , we have

�

(
f


)
= �

(
f + 


)
=

�(f ) +�()


=
�(f )


and

�(f + g) = �

(
f + g



)
=

�(f ) +�(g)


=
�(f )


+
�(g)


= �(f ) +�(g).

It follows that � is additive.
Secondly, we show that �(rf ) = r�(f ) for every r ∈ R, f ∈ �(X) and α,β ∈ (, ). Let

r ∈R
+ and f ∈ �(X) and α,β ∈ (, ). Since �() =  and � is a -isometry, we have

∥∥�(rf ),�(f )
∥∥

β
=

∥∥�(rf ) –�(),�(f ) –�()
∥∥

β

= ‖rf – , f – ‖α

= ‖rf , f ‖α

= .

So, �(rf ) = s�(f ) for some s ∈ R from Definition .. As dim�(X) > , there exists a g ∈
�(X) such that ‖f , g‖α �= . It is easy to see that

r‖f , g‖α = ‖rf , g‖α =
∥∥�(rf ),�(g)

∥∥
β
=

∥∥s�(f ),�(g)
∥∥

β

= |s|∥∥�(f ),�(g)
∥∥

β
= |s|‖f , g‖α .

So, s = r or s = –r. If s = –r, then

|r – |‖f , g‖α =
∥∥(r – )f , g

∥∥
α
= ‖rf – f , g – ‖α

=
∥∥�(rf ) –�(f ),�(g) –�()

∥∥
β

=
∥∥–r�(f ) –�(f ),�(g)

∥∥
β

= (r + )
∥∥�(f ),�(g)

∥∥
β

= (r + )‖f , g‖α .

So, |r–| = r+. This is a contradiction since r ∈R
+. Thus,�(rf ) = r�(f ) for every r ∈R

+,
f ∈ �(X) and α,β ∈ (, ).
Similarly, we can prove �(rf ) = r�(f ) for every r ∈R

–, f ∈ �(X) and α,β ∈ (, ).
Hence, we prove that � is linear and � is affine. �

Remark . Theorem . has been substantially improved by Theorem ..

Remark. It is clear that theMazur-Ulam theoremhas been proved undermuchweaker
conditions than themain result of Alaca [] in the framework of -fuzzy -normed linear
spaces.
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Open problem How can obtain some results for the Aleksandrov problem in fuzzy -
normed linear spaces with the help of this technique?
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