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1 Introduction and preliminaries
Throughout this paper, we denote by E and E∗ a real Banach space and a dual space of E,
respectively. Let 〈·, ·〉 denote the pairing between E and E∗. The normalized duality map-
ping J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E.

In the sequel, we use j to denote the single-valued normalized duality mapping. Let K be
a nonempty subset of E and T : K → K be a mapping. Recall the following.
T is said to be Lipschitz if there exists a positive constant L such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ K .

T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ K .

T is said to be strictly pseudocontractive in the terminology of Browder and Petryshyn []
if there exists λ >  such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – λ
∥∥(x – Tx) – (y – Ty)

∥∥, ∀x, y ∈ K , (.)

for some j(x– y) ∈ J(x– y). It is clear that the class of strictly pseudocontractive mappings
includes the class of nonexpansive mappings as a special case. It is also clear that (.) is
equivalent to the following:

〈
(I – T)x – (IT )y, j(x – y)

〉 ≥ λ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ K . (.)
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We know that strictly pseudocontractive mappings are Lipschitz continuous. Indeed, we
find from (.) that

‖Tx – Ty‖ ≤  + λ

λ
‖x – y‖, ∀x, y ∈ K .

T is said to be strongly pseudocontractive if there exists k ∈ (, ) such that

〈
Tx – Ty, j(x – y)

〉 ≤ k‖x – y‖, ∀x, y ∈ K , (.)

for some j(x– y) ∈ J(x– y). T is said to be pseudocontractive if there exists some j(x– y) ∈
J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖, ∀x, y ∈ K . (.)

T is said to be Lipschitz if there exists a positive constant L such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ K .

It is well known that [] (.) is equivalent to the following:

‖x – y‖ ≤ ∥∥x – y + s
[
(I – T)x – (I – T)y

]∥∥, ∀s > . (.)

We remark that the class of strongly pseudocontractive mappings is independent of the
class of strictly pseudocontractive mappings. This can be seen from the following exam-
ples.

Example . [] Take K = (,∞) and define T : K → K by

Tx =
x

 + x
.

ThenT is a strictly pseudocontractivemapping but not a strongly pseudocontractivemap-
ping.

Example . [] Take K = R and define T : K → K by

Tx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

, x ∈ (–∞, –),√
 – ( + x), x ∈ [–, ),

–
√
 – (x – ), x ∈ [, ],

, x ∈ (,∞).

Example . [] Take E = R, B = {x ∈ R : ‖x‖ ≤ }, B = {x ∈ B : ‖x‖ ≤ 
 }, B = {x ∈ B :


 ≤ ‖x‖ ≤ }. If x = (a,b) ∈ E, we define x⊥ to be (b, –a) ∈ E. Define T : B → B by

Tx =

⎧⎨
⎩x + x⊥, x ∈ B,

x
‖x‖ – x + x⊥, x ∈ B.
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Then T is a Lipschitz pseudocontractive mapping but not a strictly pseudocontractive
mapping.

LetU = {x ∈ E : ‖x‖ = }. E is said to be smooth or is said to have a Gâteaux differentiable
norm if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ U . E is said to have a uniformly Gâteaux differentiable norm if for
each y ∈ U , the limit is attained uniformly for all x ∈ U . E is said to be uniformly smooth
or is said to have a uniformly Fréchet differentiable norm if the limit is attained uniformly
for x, y ∈ U . It is known that if the norm of E is uniformly Gâteaux differentiable, then
the duality mapping J is single valued and uniformly norm to weak∗ continuous on each
bounded subset of E.
In , Xu and Ori [], in the framework of Hilbert spaces, introduced the following

implicit iteration process for a finite family of nonexpansivemappings {T,T, . . . ,TN }with
{αn} a real sequence in (, ) and an initial point x ∈ C:

x = αx + ( – α)Tx,

x = αx + ( – α)Tx,

· · ·
xN = αNxN– + ( – αN )TNxN ,

xN+ = αN+xN + ( – αN+)TxN+,

· · ·

which can written in the following compact form:

xn = αnxn– + ( – αn)Tnxn, ∀n≥ , (.)

where Tn = Tn(modN) (here the modN takes values in {, , . . . ,N}).
They obtained the following weak convergence theorem.

Theorem XO Let H be a real Hilbert space, K be a nonempty closed convex subset of
H , and Ti : K → K be a nonexpansive mapping such that F =

⋂N
i= F(Ti) 
= ∅. Let {xn} be

defined by (.). If {αn} is chosen so that αn →  as n → ∞, then {xn} converges weakly to
a common fixed point of the family of {Ti}Ni=.

They further remarked that it is yet unclear what assumptions on the mappings and/or
the parameters {αn} are sufficient to guarantee the strong convergence of the sequence
{xn}.
In , Osilike [] further extended the above results from Hilbert spaces to Banach

spaces. To be more precise, he obtain the following results.

TheoremO Let H be a real Hilbert space, K be a nonempty closed convex subset of H , and
Ti : K → K be a strictly pseudocontractive mapping such that F =

⋂N
i= F(Ti) 
= ∅. Let {xn}

http://www.journalofinequalitiesandapplications.com/content/2013/1/74
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be defined by (.). If {αn} is chosen so that αn →  as n → ∞, then {xn} converges weakly
to a common fixed point of the family of {Ti}Ni=.

Subsequently, many authors have investigated the fixed point problem of strictly pseu-
docontractivemappings based on an implicit or non-implicit iterative algorithm inBanach
spaces; see [–] and the references therein.
In , Acedo and Xu proposed a parallel iterative algorithm for strictly pseudocon-

tractive mappings in the framework of Hilbert spaces. Weak and strong convergence the-
orems for common fixed points of a family of strictly pseudocontractive mappings were
established; see [] for more details and the reference therein.
In this paper, motivated by the above results, we consider an implicitly parallel itera-

tive algorithm for a finite family of strictly pseudocontractive mappings. Weak and strong
convergence theorems are established in the framework of Banach spaces.
In order to prove our main results, we need the following conceptions and lemmas.
Recall that the space E is said to satisfy Opial’s condition [] if, for each sequence {xn}

in E, the convergence xn → x weakly implies that

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ E (y 
= x).

Recall that the mapping T : K → K is semicompact if any sequence {xn} in K satisfying
limn→∞ ‖xn – Txn‖ =  has a convergent subsequence.

Lemma . [] Let E be a real Banach space, K be a nonempty closed convex subset of E,
and T : K → K be a continuous strongly pseudocontractive mapping. Then T has a unique
fixed point in K .

Lemma . [] Let E be a smooth Banach space and K be a nonempty convex subset of E.
Let r ≥  be some integer. Let Ti : K → K be a strictly pseudocontractive mapping. Assume
that

⋂r
i= F(Ti) is not empty.Assume that {μi}ri= is a positive sequence such that

∑r
i= μi = .

Then
⋂r

i= F(Ti) = F(
∑r

i= μiTi).

Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn, ∀n≥ n,

where n is some nonnegative integer,
∑∞

n= bn < ∞, and
∑∞

n= cn < ∞. Then the limit
limn→∞ an exists.

2 Main results
Theorem . Let E be a smooth and reflexive Banach space which also satisfies Opial’s
condition andK be a nonempty closed convex subset of E. Let N ≥  be some positive integer.
Let Tm : K → K , where m ∈ {, . . . ,N}, be a λi-strictly pseudocontractive mapping and {un}
be a bounded sequence in K . Let {xn}∞n= be a sequence generated in the following algorithm:

x ∈ K , xn = αnxn– + βn

N∑
m=

δmTmxn + γnun, n≥ , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/74
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where {αn}, {βn}, {γn}, and {δm} are real number sequences in [, ]. Assume that F :=⋂N
m= F(Tm) 
= ∅, and the above control sequences satisfy the following restrictions:
(a)

∑N
m= δm = αn + βn + γn = ;

(b)
∑∞

n= γn <∞;
(c)  < a≤ αn ≤ b < , where a and b are constants.

Then {xn} converges weakly to some point in F .

Proof Put T :=
∑N

m= δmTm. We show that T is λ-strictly pseudocontractive mapping,
where λ :=min{λm :  ≤ m ≤ N}. Notice that

〈
Tx – Ty, j(x – y)

〉
= δ

〈
Tx – Ty, j(x – y)

〉
+ δ

〈
Tx – Ty, j(x – y)

〉
+ · · ·

+ δN
〈
TNx – TNy, j(x – y)

〉
≤ δ

(‖x – y‖ – λ
∥∥(I – T)x – (I – T)y

∥∥)
+ δ

(‖x – y‖ – λ
∥∥(I – T)x – (I – T)y

∥∥) + · · ·
+ δN

(‖x – y‖ – λN
∥∥(I – TN )x – (I – TN )y

∥∥)
≤ ‖x – y‖ – λ

(
δ

∥∥(I – T)x – (I – T)y
∥∥

+ δ
∥∥(I – T)x – (I – T)y

∥∥ + · · ·
+ δN

∥∥(I – TN )x – (I – TN )y
∥∥)

≤ ‖x – y‖ – λ
∥∥(I – T)x – (I – T)y

∥∥.

This proves that T is λ-strictly pseudocontractive mapping. Next, we show that the im-
plicit iterative algorithm (.) is well defined for the strictly pseudocontractive mappings.
Define a mapping

Pn(x) = αnxn– + βn

N∑
m=

δmTmx + γnun, ∀n≥ .

It follows that

〈
Pn(x) – Pn(y), j(x – y)

〉
= βn

〈 N∑
m=

δmTmx –
N∑

m=

δmTmy, j(x – y)

〉

= βn
〈
Tx – Ty, j(x – y)

〉
≤ βn

(‖x – y‖ – λ
∥∥(I – T)x – (I – T)y

∥∥)
≤ βn‖x – y‖.

This shows that Pn is strongly pseudocontractive. Since strictly pseudocontractive map-
pings are Lipschitz continuous, we see that Pn is also continuous. In view of Lemma ., we
see that Pn has a unique fixed point. This proves that the implicit iterative algorithm (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/74
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is well defined. In view of Lemma ., we see that F = F(
∑N

m= δmF(Tm)) = F(T). Fixing
p ∈ F , we see that

‖xn – p‖ = αn
〈
xn– – p, j(x – p)

〉
+ βn

〈 N∑
m=

δmTmxn – p, j(x – y)

〉
+ γn

〈
un – p, j(x – y)

〉
= αn

〈
xn– – p, j(x – p)

〉
+ βn

〈
Txn – p, j(x – p)

〉
+ γn

〈
un – p, j(x – p)

〉
≤ αn‖xn– – p‖‖x – p‖ + βn‖x – p‖ – βnλ‖xn – Txn‖ + γn‖un – p‖‖x – p‖.

It follows that

‖xn – p‖ ≤ αn‖xn– – p‖ + βn‖xn – p‖ – βnλ‖xn – Txn‖ + γn‖un – p‖.

This implies, from the restriction (c), that

‖xn – p‖ ≤ ‖xn– – p‖ + γnM – βnλ‖xn – Txn‖, (.)

where M is an appropriate constant such that M ≥ supn≥{ ‖un–p‖
a }. In view of Lemma .,

we obtain that limn→∞ ‖xn – p‖ exits. Thanks to (.), we find from the restrictions (b)
and (c) that

lim
n→∞‖xn – Txn‖ = . (.)

Since the space is reflexive and {xn} is bounded, there exists a subsequence {xni} of the
sequence {xn}, which weakly converges to some x ∈. In view of Lemma ., we find that
x ∈ F(T) = F .
Finally, we show the sequence {xn} weakly converges to x. Suppose the contrary, then

there exists some subsequence {xnj} of the sequence {xn} which weakly converges to x′ 
=
x ∈ C. It also follows fromLemma . that x′ ∈ F . Since limn→∞ ‖xn–p‖ exits for any p ∈ F .
Put

lim
n→∞‖xn – x‖ = d, lim

n→∞
∥∥xn – x′∥∥ = d′.

Since the space satisfies Opial’s condition, we see that

d = lim
n→∞‖xn – x‖

= lim inf
i→∞ ‖xni – x‖

< lim inf
i→∞

∥∥xni – x′∥∥
= lim

n→∞
∥∥xn – x′∥∥

= lim inf
j→∞

∥∥xnj – x′∥∥
< lim inf

j→∞ ‖xnj – x‖

= lim
n→∞‖xn – x‖ = d.

http://www.journalofinequalitiesandapplications.com/content/2013/1/74
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This is a contradiction. This shows that x = x′. This proves that the sequence {xn} con-
verges weakly to x ∈ F . This completes the proof. �

Corollary . Let E be a smooth and reflexive Banach space which also satisfies Opial’s
condition and let K be a nonempty closed convex subset of E. Let N ≥  be some positive
integer. Let Tm : K → K , where m ∈ {, . . . ,N}, be a λi-strictly pseudocontractive mapping.
Let {xn}∞n= be a sequence generated in the following algorithm:

x ∈ K , xn = αnxn– + ( – αn)
N∑

m=

δmTmxn, n≥ ,

where {αn} and {δm} are real number sequences in [, ]. Assume that F :=
⋂N

m= F(Tm) 
= ∅
and the above control sequences satisfy the following restrictions:
(a)

∑N
m= δm = ;

(b)  < a≤ αn ≤ b < , where a and b are constants.
Then {xn} converges weakly to some point in F .

In Hilbert spaces, we find from Theorem . the following.

Corollary . Let E be a Hilbert space and K be a nonempty closed convex subset of E.
Let N ≥  be some positive integer. Let Tm : K → K , where m ∈ {, . . . ,N}, be a λi-strictly
pseudocontractivemapping and {un} be a bounded sequence in K . Let {xn}∞n= be a sequence
generated in the following algorithm:

x ∈ K , xn = αnxn– + βn

N∑
m=

δmTmxn + γnun, n≥ ,

where {αn}, {βn}, {γn}, and {δm} are real number sequences in [, ]. Assume that F :=⋂N
m= F(Tm) 
= ∅ and the above control sequences satisfy the following restrictions:
(a)

∑N
m= δm = αn + βn + γn = ;

(b)
∑∞

n= γn <∞;
(c)  < a≤ αn ≤ b < , where a and b are constants.

Then {xn} converges weakly to some point in F .

Next, we give a strong convergence theorem.

Theorem . Let E be a smooth and reflexive Banach space and K be a nonempty closed
convex subset of E. Let N ≥  be some positive integer. Let Tm : K → K ,wherem ∈ {, . . . ,N},
be a λi-strictly pseudocontractive mapping and {un} be a bounded sequence in K . Let
{xn}∞n= be a sequence generated in the following algorithm:

x ∈ K , xn = αnxn– + βn

N∑
m=

δmTmxn + γnun, n≥ ,

where {αn}, {βn}, {γn}, and {δm} are real number sequences in [, ]. Assume that F :=⋂N
m= F(Tm) 
= ∅ and the above control sequences satisfy the following restrictions:
(a)

∑N
m= δm = αn + βn + γn = ;

http://www.journalofinequalitiesandapplications.com/content/2013/1/74
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(b)
∑∞

n= γn <∞;
(c)  < a≤ αn ≤ b < , where a and b are constants.

If
∑N

m= δmTm is semicompact, then {xn} converges strongly to some point in F .

Proof Since
∑N

m= δmTm is semicompact, we see that there exists a subsequence {xni} of
{xn} such that xni → x∗. Notice that

∥∥∥∥∥x∗ –
N∑

m=

δmTmx∗
∥∥∥∥∥ ≤ ∥∥x∗ – xni

∥∥ +

∥∥∥∥∥xni –
N∑

m=

δmTmxni

∥∥∥∥∥
+

∥∥∥∥∥
N∑

m=

δmTmxni –
N∑

m=

δmTmxnix
∗
∥∥∥∥∥.

Since
∑N

m= δmTm is Lipschitz continuous, we see from (.) that x∗ ∈ F(
∑N

m= δmTm) = F .
FromTheorem., we know that limn→∞ ‖xn–p‖ exits for any p ∈ F . That is, limn→∞ ‖xn–
x∗‖ exits. In view of xni → x∗, we find that

lim
n→∞

∥∥xn – x∗∥∥ = .

This completes the proof. �

Corollary . Let E be a smooth and reflexive Banach space and K be a nonempty closed
convex subset of E. Let N ≥  be some positive integer. Let Tm : K → K ,wherem ∈ {, . . . ,N},
be a λi-strictly pseudocontractive mapping. Let {xn}∞n= be a sequence generated in the fol-
lowing algorithm:

x ∈ K , xn = αnxn– + ( – αn)
N∑

m=

δmTmxn, n≥ ,

where {αn} and {δm} are real number sequences in [, ]. Assume that F :=
⋂N

m= F(Tm) 
= ∅
and the above control sequences satisfy the following restrictions:
(a)

∑N
m= δm = ;

(b)  < a≤ αn ≤ b < , where a and b are constants.
If

∑N
m= δmTm is semicompact, then {xn} converges strongly to some point in F .

In Hilbert spaces, we find from Theorem . the following.

Corollary . Let E be a Hilbert space and K be a nonempty closed convex subset of E.
Let N ≥  be some positive integer. Let Tm : K → K , where m ∈ {, . . . ,N}, be a λi-strictly
pseudocontractivemapping and {un} be a bounded sequence in K . Let {xn}∞n= be a sequence
generated in the following algorithm:

x ∈ K , xn = αnxn– + βn

N∑
m=

δmTmxn + γnun, n≥ ,

where {αn}, {βn}, {γn}, and {δm} are real number sequences in [, ]. Assume that F :=⋂N
m= F(Tm) 
= ∅ and the above control sequences satisfy the following restrictions:

http://www.journalofinequalitiesandapplications.com/content/2013/1/74
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(a)
∑N

m= δm = αn + βn + γn = ;
(b)

∑∞
n= γn <∞;

(c)  < a≤ αn ≤ b < , where a and b are constants.
If

∑N
m= δmTm is semicompact, then {xn} converges strongly to some point in F .
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