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1 Introduction
We say a functional equation (§) is stable if any function g satisfying the equation (§)
approximately is near to a true solution of (£). We say that a functional equation (§) is
superstable if every approximately solution of (§) is an exact solution of it (see [1]).
Speaking of the stability of a functional equation, we follow the question raised in 1940
by Ulam: When is it true that the solution of an equation differing slightly from a given
one, must of necessity be close to the solution of the given equation? This problem was
solved in the next year for the Cauchy functional equation on Banach spaces by Hyers [2].
Let f : E—> E’ be a mapping between Banach spaces such that

IfGx+y) —fx) -fO)| <8

for all x,y € E and for some § > 0. Then there exists a unique additive mapping 7 : E — E’
such that

If () - T@)|| <6

for all x € E. Moreover, if f(tx) is continuous in ¢ for each fixed x € E, then T is linear.
It gave rise to the Hyers-Ulam type stability of functional equations. Hyers’ theorem was
generalized by Rassias [3] for linear mappings by considering an unbounded Cauchy dif-

ference.

Theorem 1.1 (Th.M. Rassias) Let f : E — E' be a mapping from a normed vector space E
into a Banach space E' subject to the inequality ||f(x + y) — f(x) = fFW)I < e(llx]|? + [[¥]I?)

for all x,y € E, where € and p are constants with € >0 and 0 < p < 1. Then the limit L(x) =

f@")
o

lim,_ o exists for all x € E and L : E — E' is the unique additive mapping which
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satisfies

/@) -1t <

|x||p
forall x € E. Also, if for each x € E, the function f (tx) is continuous in t € R, then L is linear.

Gévruta [4] generalized the Rassias result. Beginning around the year 1980, the stability
problems of several functional equations and approximate homomorphisms have been
extensively investigated by a number of authors, and there are many interesting results
concerning this problem (see [5-45]).

Some mathematicians have defined fuzzy norms on a vector space from various points of
view (see [46] and [47]). Bag and Samanta [48], following Cheng and Mordeson [49], gave
an idea of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kar-
mosil and Michalek type [50]. They established a decomposition theorem of a fuzzy norm
into a family of crisp norms and investigated some properties of fuzzy normed spaces [51].

In this paper, we consider a mapping f : X — Y satisfying the following functional equa-
tion, which is introduced by Azadi Kenary [52]:

Z ( /1xz,+nzmxkl> n m+1) ( )Zf(xz (L1)

1<ij<--<im=<n

1<ky(Zij Vi€ (L) <n

for all xy,...,x, € X, where m,n € N are fixed integers with n > 2,1 < m < n. Especially,
we observe that in the case m = 1, equation (1.1) yields the Cauchy additive equation
SO xk,) = Y11 f (x:). We observe that in the case m = n, equation (1.1) yields the Jensen
additive equation f' (@) = % > 1S (x;). Therefore, equation (1.1) is a generalized form
of the Cauchy-Jensen additive equation, and thus every solution of equation (1.1) may be
analogously called general (1, n)-Cauchy-Jensen additive. For the case m = 2, the authors
have established new theorems about the Ulam-Hyers-Rassias stability in quasi S-normed
spaces [53]. Let X and Y be linear spaces. For each m with1 < m < n,amappingf: X — Y
satisfies equation (1.1) for all # > 2 ifand only if f (x) — f(0) = A(x) is Cauchy additive, where
f(0) =0 if m < n. In particular, we have f((n — m + 1)x) = (n — m + 1)f (x) and f (mx) = mf (x)
forallx € X.

Definition 1.1 Let X be a real vector space. A function N : X x R — [0,1] is called a fuzzy
normon X if for allx,y € X and all s,£ € R,

(N1) N(x,£)=0fort<0;

(N2) x=0ifand only if N(x,£) =1 for all £ > 0;

(N3) N(cx,t) = N(x, ‘—t‘) if ¢ #0;

(N4) N(x+y,c+t)>min{N(x,s), N(y,£)};

(N5) N(x,-)is a non-decreasing function of R and lim,, oc N(x,¢) = 1;

(N6) for x #0, N(x,-) is continuous on R.

Example 1.1 Let (X, | - ||) be a normed linear space and «, 8 > 0. Then

t
N(x,t): m, t>0,x€X,
0, t<0,xeX,

is a fuzzy norm on X.
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Definition 1.2 Let (X, N) be a fuzzy normed vector space. A sequence {x,} in X is said
to be convergent or converge if there exists an x € X such that lim;_, .o N(x,, — x,¢) = 1 for
all £ > 0. In this case, x is called the limit of the sequence {x,} in X, and we denote it by

N-lim;_, 50 X, = X.

Definition 1.3 Let (X, N) be a fuzzy normed vector space. A sequence {x,} in X is called
Cauchy if for each € > 0 and each ¢ > 0, there exists an #y € N such that for all # > ny and

all p > 0, we have N (x,., —%,,£) >1 — €.

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy.
If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the
fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X — Y between fuzzy normed vector spaces X and Y is con-
tinuous at a point x € X if for each sequence {x,} converging to x, € X, the sequence {f(x,)}
converges to f(xg). If f : X — Y is continuous at each x € X, then f : X — Y is said to be
continuous on X (see [51]).

Definition 1.4 Let X be a ternary algebra and (X, N) be a fuzzy normed space.
(1) The fuzzy normed space (X, N) is called a fuzzy ternary normed algebra if

N ([xyz],stu) > N(x,5)N(y, )N (z, u)

for all x, y, z € X and all positive real numbers s, ¢ and u.

(2) A complete ternary fuzzy normed algebra is called a ternary fuzzy Banach algebra.
Example 1.2 Let (X, || - ||) be a ternary normed (Banach) algebra. Let

t
N(x,t) = { tll” t>0,x€X,
0, t<0,xeX.

Then N(x,¢t) is a fuzzy norm on X and (X, N) is a ternary fuzzy normed (Banach) algebra.

From now on, we suppose that k € N is a fixed positive integer and m’ = 3k + 2. Also, we

assume that # > 3 is a fixed positive integer.

Definition 1.5 Let (X,N) and (Y, N’) be two ternary fuzzy normed algebras. Then
(1) a C-linear mapping H : (X,N) — (Y, N’) is called an m’-homomorphism if

H([[- - [1ox3)wazs | - - w126 ])

= ([ [[H 1) H (2) H (33) [ H (%2 ) H (35)] - - |G —1)H (30) ]

for all x1,%9,...,%,y €X;
(2) a C-linear mapping D: (X,N) — (X, N) is called an m'-derivation if

DL+ [tmmsnsbesss] -+ o 130)

= [[ .. [[D(xl)xzxg]x4x5] . ]xm’qu/]
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[#1D(x0)xs |axs | - - - 126 |

[%1200D(x3) Jeas ] - - Joemr a0 ]

x1560%63 )64 D (x5) %6 -+ [ 1% |

-
|
[l ] Da)es ] - T ]
l
o [ [lowaxaleas] - 1D o1 ]
l

X1%2%3 x4x5] ]xm’—lD(xm’)]

[[

for all x1,%9,...,%,s € X.
We apply the following theorem on weighted spaces.

Theorem 1.2 Let (X,d) be a complete generalized metric space and J : X — X be a
strictly contractive mapping with a Lipschitz constant L < 1. Then, for all x € X, either
d("x,]"*x) = oo for all nonnegative integers n or there exists a positive integer ny such
that

(1) d("x,J"x) < 0o for all ny > np;

(2) the sequence {J"x} converges to a fixed point y of J;

(3) y' is the unique fixed point of ] in the set Y = {y € X : d(J"x,y) < oo};

4) dy,y) < Z7dWJy) forally € Y.

Throughout this paper, we suppose that X is a ternary fuzzy normed algebra and Y is a
ternary fuzzy Banach algebra. For convenience, we use the following abbreviations for a

given mapping f : X — Y

Af(xlr s X Y1, Y250 ':ym’)

px, (n—m+ 1)) S0 mf ()
B () s

1<ij<-<im=<n
lfkl(#i/,\v’je{l ..... m})<n

+f ([ [ayayslyays] - Dym1ym])
[+ [ o 0V 0 G0l 05)] -+ Y Q1) )],

and

Df(xl, X Y1, )25 -;ym/)

3 (Z, e Z’" ” ) -m+1) ()30, ufx)
ki

n

1<ij<-<im=<n
1<ky(#ij,Vje{l,...m}) <n

+f ([ [oyayslyays] - Dy ]) = [+ [
— ([ (v 02)ysyays] - Imragm ] = [+ 19 03)]yays] - 1y 19w ]
— [0 (2l Ga)ys] - Jymraaym ] = ([ [D1923317af 05) ]y -+ 119 ]
==L+ [bayayslyays] - w1y ] = [+~ [ay2yslyays] - Jymeaf Gme)]-

[Foumls]- D]
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There are several recent works on stability of functional equations on Banach alge-
bras (see [10—28]). We investigate the stability of n-homomorphisms and n-derivations
on fuzzy ternary Banach algebras.

2 Main results

In this section, by using the idea of Park et al. [39], we prove the generalized Hyers-Ulam-
Rassias stability of 5-homomorphisms and 5-derivations related to the functional equation
(1.1) on fuzzy ternary Banach algebras (see also [54]). We start our main results by the
stability of 5-homomorphisms.

Theorem 2.1 Let ¢ : X" — [0,00) be a mapping such that there exists an L < i 1

n—m+1)n-2
with
X1 . Xn+m' < L(p(xlyx21~-~:xn+m’) (21)
n-m+1 n-m+1 n-m+1
forall x1,..., %y € X. Let f : X — Y with f(0) = 0 be a mapping satisfying
t
N(Af(x1:~~-;xn+m’)xt) = (22)

- t+§0(xl"~1xn,0,0,...,0)

Sforall i € T, X1, ..., Xpem € X and all t > 0. Then there exists a unique m'-homomorphism
H: X — Y such that

(n-m+1)(,)1-L)t

N —-Hx),t) > i 2.3
) - H&) )_(n—m+1)(m)(1—L)t+L(p(x,...,x,0,0,...,0) (23)
forallx e X and all t > 0.
Proof Letting ;v =1 and putting %41 =Xp42 =+ - =Xy = 0, %1 = %2 = - - =1, =x in (2.2),
we obtain
n n
N(( )f((n—m+l)x)—< )(n—m+1)f(x),t)
m m
t
> 2.4
T t+ox,...,x00,...,0) @4
forallx € X and t > 0. Set S:= {h: X — Y;h(0) = 0} and define d: S x S — [0, 0] by
t
d(f,g) = inf R*:N — h(x), ut) > VxeX,t>0¢,
(f.8)=in {Me (et (x)M)_t+(p(x,...,x,0,0,...,0) e 7 }

where inf ¢ = +00. By using the same technique as in the proof of Theorem 3.2 of [54], we
can show that (S, d) is a complete generalized metric space. We define J : S — S by

-m+1

Jg(x):=(n-m+ l)g(%)

for all x € X. It is easy to see that d(Jg,Jh) < Ld(g, h) for all g, € S. This implies that

d(f,Jf) < m
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By Banach’s fixed point approach, / has a unique fixed point H: X — Y in So:={h e S:
d(h,f) < oo} satisfying

H( X ): H(x) 2.5)
n-m+1 n-m+1

for all x € X. This implies that H is a unique mapping such that (2.5) and that there exists

1 € (0,00) satisfying N(f (x) — H(x), ut) > m
we have d(JPf,H) — 0 as p — oo. This implies the equality

for all x € X and ¢ > 0. Moreover,

WSy
N- lim P ?

pooo (M—m+1)P H(x) 26)

forallx € X.
It follows from (2.2) and (2.6) that

Z ( 1,U«z, ZW%) (n— m+1)( )ZMH(xz

1<ij<-<im=<n
1<k)(#i;,Vjell,...m}) <n

for all u € T, «x4,...,%, € X. This means that H : X — Y is additive. By using the same
technique as in the proof of Theorem 2.1 of [55], we can show that H is C-linear. By (2.2),

we have

£ ([ (15293154951 19 190 )

N (n—m+1)(—Dp
(n—m+1)~(-1p

e[ eV o i)
(n—m +1)-0r-Dp (n—m+1)p (m—m+1) (m—m+1)
Y4 Y5 Ym'-1 Ym'
SV ) VG Y o))

t
(n—m+ 1)‘(”‘1)1’>

t
== t+ (0 0 0 J1 Y2 I )
pv,u,..., 0, (n-m+1)P? (n-m+1)P’* 7 (n-m+1)P

for all y1,¥5,...,¥, € X and all £ > 0. Then

N(H([[- - [bny2p3lyays] - - [ym-19m])
—[[--- [[HOVH)Hy3) JHya) H(ys)] - - - JHGm 1) H )], )

[[- [[y1y2y3]y43’5] 1 1ym])

f( n
= lim N( (rom 1) 0P

p—>00 (n—m+1)~(+-Dp

1 B! 92 73

C (n—m+1)~0Dp I:I:m|:|:f<(n—m+1)P>/((n—m+1)1’)f<(n—m+1)1’>i|
Ya Js

><f((n—m+1)1’>f<(n—m+1)1’>] }

Page6of 11
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Ym'-1 Ym'
><f((n—m + I)P)/<(n—m+ 1)P>i|’t)

__t
(n—m+1)(-Dp

= lim J1 )2
oo —Lo o _n ¥
L (n— m+1 Wy T ¢(0,0,...,0, (n=m+1)P’ (n-m+1)P "7 (n— m+1)P)
_t_
> lim (n—m+1)(n-Dp -1
~ p—oo t LP9(0,0,...0,91,92Yyt)

(n—m+1)(=Dp (n—m+1)P
for all y1,¥5,...,¥, € X and all £ > 0. Hence
N(H([[ - [bw2yslyays] - 1ym-1m])
= ([ [[HOVH)H(y3) [Hya)HY5)] - - - |H G 1) H )] ) = 1
for all y1,¥5,...,ys € X and all £ > 0. Hence
H([[ - [w2yslyays] - [ym-13m])
—[[--- [[HOVH)H 3) JHy)HG5)] - - JH G 1) H )]

for all y1,¥2,...,ym € X. This means that H is an »’-homomorphism. This completes the
proof. O

Theorem 2.2 Let ¢ : X" — [0,00) be a mapping such that there exists an L <1 with

x Kpm!
X1, X)) <(m—m+1)Lo ! ye., —2
n-m+1 n-m+1
for all x1,%;,...,%, € X. Let f : X — Y be a mapping with f(0) = 0 satisfying (2.2).
Then the limit H(x) := N-limpew% exists for all x € X and defines an m'-

homomorphism H : X — Y such that

(n-m+1)(,)1-L)t
(n-m+1)()1-L)t+¢xx,...,%0,0,...,0)

N(f(x) —H(x),t) (2.7)

forallx e X and all t > 0.

Proof Let (S,d) be the metric space defined as in the proof of Theorem 2.1. Consider the
mapping T': S — Sby Tg(x) := % forallx € X. One can show that d(g, /1) = € implies
that d(Tg, Th) < Le for all positive real numbers €. This means that T is a contraction on
(S,d). The mapping

Hx) = N- fim L=+ 1)
pooo (n—m+ 1)

is the unique fixed point of T in S. H has the following property:
(n—m+1)H(x) = H((n—m+1)x) (2.8)

for all x € X. This implies that H is a unique mapping satisfying (2.8) such that there exists
1 € (0, 00) satisfying N(f(x) — H(x), ut) > m forallx € X and ¢ > 0.
The rest of the proof is similar to the proof of Theorem 2.1. d
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Now, we investigate the Hyers-Ulam-Rassias stability of m'-derivations in ternary fuzzy

Banach algebras.

1
(n-m+1)n-2

Theorem 2.3 Let ¢ : X" — [0,00) be a mapping such that there exists an L <
with (2.1) Let f : X — Y with f(0) = 0 be a mapping satisfying

t

N(Df(xl; ’xn+m/) t) t+<p(x1 %, 00 . 0)’ (29)

forall w e T, x1,...,%m € X and all t > 0. Then there exists a unique m'-derivation
D: X — Y such that

(n-m+1)(,)1-L)t
(n—m+1)(;)(1—L)t+Lg0(x,...,x,0,0,...,0)’

N(f(x) - D(x),t) > (2.10)

forallx e X and all t > 0.

Proof By the same reasoning as that in the proof of Theorem 2.1, the mapping D : X — X
defined by

D(x) := N- lim M (x

€ X),
pﬁw(n m+1)7? )

is a unique C-linear mapping which satisfies (2.10). We show that D is an m’'-derivation.
By (2.9),

([ [Dny231yay5]- 19 1Y 0]
N(f( (n—m+1)(”‘1)1’ = )

(n—m +1)-(-Dp

e (L [ (G oo o e
b b o]
[l o] - o))

([ b’lyzySV(m)ys] w1y ym]
(n—m+1)~(+-Dp

+

1 1

Ay2yslyaf o)1 - 1w —19m]
(n—m+1)-(-Dp

- [1y2y31yays] - - U (Rt )]
(n—m+1)-(-Dp

[ny2yslyays] - 1y f (5 ,,M)p)]
(n—m+1)~(-Dp

t
(m—m+ 1)("1)1’)

> ! (2.11)

) 2
t+(p(0,0,...,0, m,m,.. = m+1)p)

Page8of 11
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forall a,b,c € X and all £ > 0. Then we have

NOD([[ - [1y2351yays] - Pmayme ]) = [+ [POy293]ya35] - w19 ]
= ([ [[1DG2)y3]yay5] - ymraym ] = [[--- [[2192D03) |yays] - [ymr-19m ]
= [+ [bw2931DGw)ys] - Iym-1ym ] = [+ [D19293194D05) |y -+~ ymr-17m ]
== [[--- [yyslyays] - 1Dy ]
“ [1y2931ya95] - -+ [ymr 1 D)) )

([ [D1y23]yays]- ]ym 1]
f ( (n—m+1)(n— )

= lim N
p—>0 (n—m+1)-(n-bp

S (-
[ bz poborl - oo
[ b ) o) o]

: [[Jflyzyslf((n,yn—A‘mp)ys] 1y ym]
(n—m+1)"tr-Dp

Awayslyaf (G- 11|
(n—m+1)~(-Dp

Y’ -1

[Dry2yslyays] - - If (G2msme )ym ]
(n—m+1)~(-Dp

A1y2y31ya95) - 1 f (o)) t)

(n—m+1)~(+-1p

N
(n-m+1)(n-1p

> lim n m 7 7
m
P s 00,00, G G )
_t

. (n-m+1)=-Dp
> =
- pll—l;noc ¢ LP9(0,0,1,0,y1,y2Y ) 1

(n—m+1)n-p (n—m+1)P
for all y1,y5,..., ¥, € X and all £ > 0. It follows that D is an m'-derivation. O

Theorem 2.4 Let ¢ : X" — [0,00) be a mapping such that there exists an L <1 with

X X /
OX1s s X)) < (m—m +1)Le LI
n-m+1 n-m+1

forall x1,%,..., % € X. Let f : X — Y be a mapping with f(0) = 0 satisfying (2.9). Then
the limit D(x) := N- limp%ooj%ﬁ;x) exists for all x € X and defines an m’'-derivation
D: X — Y such that

(n-m+1)())1-L)t

(n m+1)( )(1 L)t +¢x,x,...,x0,0,...,0) @12)

N(f(x) — D(x), t)

forallx e X and all t > 0.
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