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Abstract
In this paper, we focus on matrix Greub-Rheinboldt inequalities for commutative
positive definite Hermitian matrix pairs. Some improvements, which yield sharpened
bounds compared with existing results, are presented.

1 Introduction and preliminaries
Let Mm,n denote the space of m× n complex matrices and write Mn ≡ Mn,n. The identity
matrix inMn is denoted by In. As usual, A* = (Ā)T denotes the conjugate transpose of the
matrix A. A matrix A ∈Mn is an Hermite matrix if A* = A. An Hermitian matrix A is said
to be positive semi-definite or nonnegative definite, written as A≥ , if x*Ax ≥ , ∀x ∈C

n.
A is further called positive definite, symbolized A > , if x*Ax >  for all nonzero x ∈ C

n.
An equivalent condition forA ∈ Mn to be positive definite is that A is an Hermitianmatrix
and all eigenvalues of A are positive.
Denote by λ ≤ λ ≤ · · · ≤ λn the eigenvalues of an Hermitian matrix A. The matrix

version of the well-known Kantorovich inequality for a positive definite matrix A is stated
as follows (see, e.g., [, ]):

 ≤ x*Axx*A–x
(x*x)

≤ (λ + λn)

λλn
(.)

for any nonzero vector x ∈ C
n.

An equivalent form of this result is the inequality

 ≤ x*Axx*A–x
(x*x)

–  ≤ (λ – λn)

λλn
(.)

valid for any nonzero vector x ∈C
n.

This famous inequality plays an important role in statistics (see [, ]; for the latest work
on applications in statistics, we refer to Seddighin’s work []) and numerical analysis, for
example, studying the rates of convergence and error bounds of solving systems of equa-
tions (see in [, ]).
In , Dragomir gave a refinement of the additive version of the operator Kantorovich

inequality [],

 ≤ K(A;x) –  ≤ 

(M –m)

mM
–

[
Re

〈
Cm,M(A)x,x

〉
Re

〈
C 

m , M

(
A–)x,x〉]/, (.)
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where A is a self-adjoint bounded linear operator on a complex Hilbert space,  < m <
M, such that mI ≤ A ≤ MI in the partial operator order, K(A;x) := 〈Ax,x〉〈A–x,x〉, and
Cα,β (A) := (A – ᾱI)(βI –A).
A further improvement of the matrix version of (.) is proposed in [], where the clas-

sical Kantorovich inequality (.) is modified to apply not only to positive definite, but also
to all invertible Hermitian matrices.
We adopt the following transform for a positive definite Hermitian matrix A ∈Mn with

eigenvalues  < λ ≤ λ ≤ · · · ≤ λn:

C(A,x) = x*(λnI –A)(A – λI)x, (.)

and

C
(
A–,x

)
= x*

(

λ

I –A–
)(

A– –

λn

I
)
x. (.)

Then the following inequality holds []:

 ≤ x*Ax · x*A–x –  ≤ (λ – λn)

λλn
–

√
C(A,x) ·C(

A–,x
) ≤ (λ – λn)

λλn
. (.)

The result above is an improvement of the Kantorovich inequality (.).
A generalized formof theKantorovich inequality presented byGreub andRheinboldt []

in  is known as the Greub-Rheinboldt inequality in operator theoretic terms, which is
also an important and early example of the so-called complementary inequality referred
to in [],

〈Ax,Ax〉〈Bx,Bx〉 ≤ (MM +mm)

mmMM
〈Ax,Bx〉, (.)

where A and B are commuting positive definite self-adjoint operators on a Hilbert space,
with upper and lower boundsMi andmi, i = , , respectively.
In , Fujii et al. [] generalized theGreub-Rheinboldt inequality to pairs of invertible

operators that may not even commute,

〈
A�Bx,x

〉 ≤ 〈
A,x

〉/〈B,x
〉/ ≤ mm +MM


√
mmMM

〈
A�Bx,x

〉〈Ax,Bx〉, (.)

where A, B are invertible positive operators satisfying  <m ≤ A≤ M and  <m ≤ B ≤
M, and A�B = A/(A–/BA–/)/A/. By using the viewpoint of interaction antieigen-
value, Gustafson [] sharpened the Greub-Rheinboldt inequality (.) to obtain the fol-
lowing result:

〈Ax,Ax〉〈Bx,Bx〉 ≤ (m(AB–) +M(AB–))

m(AB–)M(AB–)
〈Ax,Bx〉, (.)

where A and B are commuting positive definite self-adjoint operators on a Hilbert space.
Let A and B be two positive definite Hermite matrices and AB = BA with real eigen-

values λ ≤ λ ≤ · · · ≤ λn and μ ≤ μ ≤ · · · ≤ μn, respectively. Moreover, let 〈Ax,Bx〉 :=
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(Ax)*Bx = x*A*Bx. Then a matrix version of (.) is

x*Ax · x*Bx
(x*ABx)

≤ (λμ + λnμn)

λλnμμn
(.)

for any nonzero vector x ∈C
n.

In , Seddighin [] extended the Greub-Rheinboldt inequality (.) to pairs of nor-
mal operators and established for what vectors the Greub-Rheinboldt inequality becomes
equality.
Let V be an n × r matrix such that V *V = Ir , i.e., V is suborthogonal. Another well-

known matrix version of the Kantorovich inequality asserts that

V *AV ≤ (m +M)

mM
(
V *AV

) (.)

for any A > , V *V = I , and  <mI < A <MI .
Mond and Pečarić proved the following matrix version inequality (see () in []):

(
V *AV

)/ –V *AV ≤ (M –m)

(M –m)
I (.)

for A >  and V *V = I . For more related properties and applications, see, e.g., [–].
In the next section, we propose some refinements about the matrix Kantorovich-type

inequalities (.), the Greub-Rheinboldt inequality for commutative positive definite Her-
mitian matrix pairs, and (.) for positive definite matrices, yielding sharpened upper
bounds compared with original results, together with an improvement to (.).

2 Main results
In this section, we first introduce some lemmas.

Lemma . (in [], Lemma .) Let A ∈ Mn be a positive definite Hermitian matrix. The
following inequalities hold:

λ‖x‖ ≤ x*Ax ≤ λn‖x‖,  ≤ (
λn‖x‖ –x*Ax

)(
x*Ax–λ‖x‖

) ≤ 

(λn–λ)‖x‖,

and


λn

‖x‖ ≤ x*A–x ≤ 
λ

‖x‖,

 ≤
(


λ

‖x‖ – x*A–x
)(

x*A–x –

λn

‖x‖
)

≤ (λn – λ)

(λλn)
‖x‖

(.)

for any x ∈C
n.

Let A, B be two invertible commuting Hermite matrices. Denote by λ ≤ λ ≤ · · · ≤
λn and μ ≤ μ ≤ · · · ≤ μn the eigenvalues of A and B, respectively. Then there exists
a unitary matrix U ∈ Mn such that A = U�U*, B = UMU*, where � = diag(λ, . . . ,λn),
M = diag(μ̂, . . . , μ̂n). Note that μ̂, μ̂, . . . , μ̂n is a permutation ofμ,μ, . . . ,μn. Let σk = λk

μ̂k
(k = , . . . ,n), then it is easy to see that all eigenvalues of AB– are σ,σ, . . . ,σn. Without
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loss of generality, wemay assume that σ =mink{ λk
μ̂k

}, σn =maxk{ λk
μ̂k

} and σ ≤ · · · ≤ σn. For
convenience, we introduce the notation

D(AB,x) = x*A
(
σnI –AB–)(AB– – σI

)
Bx. (.)

If σσn > , then we can define

D
(
(AB)–,x

)
= x*A

(

σ

I –A–B
)(

A–B –

σn

I
)
Bx. (.)

Lemma . Let A and B be two positive definite commuting matrices with eigenvalues
 < λ ≤ λ ≤ · · · ≤ λn,  < μ ≤ μ ≤ · · · ≤ μn, respectively. σ ≤ σ ≤ · · · ≤ σn, D(AB,x)
and D((AB)–,x) are as before. Then for any x ∈C

n,

 ≤ D(AB,x)≤ 

(σn – σ)

∣∣x*ABx∣∣,
 ≤ D

(
(AB)–,x

) ≤ (σn – σ)

(σσn)
∣∣x*ABx∣∣ (.)

for any x ∈C
n.

Proof From (.),

D(AB,x) = x*A
(
σnI –AB–)(AB– – σI

)
Bx

= x*U�U*(σnI –U�U*UM–U*)(U�U*UM–U* – σI
)
UMU*x

= x*U�
(
σnI –�M–)(�M– – σI

)
MU*x. (.)

Let z = (z, . . . , zn)T = (�M)/U*x. Thus, ‖z‖ = z*z = x*U(�M)U*x = x*ABx. Then

D(AB,x) = z*
(
σnI –�M–)(�M– – σI

)
z =

n∑
i=

(σn – σi)(σi – σ)zi ≥ . (.)

On the other hand,

n∑
i=

(σn – σi)(σi – σ)zi ≤ (σn – σ)


‖z‖. (.)

Thus,

D(AB,x)≤ (σn – σ)


‖z‖ = (σn – σ)


∣∣x*ABx∣∣. (.)

The proof of D((AB)–,x) is similar. �

Theorem . With the assumptions of Lemma .,

 ≤ x*Ax · x*Bx
(x*ABx)

–  ≤ (σn – σ)

σσn
–


|x*ABx|

√
D(AB,x) ·D(

(AB)–,x
)
. (.)
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Proof Let z = (�M)/U*x, E = �M– = diag( λn
μ̂n
, . . . , λ

μ̂
) = diag(σn, . . . ,σ). Then

x*Ax · x*Bx
(x*ABx)

=
z*Ez · z*E–z

(z*z)
. (.)

From (.) and (.),

 ≤ z*Ez · z*E–z
(z*z)

–  ≤ (σn – σ)

σσn
–

√
C

(
E,

z
‖z‖

)
·C

(
E–,

z
‖z‖

)

=
(σn – σ)

σσn
–


‖z‖

√
C(E, z) ·C(

E–, z
)
. (.)

From (.) and (.), we have

z*z = x*ABx, C(E, z) =D(AB,x), C
(
E–, z

)
=D

(
(AB)–,x

)
. (.)

By substituting (.) and (.) into (.), the inequality becomes

 ≤ x*Ax · x*Bx
(x*ABx)

–  ≤ (σn – σ)

σσn
–


|x*ABx|

√
D(AB,x) ·D(

(AB)–,x
)
. �

Corollary . Let A and B be two positive definite commuting matrices with eigenvalues
 < λ ≤ · · · ≤ λn,  < μ ≤ · · · ≤ μn, respectively. Then

x*Ax · x*Bx
(x*ABx)

≤ (λμ + λnμn)

λμλnμn
–


|x*ABx|

√
D(AB,x) ·D(

(AB)–,x
)

(.)

holds for any nonzero vector x ∈C
n.

Proof By Theorem ., we have the following:

 ≤ x*Ax · x*Bx
(x*ABx)

≤ (σ + σn)

σσn
–


|x*ABx|

√
D(AB,x) ·D(

(AB)–,x
)
. (.)

Let f (x) = (+x)
x . It can be easily deduced that f (x) is monotone increasing on [, +∞). Let

α = μ
λn
, αn = μn

λ
. From the definition of σ and σn, we know that αn

α
≥ σn

σ
≥ . Thus,

(σ + σn)

σσn
= f

(
σn

σ

)
≤ f

(
αn

α

)
=
(λμ + λμ)

λμλμ
.

That is,

 ≤ x*Ax · x*Bx
(x*ABx)

≤ (λμ + λμ)

λμλμ
–


|x*ABx|

√
D(AB,x) ·D(

(AB)–,x
)
. (.)

�

Remark From Lemma . and (.), we can obtain a sharpened bound for the classical
Kantorovich-type inequality, i.e., the Greub-Rheinboldt inequality.

http://www.journalofinequalitiesandapplications.com/content/2013/1/7


Zhao et al. Journal of Inequalities and Applications 2013, 2013:7 Page 6 of 8
http://www.journalofinequalitiesandapplications.com/content/2013/1/7

Besides the discussion on the Greub-Rheinboldt inequality (.), we are also interested
in another form of Kantorovich-type inequality aforementioned.We turn our attention to
the inequalities (.) and (.) in the remainder of this paper.
Let A be an n×n positive (semi-) definite Hermitian matrix with (nonzero) eigenvalues

contained in the interval [m,M], where  <m <M. Let V be n× r matrices.
As is declared in (.), for A > , V *V = I , and m, M mentioned above, the following

inequality holds:

V *AV ≤ (m +M)

mM
(
V *AV

).
It is not difficult to see that asV *V = I , thenVV * = VV + ≤ I , where + indicates theMoore-
Penrose inverse. Multiplying from the right and from the left by V *A and AV respectively,
we have V *AV ≥ (V *AV ) for A > . From the well-known Löwner-Heinz inequality, we
have (V *AV )/ ≥ V *AV and the following inequality (see in []):

(
V *AV

)/ ≤ m +M

√
mM

V *AV .

For z ∈ [m,M],m > , the convexity of (z– + z/mM) implies that

z– ≤ m +M
mM

–
z

mM
. (.)

If A has the representation A = �Dα�*, where � is unitary andDα = diag(α, . . . ,αn), and
if  <m ≤ αi ≤ M, i = , . . . ,n, then from (.) it follows that

D–
α ≤ m +M

mM
I –

Dα

mM
. (.)

After multiplying from the right and from the left by � and �*, it is not difficult to see
that (.) yields the following []:

A– ≤ m +M
mM

I –
A

mM
. (.)

Based on (.), we derive several results on the inequality (.).

Theorem . For any A >  and V *V = I ,

(
V *AV

)/ –V *AV ≤ (M –m)

(M +m)
I –D(A,V ), (.)

where D(A,V ) = ( 
m+MV *AV )/ – (M+m)/

 I .

Proof From (.) and A > , we can get

–A≤ –
mM

(M +m)
I –


(M +m)

A. (.)
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Since V *V = I , (.) can be turned into

–V *AV ≤ –
mM

(M +m)
I –


(M +m)

V *AV . (.)

By adding (V *AV )/ ≥  to both sides of the inequality (.), we obtain that

(
V *AV

)/ –V *AV ≤ (
V *AV

)/ – mM
(M +m)

I –


(M +m)
V *AV , (.)

i.e.,

(
V *AV

)/ –V *AV ≤ (M –m)

(M +m)
I –


(M +m)

V *AV +
(
V *AV

)/ – (M +m)


I

=
(M –m)

(M +m)
I –

[(


M +m
V *AV

)/

–
(M +m)/


I
]

. (.)

Thus, we finally have

(
V *AV

)/ –V *AV ≤ (m –M)

(M +m)
I –D(A,V ),

where D(A,V ) = ( 
(m+M)V

*AV )/ – (M+m)/
 I . �

Remark It is obvious that D(A,V ) ≥ . Thus, Theorem . indeed presents an improve-
ment of the Kantorovich-type inequality (.) in [].

For an application to the Hadamard product, we have the following corollary.

Corollary . Let A and A be n×n positive definitematrices with eigenvalues of A⊗A

contained in the interval [m,M]. Then

(
A
 ◦A


)/ –A ◦A ≤ (M –m)

(m +M)
I –D(A ⊗A,V ),

where V is the selection matrix of order n × n with the property V *(A ⊗ A)V = A ◦ A

(⊗ and ◦ indicate the tensor and the Hadamard product, respectively).

3 Conclusion
In this paper, we introduce some new bounds for several Kantorovich-type inequalities for
commutative positive definite Hermitian matrix pairs. As a particular situation, in Corol-
lary ., when A and B are both positive definite, the result provides a sharpened upper
bound for the matrix version of the well-known Greub-Rheinboldt inequality. Moreover,
it holds for negative definite Hermite matrices. Also, a refinement of Kantorovich-type in-
equalities concerning positive definite matrices is presented together with an application
to the Hadamard product.
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