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Abstract

In this paper, we focus on matrix Greub-Rheinboldt inequalities for commutative
positive definite Hermitian matrix pairs. Some improvements, which yield sharpened
bounds compared with existing results, are presented.

1 Introduction and preliminaries
Let M, , denote the space of m x n complex matrices and write M,, = M,,,,. The identity
matrix in M, is denoted by I,,. As usual, A" = (4)” denotes the conjugate transpose of the
matrix A. A matrix A € M,, is an Hermite matrix if A" = A. An Hermitian matrix A is said
to be positive semi-definite or nonnegative definite, written as A > 0, if x Ax>0,Vx e C".
A is further called positive definite, symbolized A > 0, if x’Ax > 0 for all nonzero x € C".
An equivalent condition for A € M,, to be positive definite is that A is an Hermitian matrix
and all eigenvalues of A are positive.

Denote by A1 < Ay <--- < X, the eigenvalues of an Hermitian matrix A. The matrix
version of the well-known Kantorovich inequality for a positive definite matrix A is stated

as follows (see, e.g., [1, 2]):

A on A1 2
<xAxxA X _ (A1 +Ay)

. 1.1
%) T 4rh, ()
for any nonzero vector x € C".
An equivalent form of this result is the inequality
x Axx’ Alx A= A)?
<~ @ 1< u (12)

(x"x)? 4,

valid for any nonzero vector x € C”.

This famous inequality plays an important role in statistics (see [3, 4]; for the latest work
on applications in statistics, we refer to Seddighin’s work [3]) and numerical analysis, for
example, studying the rates of convergence and error bounds of solving systems of equa-
tions (see in [5, 6]).

In 2008, Dragomir gave a refinement of the additive version of the operator Kantorovich
inequality [7],
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where A is a self-adjoint bounded linear operator on a complex Hilbert space, 0 < m <
M, such that mI < A < MI in the partial operator order, K(4;x) := (Ax,x)(A™\x,x), and
Cap(A) = (A—al)(Bl - A).

A further improvement of the matrix version of (1.3) is proposed in [8], where the clas-
sical Kantorovich inequality (1.1) is modified to apply not only to positive definite, but also
to all invertible Hermitian matrices.

We adopt the following transform for a positive definite Hermitian matrix A € M,, with
eigenvalues 0 <Ay <Xy <--- <A,

C(A,x) =x O\, = A)A - 1D, (1.4)

and

C(A™hx) =« (%1 —Al) (Al - %I)x (1.5)

1 n

Then the following inequality holds [8]:

0<xAx-xA'x-1< Ga=dn)? _ \/ C(A,x)-C(A %) < Ga =) (1.6)
4h1Ay 4h Ay
The result above is an improvement of the Kantorovich inequality (1.1).

A generalized form of the Kantorovich inequality presented by Greub and Rheinboldt [1]
in 1959 is known as the Greub-Rheinboldt inequality in operator theoretic terms, which is
also an important and early example of the so-called complementary inequality referred
to in [9],

(Ax, Ax) (Bx, Bx) < M(Ax,f}x)z, (1.7)
Amymy MM,
where A and B are commuting positive definite self-adjoint operators on a Hilbert space,
with upper and lower bounds M; and m;, i = 1,2, respectively.
In1997, Fujii et al. [10] generalized the Greub-Rheinboldt inequality to pairs of invertible
operators that may not even commute,

1/2 < mimy +M2M2

A24B%x, %) < (A2, x)* e e e
(A%8B%x,x) < (A%, ) S M,

B, x) (A*#B%x, x)(Ax, Bx)?, (1.8)
where A, B are invertible positive operators satisfying 0 < m; <A <M; and 0 <my <B <
M, and AfB = AYV2(A7V2BAV2)V2AV2 By using the viewpoint of interaction antieigen-
value, Gustafson [9] sharpened the Greub-Rheinboldt inequality (1.7) to obtain the fol-
lowing result:

(Ax, Ax) (Bx, Bx) < (m(AB™) + M(AB))*

2
= TamABM@BT) AEBA 19

where A and B are commuting positive definite self-adjoint operators on a Hilbert space.
Let A and B be two positive definite Hermite matrices and AB = BA with real eigen-
values Ay <Ay <--- <Ay and pg < pg < -+ < Wy, respectively. Moreover, let (Ax, Bx) :=
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(Ax) Bx = x"A"Bx. Then a matrix version of (1.9) is

xA%x - x'B%x - (Aptg + A tn)?
(KABx)? T AAAupafin

(1.10)

for any nonzero vector x € C”".

In 2005, Seddighin [11] extended the Greub-Rheinboldt inequality (1.9) to pairs of nor-
mal operators and established for what vectors the Greub-Rheinboldt inequality becomes
equality.

Let V be an n x r matrix such that V'V = I,, i.e., V is suborthogonal. Another well-
known matrix version of the Kantorovich inequality asserts that

(m + M)?
7
- AmM

V'A%V (v'av)® (L.11)
foranyA>0, V'V =1,and 0 < ml <A < MI.
Mond and Pecari¢ proved the following matrix version inequality (see (7) in [12]):

_vay < M-m? (1.12)

)1/2
~ 4(M - m)

(VA*v

for A>0and V'V =I. For more related properties and applications, see, e.g., [13-15].

In the next section, we propose some refinements about the matrix Kantorovich-type
inequalities (1.2), the Greub-Rheinboldt inequality for commutative positive definite Her-
mitian matrix pairs, and (1.10) for positive definite matrices, yielding sharpened upper
bounds compared with original results, together with an improvement to (1.12).

2 Main results
In this section, we first introduce some lemmas.

Lemma 2.1 (in [8], Lemma 2.2) Let A € M, be a positive definite Hermitian matrix. The
following inequalities hold:

Mlxl)* < x Ax < Allx]|, 0 < (Anllxll® —x Ax) (x Ax— A1 ||x]|*) < E()\n =) %%,
and
1 . 1
—xl* <x’A'x < — |«
n )\l (2 1)
1 . 1 An — M)? ’
0<(—lxl*-xA"x)(x A0 - —lxl* ) < (a=h)" [l
)\1 )\n 40‘1)‘")2
forany x € C".

Let A, B be two invertible commuting Hermite matrices. Denote by 4 <Ay < --- <
Apand g < g < --- < u, the eigenvalues of A and B, respectively. Then there exists
a unitary matrix U € M, such that A = UAU", B = UMU’", where A = diag(Ay,..., A,),
Ak
ik
(k =1,...,n), then it is easy to see that all eigenvalues of AB™! are 01,09,...,0,. Without

M = diag(f1y, ..., [1,). Note that fiy, L2, ..., fi, is a permutation of 1, 42, ..., U,. Let oy =
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. . A
loss of generality, we may assume that o7 = ming{ M—’; }, 0, = maxg{ ﬁ—i} ando; < --- <0, For

convenience, we introduce the notation
D(AB,x) = x A(0,] — AB™")(AB™" - 011)Bx. (2.2)

If 010, > 0, then we can define

. 1 1
D((AB),x) =x A (—1 - A1B> (AIB - —I)Bx. (2.3)
o1 On
Lemma 2.2 Let A and B be two positive definite commuting matrices with eigenvalues
O<i <Ay <--- <Xy 0<py <y <--- =< Uy, respectively. 6y < oy < --- < 0, D(AB,x)
and D((AB)™, x) are as before. Then for any x € C",

1 .
0 <D(AB,x) < Z(a,, - 01)*|x ABx]|,
) (2.4)
0 < D(AB) %) < T =0 | Ay
= 4(0‘10‘,,)2
forany x € C".
Proof From (2.2),
D(AB,x) =x A(0u] —AB™")(AB™' - 011)Bx
=x UAU (0, - UAU UM U ) (UAU UM U - o] )UMU %
=x UA(0ul - AM™")(AM™ - o1]) MU . (2.5)
Letz = (z1,...,2,)T = (AM)Y2U x. Thus, ||z||> = 2’z = x U(AM)U x = x' ABx. Then
D(AB,x) =z (04l = AM™")(AM™ - 011)z = Z(an —0))(0; —01)z; > 0. (2.6)
i=1
On the other hand,
- (0,—0 )2
D (o =a)oi - o)zl < "=l 2.7)
i=1
Thus,
2 —g)2
D(AB,x) < " 401) 122 = 4”1) | ABx|. (2.8)
The proof of D((AB)7}, x) is similar. O
Theorem 2.3 With the assumptions of Lemma 2.2,
x A%x - x B*x (0, — 01)? 1
- - — D(AB, x) - D((AB)™, x). 2.9
(x ABx)? =400,  |xABx| \/ (AB,x) - D((AB) ", ) @9)
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Proof Letz=(AM)V*U'x, E= AM™ = diag(%, e %) = diag(0y,...,01). Then

xA%x-x'B>x Z7ZEz-ZE'z

- = - 2.10
(x"ABx)? (z'2)2 (2.10)
From (1.2) and (1.6),
v -l 2
SZEZ *zf ‘1< (@ =) _ C(E,i).c<5—1,i>
(z'2) 4010, Izl Izl
(04— 01)2 1
=L = _ _—_ /C(E,z)- C(ELz). 211
d0, ¥ CEACEL) 10
From (2.5) and (2.10), we have
zz=xABx,  C(E,2)=D(AB,x),  C(E",z)=D((AB)™",«x). (2.12)
By substituting (2.12) and (2.10) into (2.11), the inequality becomes
xA’%x - x B%x (04 — 01)2
< - D(AB,x) - D((AB)™!
=T WABY® = 4o,  wABx |\/ (4B,x) D((AB), ). s

Corollary 2.4 Let A and B be two positive definite commuting matrices with eigenvalues
O0<Ay <+ <Ay 0<puy <--- < Wy, respectively. Then

"A%x - x" B A by
x *x ¥ B (A per + Aypen)? \/D(AB %) - D((AB) %) (213)
(x"ABx)? AMpidaty X ABxl
holds for any nonzero vector x € C".
Proof By Theorem 2.3, we have the following:
X A% -x'B*x (01 + 0,)?
D(AB,x) - D((AB 2.14
(ABx)?2 ~ 4o,  |xABx |‘/ ( ) (( ™ ) 2.14)
Let f(x) = (@ 4 2 It can be easily deduced that f(x) is monotone increasing on [1, +00). Let
o) = A_i’ oy, = —. From the definition of o7 and o,,, we know that ‘Z‘ > Z;’ > 1. Thus,
(01 +0,)? :f<ﬂ) <f<&) _ (A1 + Appn)?
4010y, o1/ T \o drpirps
That is,
X A% x B2 (Mg + A
<2 < Gt +hapn)’ ~_ /DB, - D((AB), ). (2.15)
(x"ABx)? dhjpurmn 1 ABxl
O

Remark From Lemma 2.2 and (2.15), we can obtain a sharpened bound for the classical
Kantorovich-type inequality, i.e., the Greub-Rheinboldt inequality.
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Besides the discussion on the Greub-Rheinboldt inequality (1.9), we are also interested
in another form of Kantorovich-type inequality aforementioned. We turn our attention to
the inequalities (1.11) and (1.12) in the remainder of this paper.

Let A be an n x n positive (semi-) definite Hermitian matrix with (nonzero) eigenvalues
contained in the interval [, M], where 0 < m < M. Let V be n x r matrices.

As is declared in (1.11), for A > 0, V'V = I, and m, M mentioned above, the following
inequality holds:

(m + M)?

2
oY (V AV).

V'A%V <
It is not difficult to see thatas V'V = I, then VV" = VV* < I, where + indicates the Moore-
Penrose inverse. Multiplying from the right and from the left by V'A and AV respectively,
we have V'A2V > (V'AV)? for A > 0. From the well-known Lowner-Heinz inequality, we
have (V'A%2V)Y2 > V'AV and the following inequality (see in [16]):

1/2 m+M
<

V'AV.
T2V mM

(V'A*V)

For z € [m, M], m > 0, the convexity of (z™! + z/mM) implies that

a4 _m+M  z
z = -—.
- mM mM

(2.16)

If A has the representation A = 'D,I"", where I is unitary and D, = diag(ay, ..., a,), and
if0<m<aq;<M,i=1,...,n, then from (2.16) it follows that
m+ M D,
<

D' < I-—=.
mM mM

(2.17)

After multiplying from the right and from the left by I" and I'’, it is not difficult to see
that (2.17) yields the following [17]:

4 _m+M A
A< ——J———. (2.18)
mM mM

Based on (2.18), we derive several results on the inequality (1.12).
Theorem 2.5 Forany A>0and V'V =1,

M —m)?
12 _yay < MM iy, (2.19)

42
(V4v) = 4t )

where D(A, V) = (=L V" A2V)V2 _ (M+;n)“2 I

m+M
Proof From (2.18) and A > 0, we can get

mM 1 9
< _ e A“.
- M+m) (M + m)

(2.20)
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Since V'V =1, (2.20) can be turned into

mM 1

* 42
_(M+m)1— (M+m)VA V. (2.21)

—-V'AV <

By adding (V'A2V)2 > 0 to both sides of the inequality (2.21), we obtain that

1/2 1/2 mM 1

)
(M+m)1- (M+m)VA v, (2.22)

(VA?V) " - VAV < (V' A*V)

M — m)? 1
)1/2—VAV<( m)

“AM+m)  (M+m)

1/2 2
_ (M—m)zl_[< 1 V*sz) _MI] . (223)
4(M + m) M+m 2

1/2_(M+m)1

(VA*v
4

VA’V + (VA*V)

Thus, we finally have

* . _M 2
(V sz)l/Z _ VAV < M[ —DZ(A, V),
4(M + m)
here DUV = gV APV - 5% g

Remark It is obvious that D?(4, V) > 0. Thus, Theorem 2.5 indeed presents an improve-
ment of the Kantorovich-type inequality (1.12) in [12].

For an application to the Hadamard product, we have the following corollary.

Corollary 2.6 Let A; and A, be n x n positive definite matrices with eigenvalues of Ay ® A,
contained in the interval [m, M]. Then
M — m)?
A2 0AY) —ayons <YM 1 4 g4,
(10 2) 10 2_4(m+M) (1®2 )
where V is the selection matrix of order n> x n with the property V' (A1 ® A3)V = Ay 0 Ay
(® and o indicate the tensor and the Hadamard product, respectively).

3 Conclusion

In this paper, we introduce some new bounds for several Kantorovich-type inequalities for
commutative positive definite Hermitian matrix pairs. As a particular situation, in Corol-
lary 2.4, when A and B are both positive definite, the result provides a sharpened upper
bound for the matrix version of the well-known Greub-Rheinboldt inequality. Moreover,
it holds for negative definite Hermite matrices. Also, a refinement of Kantorovich-type in-
equalities concerning positive definite matrices is presented together with an application
to the Hadamard product.
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