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1 Introduction
Sets with the common barycenter are observed in geometry, mechanics dealing withmass
densities and probability theory in the study of random variables. Development and appli-
cation of the theory of convex functions also includes barycenters. The following result,
expressed by the measure and integral, is the most commonly used.
‘Let A,B ⊂R be bounded closed intervals so that A⊂ B and μ be a finite measure on B

so that  < μ(A) < μ(B). If the barycenter equality


μ(A)

∫
A
t dμ(t) =


μ(B)

∫
B
t dμ(t) (.)

is valid, then the inequality


μ(A)

∫
A
f (t)dμ(t)≤ 

μ(B)

∫
B
f (t)dμ(t) (.)

holds for every μ-integrable convex function f : B →R.’
The related problems with different types of measures and mathematical expectations

were investigated in []. The inequality in (.) under the condition in (.) was extended
in []. The intention of this paper is still more to connect the quoted implication (in the
extended form) with convex functions, in the discrete and integral case. We also wanted
to insert the quasi-arithmetic means into this implication.
The quoted result was actually observed in Banach spaces. So, it was assumed thatA and

B are bounded closed convex subsets of a Banach space E such that A⊂ B and f : B →R is
a convex function. The opposite examples are found in [] already for E =R

 and E =R
.
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Throughout the whole paper, we suppose that I ⊆R is a non-degenerate interval. Subin-
tervals from I will also be non-degenerate. Convex hull of a set X will be denoted by coX.
The main results of the paper are presented in Sections  and .

2 Convex combinations with convex functions
In this section, we show the connection between the convex combinations and the convex
functions. The basic form of Jensen’s inequality is obtained using the assumption of the
equality of convex combinations. An alternative definition of convexity is also presented.
Throughout the section, wewill assume that n is a positive number greater than or equal

to , i.e., n≥ .
An elementary mean of points x, . . . ,xn ∈ I is the arithmetic mean 

n
∑n

i= xi ∈ I . A dis-
crete generalization of the arithmetic mean is the convex combination or the weighted
mean

∑n
i= pixi ∈ I with coefficients pi ∈ [, ] such that

∑n
i= pi = .

Theorem A Let x, . . . ,xn ∈ I be points such that

xi /∈ co{x, . . . ,xk} for i = k + , . . . ,n, where  ≤ k ≤ n – .

Let α, . . . ,αn ∈R be non-negative numbers such that

 <
k∑
i=

αi = α < β =
n∑
i=

αi.

If one of the equalities


α

k∑
i=

αixi =

β

n∑
i=

αixi =


β – α

n∑
i=k+

αixi (.)

is valid, then the double inequality


α

k∑
i=

αif (xi) ≤ 
β

n∑
i=

αif (xi) ≤ 
β – α

n∑
i=k+

αif (xi) (.)

holds for every convex function f : I →R.

Theorem A was realized in [, Proposition ]. The proof of Theorem A can be done by
direct application of convexity on the model of the proof in [, Proposition ] with the
chord line (the line through points T(a, f (a)) and T(b, f (b)) of the graph of f )

f cho[a,b](x) =
b – x
b – a

f (a) +
x – a
b – a

f (b) (.)

using a = min{x, . . . ,xk} and b = max{x, . . . ,xk} and by putting the sums instead of inte-
grals. So, the implication of Theorem A can be proved without applying the basic Jensen
inequality.
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Corollary . Let x, . . . ,xn ∈ I and α, . . . ,αn ∈ R be as in Theorem A with the additional
condition

k∑
i=

αi =
n∑

i=k+

αi.

If the equality

k∑
i=

αixi =
n∑

i=k+

αixi (.)

is valid, then the inequality

k∑
i=

αif (xi) ≤
n∑

i=k+

αif (xi) (.)

holds for every function f : I →R which satisfies the implication of Theorem A.

The next consequence is the basic form of Jensen’s inequality, as the main result in this
section.

Theorem . If
∑n

i= pixi is a convex combination of points xi ∈ I with coefficients pi ∈
[, ] so that

∑n
i= pi = , then the inequality

f

( n∑
i=

pixi

)
≤

n∑
i=

pif (xi) (.)

holds for every function f : I →R which satisfies the implication of Theorem A.

Proof Let x =
∑n

i= pixi with
∑n

i= pi = .Without loss of generality, suppose that all xi are
pairwise different and all pi > .
If x �= xi for all i, then we apply Corollary . to the sets of points {x} and {x, . . . ,xn}

with associated coefficients α =  and αi = pi for i = , . . . ,n. It follows

f

( n∑
i=

pixi

)
= f (x) ≤

n∑
i=

pif (xi).

If x = xi for some i = i, then

x =


 – pi

n∑
i=
i�=i

pixi

is also the convex combination. Since x �= xi for all i �= i, we can apply the previous case.
It follows

f

( n∑
i=

pixi

)
= f (x) ≤ 

 – pi

n∑
i=
i�=i

pif (xi),
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and therefore

( – pi )f (x) ≤
n∑
i=

pif (xi) – pi f (xi ),

so we have

f (x) ≤
n∑
i=

pif (xi)

because xi = x. �

So, using Theorem A, we can derive the basic Jensen inequality. The previous results
can be written in the following theorem as the alternative definition of convexity.

Theorem . A function f : I → R is convex if and only if it satisfies the implication of
Theorem A.

3 Integral arithmetic means with convex functions
In this section, we show the connection between the convexity and the barycenters. The
integral form of Jensen’s inequality for the measures which satisfy some conditions is ob-
tained using the barycenters.
Integral generalizations of the concept of arithmetic mean in the finite measure spaces

are the integral arithmeticmean or the barycenter ofmeasurable set and the integral arith-
metic mean of integrable function; see [, p.]. In particular, if we have a probabilistic
measure, then the integral arithmetic mean of a random variable is just its mathematical
expectation.
Let μ be a finite measure on I and A⊆ I be a μ-measurable set with μ(A) > .We define

the μ-barycenter of A by

B(A,μ) = 
μ(A)

∫
A
t dμ(t). (.)

If f : I →R is a μ-integrable function on A, then we define the μ-arithmetic mean of f on
A by

M(A, f ,μ) =


μ(A)

∫
A
f (t)dμ(t). (.)

Note thatM(A, A,μ) = B(A,μ), where A is an identity function on A. If A is the interval,
then its μ-barycenter B(A,μ) belongs to A. If A is the interval and f is continuous on A,
then its μ-arithmetic mean on A belongs to f (A).

Theorem B Let μ be a finite measure on I . Let B ⊆ I be a μ-measurable set and A ⊂ B be
a bounded interval such that

 < μ(A) < μ(B).

http://www.journalofinequalitiesandapplications.com/content/2013/1/61
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If one of the equalities

B(A,μ) = B(B,μ) = B(B \A,μ) (.)

is valid, then the double inequality

M(A, f ,μ)≤M(B, f ,μ) ≤M(B \A, f ,μ) (.)

holds for every convex μ-integrable function f : I →R.

The version of Theorem B for the bounded closed intervals A and B was proved in [,
Proposition ] by using the chord line y = f cho[a,b](x) when A = [a,b]. The proof was realized
without applying the integral Jensen inequality. The same proof can be applied to Theo-
rem B with a = infA and b = supA.
It is unfortunate that Theorem B is not valid for the convex functions of several vari-

ables. Such examples for the convex function of two and three variables are shown in [,
Example ,].
The next corollary is the generalization of Theorem B. It can be also useful in some

applications, especially in applications on quasi-arithmetic means.

Corollary . Let μ be a finite measure on I . Let g : I → R be a continuous μ-integrable
function and J = g(I). Let B ⊆ I be a μ-measurable set and A ⊂ B be a bounded interval
such that

 < μ(A) < μ(B).

If one of the equalities

M(A, g,μ) =M(B, g,μ) =M(B \A, g,μ) (.)

is valid, then the double inequality

M(A, f ◦ g,μ) ≤M(B, f ◦ g,μ) ≤M(B \A, f ◦ g,μ) (.)

holds for every convex function f : J →R provided that f ◦ g is μ-integrable.

The following is the integral analogy of Corollary ..

Corollary . Let μ and A,B ⊆ I be as in Theorem B with the addition

μ(A) = μ(B \A).

If the equality

∫
A
t dμ(t) =

∫
B\A

t dμ(t) (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/61
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is valid, then the inequality

∫
A
f (t)dμ(t) ≤

∫
B\A

f (t)dμ(t) (.)

holds for everyμ-integrable function f : I → Rwhich satisfies the implication of TheoremB.

The concept of barycenter enables the realization of the most important inequalities
such as the Jensen inequality and the Hermite-Hadamard inequality. This approach re-
quires fine measures.
A measure μ on I is said to be continuous if μ({t}) =  for every point t ∈ I . Take an

interval [a,b]⊆ I . If μ is a continuous finite measure on I , then the functions

x 
→ μ([a,x]) and x 
→
∫
[a,x]

t dμ(t)

are continuous and monotone on [a,b]. If additionally the measure μ is positive on the
intervals from I , then the above functions are strictly monotone.
In the rest of this section, wewill use the continuous finitemeasure on I which is positive

on the intervals from I , that is, μ(S) >  for every interval S ⊆ I .

Lemma . Let μ be a continuous finite measure on I which is positive on the intervals
from I .
If a is a point from the interior of I , then a decreasing series (An)n of intervals An ⊆ I exists

so that

∞⋂
n=

An = {a} and B(An,μ) = a.

Proof Take a point a from the interior of I .
In the first step, we choose points x, y ∈ I such that x < a < y and determine the μ-

barycenter of the interval [x, y]:

a =


μ([x, y])

∫
[x,y]

t dμ(t).

If a = a, then we take A = [x, y]. If a > a, then we observe the function g : [a, y] → R

defined by

g(y) =


μ([x, y])

∫
[x,y]

t dμ(t) – a.

Since g is continuous, g(a) <  and g(y) > , there must be a point y ∈ 〈a, y〉 such that
g(y) = . In this case we can take A = [x, y]. If a < a, then we increase x until we obtain
one of the previous two cases.
In the next step, if A = [x, y], we take points

x =
x + a


and y =
a + y


,

and repeat the previous procedure to determine A. �
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Remark . The function x 
→ μ([x, yx]), where yx is defined by


μ([x, yx])

∫
[x,yx]

t dμ(t) = a,

is strictly decreasing continuous on [x,a〉 with limx→a– μ([x, yx]) = .

The following consequence is the integral form of Jensen’s inequality, as the main result
in this section.

Theorem . Let μ be a continuous finite measure on I which is positive on the intervals
from I .
If B ⊆ I is a union of intervals, then the inequality

f
(


μ(B)

∫
B
t dμ(t)

)
≤ 

μ(B)

∫
B
f (t)dμ(t) (.)

holds for every continuous μ-integrable function f : I → R which satisfies the implication
of Theorem B for unions B of intervals from I and bounded intervals A ⊂ B.

Proof Let B⊆ I be a union of intervals and let

a =


μ(B)

∫
B
t dμ(t)

be its μ-barycenter. We observe three cases depending on the μ-barycenter a.
If a belongs to the interior of B, then using the procedure described in Lemma ., we

can determine a decreasing series (An)n of intervals An ⊂ B so that

∞⋂
n=

An = {a}

and

B(An,μ) =


μ(An)

∫
An

t dμ(t) = a for every An.

We have


μ(An)

∫
An

t dμ(t) =


μ(B)

∫
B
t dμ(t),

and since μ-integrable function f satisfies the implication of Theorem B, from the left-
hand side of the inequality in (.), we get


μ(An)

∫
An

f (t)dμ(t)≤ 
μ(B)

∫
B
f (t)dμ(t).

After allowing n→ ∞, since f is continuous, we get

f
(


μ(B)

∫
B
t dμ(t)

)
= f (a) = lim

n→∞


μ(An)

∫
An

f (t)dμ(t) ≤ 
μ(B)

∫
B
f (t)dμ(t)

which ends the proof of this case.

http://www.journalofinequalitiesandapplications.com/content/2013/1/61
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If a is the boundary point of B, then we take small ε >  and put Bε = [a – ε,a] ∪ B or
Bε = [a,a + ε] ∪ B. It provides that μ-barycenter aε of Bε belongs to the interior of Bε .
First, we apply the above procedure to Bε and its μ-barycenter aε , and after that allow
ε → .
If a does not belong to B and if a is not the boundary point of B, then we take small ε > 

and put Bε = [a– ε,a+ ε]∪B. It provides thatμ-barycenter aε of Bε belongs to the interior
of Bε . We apply the procedure from the first case to Bε , and after that let ε → . �

Remark . The function f from Corollary . must be continuous; otherwise, it may
happen

lim
n→∞


μ(An)

∫
An

f (t)dμ(t) = lim
n→∞ f (an) �= f (a),

where the series (an)n of the μ-barycenters an of intervals An converges to a.

Thus, usingTheoremB,we can realize the integral formof Jensen’s inequality for contin-
uous functions, unions of intervals and continuous finite measures which are positive on
intervals. The following is the equivalent connection between convexity and Theorem B.

Theorem . Let μ be a continuous finite measure on I which is positive on the intervals
from I . A continuous μ-integrable function f : I → R is convex if and only if it satisfies
the implication of Theorem B for finite unions B of intervals from I and bounded intervals
A⊂ B.

Proof The necessity follows from Theorem B. Let us prove the sufficiency on the interior
of I . Take any convex combination px+qy of two different points x and y from the interior
of I with the positive coefficients p and q. Suppose x < y.
The basic idea of the proof is to determine the small intervals Bx

n and By
n with the

barycenters x and y such thatμ(Bx
n)/μ(B

y
n) = p/q. Supposewe haveBx

n andB
y
n with barycen-

ters x and y. If μ(Bx
n)/μ(B

y
n) > p/q, then we decrease Bx

n. If μ(Bx
n)/μ(B

y
n) < p/q, then we de-

crease By
n.

Using the procedure from Lemma ., we can determine the decreasing series (Bx
n)n,

(An)n, (B
y
n)n of pairwise disjoint intervals Bx

n, An, B
y
n from I satisfying the following condi-

tions:

∞⋂
n=

Bx
n = {x},

∞⋂
n=

An = {px + qy},
∞⋂
n=

By
n = {y},

B(Bx
n,μ) = x, B(An,μ) = px + qy, B(By

n,μ) = y,

μ(Bx
n)

μ(Bx
n ∪ By

n)
= p, μ(An) = μ(Bx

n ∪ By
n),

μ(By
n)

μ(Bx
n ∪ By

n)
= q.

If

Bn = Bx
n ∪An ∪ By

n,

http://www.journalofinequalitiesandapplications.com/content/2013/1/61
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then it follows

B(An,μ) = px + qy =


μ(Bn \An)

∫
Bxn
t dμ(t) +


μ(Bn \An)

∫
Byn
t dμ(t)

=


μ(Bn \An)

∫
Bn\An

t dμ(t) = B(Bn \An,μ).

Applying the inequality in (.) from Theorem B, we have

M(An, f ,μ) ≤ M(Bn \An, f ,μ)

=


μ(Bn \An)

∫
Bxn
f (t)dμ(t) +


μ(Bn \An)

∫
Byn
f (t)dμ(t)

= pM(Bx
n, f ,μ) + qM(By

n, f ,μ),

and letting n→ ∞, since f is continuous, we obtain

f (px + qy) ≤ pf (x) + qf (y),

which ends the proof. �

For details on global bounds for generalized Jensen’s inequality, see [].
The Hermite-Hadamard inequality is also the consequence of Theorem B.

Corollary . Let μ be a continuous finite measure on I which is positive on the intervals
from I .
If [a,b]⊆ I and

pa + qb =


μ([a,b])

∫
[a,b]

t dμ(t),

then the inequality

f (pa + qb) ≤ 
μ([a,b])

∫
[a,b]

f (t)dμ(t) ≤ pf (a) + qf (b) (.)

holds for every continuous function f : I → R which satisfies the implication of Theorem B
for finite unions B of intervals from I and bounded intervals A⊂ B.

Proof Let us prove the corollary when [a,b] belongs to the interior of I . Let (Ba
n)n, (An)n,

(Bb
n)n be the decreasing series of pairwise disjoint intervals Ba

n, An, Bb
n from I as in Theo-

rem ., with a instead of x and b instead of y. Let us introduce also the increasing series
(An)n of intervals An so that

An ⊂ An, An ∩ (
Ba
n ∪ Bb

n
)
= ∅,

∞⋃
n=

An = [a,b] and B(An,μ) = pa + qb.

We construct an interval An+ by increasing the interval An, after we have constructed
intervals Ba

n+ and Bb
n+ by decreasing the intervals Ba

n and Bb
n.

http://www.journalofinequalitiesandapplications.com/content/2013/1/61
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If

Bn = Ba
n ∪An ∪ Bb

n,

then we have the barycenter equalities

B(An,μ) = B(An,μ) = B(Bn \An,μ) = pa + qb.

After applying the inequality in (.) to the pairs An,An and An,Bn \An, we get

M(An, f ,μ)≤M(An, f ,μ) ≤M(Bn \An, f ,μ),

that is,


μ(An)

∫
An

f (t)dμ(t)≤ 
μ(An)

∫
An

f (t)dμ(t)≤ 
μ(Bn \An)

∫
Bn\An

f (t)dμ(t).

Letting n → ∞, we obtain the inequality in (.). �

An interesting version of the Hermite-Hadamard inequality in a non-positive curvature
space was obtained in [].

4 Applications on quasi-arithmetic means
In the applications of convexity, we often use strictly monotone continuous functions
ϕ,ψ : I → R such that ψ is convex with respect to ϕ (ψ is ϕ-convex), that is, f = ψ ◦ ϕ–

is convex by [, Definition .]. A similar notation is used for concavity.
Let x, . . . ,xn ∈ I be points and p, . . . ,pn ∈ [, ] be numbers such that

∑n
i= pi = . The

discrete basic ϕ-quasi-arithmetic mean of points (particles) xi with coefficients (weights)
pi is the point

Mϕ(xi,pi) = ϕ–

( n∑
i=

piϕ(xi)

)
(.)

which belongs to I because
∑n

i= piϕ(xi) belongs to ϕ(I).

Theorem C Let ϕ,ψ : I → R be strictly monotone continuous functions. Let x, . . . ,xn ∈ I
be points such that

xi /∈ co{x, . . . ,xk} for i = k + , . . . ,n, where  ≤ k ≤ n – .

Let α, . . . ,αn ∈R be non-negative numbers such that

 <
k∑
i=

αi = α < β =
n∑
i=

αi.

If ψ is either ϕ-convex and increasing or ϕ-concave and decreasing, and if one of the
equalities

Mϕ

(
xi,

αi

α

)k

i=
=Mϕ

(
xi,

αi

β

)n

i=
=Mϕ

(
xi,

αi

β – α

)n

i=k+
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/61
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is valid, then the double inequality

Mψ

(
xi,

αi

α

)k

i=
≤Mψ

(
xi,

αi

β

)n

i=
≤Mψ

(
xi,

αi

β – α

)n

i=k+
(.)

holds.
If ψ is either ϕ-convex and decreasing or ϕ-concave and increasing, then the reverse dou-

ble inequality is valid in (.).

Theorem Cwas proved in [, Corollary ] by application of Theorem A. The application
of Theorem C on the discrete basic power means can be found in [, Corollary ].
Ifμ is a finite measure on I andA⊆ I is a measurable set with the positive measure, then

we define the integral ϕ-quasi-arithmetic mean on the set A with respect to the measure
μ by

Mϕ(A,μ) = ϕ–
(


μ(A)

∫
A
ϕ(t)dμ(t)

)
. (.)

If A is the interval, then its ϕ-quasi-arithmetic mean Mϕ(A,μ) belongs to A because the
point (/μ(A))

∫
A ϕ(t)dμ(t) belongs to ϕ(A). If A is not connected, thenMϕ(A,μ) may be

outside of A.

Theorem . Let μ be a finite measure on I . Let ϕ,ψ : I → R be strictly monotone con-
tinuous μ-integrable functions. Let B ⊆ I be a μ-measurable set and A ⊂ B be a bounded
interval such that

 < μ(A) < μ(B).

If ψ is either ϕ-convex and increasing or ϕ-concave and decreasing, and if one of the
equalities

Mϕ(A,μ) =Mϕ(B,μ) =Mϕ(B \A,μ) (.)

is valid, then the double inequality

Mψ (A,μ) ≤Mψ (B,μ)≤Mψ (B \A,μ) (.)

holds.
If ψ is either ϕ-convex and decreasing or ϕ-concave and increasing, then the reverse dou-

ble inequality is valid in (.).

Proof Let us prove the case when ψ is ϕ-convex and increasing. If we apply the function
ϕ to the equalities in (.), then it follows


μ(A)

∫
A
ϕ(t)dμ(t) =


μ(B)

∫
B
ϕ(t)dμ(t) =


μ(B \A)

∫
B\A

ϕ(t)dμ(t).

http://www.journalofinequalitiesandapplications.com/content/2013/1/61
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Now, we can apply Corollary . with convex function f = ψ ◦ϕ–, and since f (ϕ(t)) = ψ(t),
we have


μ(A)

∫
A
ψ(t)dμ(t)≤ 

μ(B)

∫
B
ψ(t)dμ(t)≤ 

μ(B \A)
∫
B\A

ψ(t)dμ(t).

Finally, we apply the increasing function ψ– to the above inequalities and get the double
inequality in (.). �

As a special case of the mean in (.) with I =< ,+∞ >, ϕr(t) = tr for r �=  and ϕ(t) =
ln t, we get the integral power mean on the set A:

M[r]
 (A,μ) =

⎧⎨
⎩( 

μ(A)
∫
A t

r dμ(t)) r for r �= ,

exp( 
μ(A)

∫
A ln t dμ(t)) for r = .

(.)

Respecting the mark for integral power mean, it comes nextM[]
 (A,μ) = B(A,μ).

Corollary . Let μ be a finite measure on I . Let B ⊆ I be a μ-measurable set and A ⊂ B
be a bounded interval such that

 < μ(A) < μ(B).

If one of the equalities

M[]
 (A,μ) =M[]

 (B,μ) =M[]
 (B \A,μ) (.)

is valid, then the double inequality

M[r]
 (A,μ) ≤M[r]

 (B,μ)≤M[r]
 (B \A,μ) (.)

holds for r ≥ , at the same time as the double inequality

M[r]
 (A,μ) ≥M[r]

 (B,μ)≥M[r]
 (B \A,μ) (.)

holds for r ≤ .

Proof The proof of corollary follows from Theorem . with functions ϕ(t) = t and ψ(t) =
tr for r �=  or ψ(t) = ln t for r = . �

General forms and refinements of quasi-arithmetic means can be found in [].
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