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Abstract

In this paper, we give necessary and sufficient conditions for the boundedness of the
n-dimensional Hausdorff operators on Herz-type spaces. In addition, the sufficient
condition for the boundedness of commutators generated by Lipschitz functions and
the fractional Hausdorff operators on Morrey-Herz space is also provided.
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1 Introduction
Recall that for a locally integrable function ® on (0, c0), the one-dimensional Hausdorff
operator is defined by

hof () = /0 b @f(’-t‘) .

The boundedness of this operator on the real Hardy space H!(R) was proved in [1]. Sub-
sequently, the problem of boundedness of &g in H?, 0 < p < 1 was considered in [2, 3] and
[4]. In [5], the same operator was studied on product of Hardy spaces. Due to its close
relation with the summability of the classical Fourier series, it was natural to study /e
in high-dimensional space R”. With such an objective, Chen et al. [6] considered three
extensions of the one-dimensional Hausdorff operator in R”. One of them is the operator

_[ 20 (%
Haf(x) = /R o (|y|>dy '

The second multidimensional extension of the Hausdorff operator provided in [6] is the

following operator:

oW/l

ﬁ@,ﬂf(x) = -/R"

where & is a radial function defined on R*, and €2(y’) is an integrable function defined on
the unit sphere $”!. Here and in what follows, we denote 1?¢,1 = Hy. In [6], the authors
discussed the boundedness of these operators on various function spaces and found that
they have better performance on Herz-type Hardy spaces HI'(qo' ? than their performance
on the Hardy spaces H” when 0 <p <1.
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Recently, Lin and Sun [4] defined the n-dimensional fractional Hausdorff operator ini-
tially on the Schwartz class S by

Ha, = /R QDD o

[yl*r
and obtained H?(R") — L4(R") and L (|x|* dx) — Li(|x|* dx) boundedness for Hy,,, . Fur-

thermore, it is easy to show that the #-dimensional fractional Hardy operator

Hyf (x) = fO)dy

|x|” Y Jiyi<xd

and its adjoint operator

o= 94

MEd

are special cases of Hy,,, if one chooses ®(¢) = ®1(£) = t7* x(,00)(t) and D(t) = D(2) =
X(0,1](£), respectively.

In recent years, the interest in obtaining sharp bounds for integral operators has grown
rapidly, mainly because of their appearance in various branches of pure and applied sci-
ences. In [7], Xaio obtained the sharp bounds for the Hardy Littlewood averaging operator
on Lebesgue and BMO spaces. Later on the problem was extended to p-adic fields in [8]
and [9]. In [10] and [11], Fu with different co-author have considered the same problem
for m-linear p-adic Hardy and classical Hardy operators, respectively.

As the development of linear as well as multilinear integral operators, their commuta-
tors have been well studied. A well-known theorem by Coifman et al. [12] states that the
commutator [, T] defined by

(6, T]()x) = b(x) T(f)(x) - T(bf) (),

where T is a Calder6n-Zygmund singular integral operator, is bounded on L?(R"),
1<p< o0, if and only if b € BMO(R"). One can find a vast literature devoted to the study
of the boundedness properties for such commutators. More recently, Gao and Jia [13]
defined the commutator of the high-dimensional Hausdorff operator as

ot = [ 22 (600 - b))y

and studied it on Lebesgue and Herz-type spaces.

Motivated by the work cited above, in this paper, we obtain some sharp bounds for Hg
on Herz-type spaces. Furthermore, we give a sufficient condition for the boundedness
of commutators generated by the Lipschitz functions b and the n-dimensional fractional
Hausdorff operators Hg ,, defined by

HS, () = / WD, 4 — piy))(y)

rr |y

on Morrey-Herz space. Following [14], our method is direct and straightforward. In ad-
dition, the problem of boundedness of commutators of #-dimensional fractional Hardy
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operators [15] is also achieved as a special case of our results. Before going into the de-
tailed proof of these results, let us first recall some definitions. For any k € Z, we set
B ={x € R":|x| < 2"}, Cy = Bi\Bi.

Definition 1.1 ([16]) Let « € R, 0 < p < 00, 0 < g < 0co. The homogeneous Herz space
Kg?(R") is defined by

Ker (R") = {f € L, (R™(0}) : 11l o e < 001}

where
oo 1/p
— ki V4
”f“f(qa’p(R”) = (Z 2 ap”fXCk ”Lq(R”)) ,
k=—00

with the usual modification made when p = co.

Remark 1.2 I'(f; P(R") is the generalization of L7(R", |x|%), the Lebesgue space with power
weights. Also, it is easy to see that K;’q(R”) = L9(R") and K;/q'q (R™) = LA(R", |x|%).

Definition 1.3 Let @ € R, 0 < p < 00, 0 < g < o0 and A > 0. The homogeneous Morrey-
Herz space MI'(;,",;; (R") is defined by

MK (R") = {f e LL (R"\{0}) : Il asicsery < 00}

where

ko lp
-, . = su 2—](0)» 2/(0([7 4 " s
I gy = SUP ( > 2PIf e W

ko eZ k=—00
with the usual modification made when p = co.

In [17] the Morrey space M; (R™) is defined by

M;(R"):{feL;’OC( "): sup k [f(y)‘qdy<oo}.

A>0,xeR" T |x—yl|<r
Obviously, MK (R") = Kg” (R") and M} (R") C MK (R").
Definition 1.4 ([18]) Let 0 < 8 < 1. The Lipschitz space A g(R") is defined by

[f (x+h) —f ()]
Iflla,@n = Sup ———F—— <00
A T

In the next section we will obtain some sharp bounds for He. Finally, the Lipschitz esti-

mates for the commutators Hg,y will be studied in the last section.
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2 Sharp bounds for Hg
The main result of this section is as follows:

Theorem 2.1 Leta € R, 1 > 0,1 < p,q < o0o. If ® is a non-negative valued function and

b n
A1=/ ()/) |y|a+§_)‘dy<00,
& Iy

then Hy is a bounded operator on MK o A(R")
Conversely, suppose that He is a bounded operator on MI.(I‘},;I)‘(R”). Ifx=0,o0rif A >
max{0,a}, then A; < 0. In addition, the operator Hy satisfies the following operator norm:

1Ho ||MI‘<[‘;“‘LIA(R”)»MI'<I‘,"3‘(R”) =Ar.

Proof By definition and using Minkowski’s inequality

1

ko P
WHof iz ey = SUD 2*0*{ > 2C|(Hof)xc, Him}

k=—00
_ —koA kap CI)()/) <i>d qd>§ ’
szl S22 [ 90(2 ) of

Py
T G)a?) |
W/ o

< sup 2~ k"’\{ Z 2]‘0‘1’(2

koeZ

G "

Now, it is easy to see that for y € C; [6]

Gl

Therefore, by Minkowski’s inequality, we get

n
=1 xcp i laen)-

/(0 ez k=—00

E [ D) ko Z
IHof Nygies o < D fc D17 sup 2‘““{ D 2P xe g {
j=—00 ¥ N

< = ()’) 2—1A a)
< W kgem 2 o dy
j=—00

()/) +25
=< |V‘||MI.<§‘,’,;(R”)/ | |n )’I"‘ q d_y

Hence, we conclude that

Holl .. o <A 2.1
” (b”MK;;‘z”(R”)%MK A Ry =411+ ( )
Conversely, suppose that He is bounded on MK e A(R”) Then we consider the following

two cases.
Casel: A > 0.

Page 4 of 12
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In this case, we choose fy € LL (R"\{0}), such that

loc
—a—"24n
Solo) = x4

An easy computation shows that

(121 )|5" | } G

_ ok(h—a)
Woxc llpany = 247 [ T

where |$"71| denotes the volume of unit sphere S"~!. Now, by definition

ko iz
o kg ey = 592 273 D 2 Ilfo Xl aqen
e koeZ

k=—00
1
(1 _ 2q(o¢—)»)) |Sn—1| % ko r
= |:—:| sup 2kok Z okip
A-w koeZ k=—00
(1 _ 2q(ot—)»)) |Srz—1| % 2
= 1 < Q.
A—« (2)\[7 _ 1);

On the other hand, it is easy to check that

D(y)
[y

Hofo(w) =fotw) [ DI dy.

Under the assumption that Hg is bounded on Mf(g;; (R"), we get

d)(y) a+Z-)
/Rn W'y' 9 d)’ < ||H<D”MI%§;‘(R")—>MI(;';(R”) < O0.

Furthermore, combing (2.2) with (2.1), we immediately obtain

@ ) a+Z-
(yn | e dy.
n |yl

”H‘D ”MK;;“?(RYI)‘,MK;‘,;(RM) = _/1;

Casell: A =0.

Page 5 of 12

In this case, we have MK;;I)‘ (R") = I'(f; ?(R™). To prove the converse relation we take the

sequence of function {f,,} (m > 0) as follows:

0 if |x| <1,

gt _o—m
%7472 if x| > 1.

fm(x) =

Obviously for k < 0, we have f,, xc, = 0. Hence, for k > 0, we obtain

_q-H"_g—m
”meCk”Zq(Rn):/ || “"q dx
C

k

(a+27"")
_ (2q or - 1) |S|n—12—kq(a+2_m)‘

qlo +27m)
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Therefore,
1
00 p
”f'"”i(q“'p(kn) = { Z 2kap|[meCk||lL’q(Rn)}
k=—00
—m 1( oo i
. |:(zq(a+2 ) _1) |S|”‘1] q iz N } p
qlo +27m) pry
qlo +27) @7 _1)»
On the other hand, we write
if |x| <1,

0
H@fm(x) = _q_Nt_o-m 0{+ +
™ fy p Iy if el 2 1
This implies that (Hqf,,) xc, = 0 for k < 0. Thus for k > 0, we get
n_g-m N\ a+2y2m g
|x|—oz— 27 / ()/) | 7 2 dy> dx
|

pi<i 91"

| Hafo) xci | fagen = f (
Ck

Therefore, for any m < k, we have
no-m
CD()/)| |a+q 2 ,y

(Hafm)xc, n = (/ |x|_aq_n_2qux> /

| FHafnxc | agen . s DI
1

2q(a+2"") -1 7

( ) |S|n—1:|

qlo +27™)

_ 2—k(a+2'"”) |:

P m
x f ()/) |y|a+ 2427 dy
|

y|<2m-1 |y|"

Now, it is easy to show that

1
94(@+27") _ 1) r
o s

||H<I>fm||j<;'1’(13n) > |: q(Ol o m
d) n , o—m
/ ()’) |y|a+§+2 dy
|

yi<om-1 |y

0] [Zz }

qla +27m)

m (1) n o-m
N / (y) |y|o¢+q 2 dy
yi<2m-1 |y

. CI)(y) a+2427"M
= Vo ll gor omy 272" — =T dy.
KGR <21 |yl
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Consequently,

@ ) n,o-m
o | gor @omy v @my 2 27 Zm/ O) i g,

ly|<2m-1 |y|”

Finally, we let m — +00 to obtain

1 Ho |l gor gy b oy = ®0)
q (R )_)I(q (R") = R~ |y|}’l

It dy. 2.3)

In view of (2.3) with (2.1), we get

D(y) n
||H<1>||j<g'1’(1<n)ﬁ1'<q°”p(1w) = /Rn )" |y|a+‘7 dy.

Thus, we finish the proof of Theorem 2.1. O

3 Lipschitz estimates for n-dimensional fractional Hausdorff operator

In this section, we will prove that the commutator generated by Lipschitz function b and
the fractional Hausdorff operator He, is bounded on the Morrey-Herz space. Similar
estimates for high-dimensional fractional Hardy operators are also obtained as a special

case of the following theorem.

Theorem 3.1 LetbeAﬂ(R”),O<,B<1<q2<q1<oo,0<p<oo,k>0,uza+/3+y+

n n
it i

N D(E)| gy

A,y = f #t ) Amax{l, tﬁ} dt < 00,
0

then Hy, b , is bounded from MKjf qkl (R") to Mj(;'qkz (R") and satisfies the following inequality:

b .
”ch’yf”m%;;z(m) = CA 151 4 gy W g, oy
In proving Theorem 3.1, we need the following lemmas.

Lemma 3.2 For1l < p < 00, we have

2] 2
[0t Ly = 2715 [ G 1 1 o
Proof The lemma can be proved in a way similar to Theorem 3.1 in [6]. O

Lemma 3.3 ([18]) For any x,y € R", if f € A,;(R"), 0< B <1, then [fgx) —f)l < |x -
] ”f”['\ﬂ(Rn). Furthermore, for any cube Q C R”, sup,q |f (x) —fol < C|Q| 7 ”f”j\ﬂ(Rn), where
fQ = ﬁ fo

Lemma 3.4 ([18]) Letf € Aﬂ(R"), 0<B<1,Qand Q* are cubes in R". If Q* C Q, then

B
[for —fal = CIQI If Il 4 5(am-


http://www.journalofinequalitiesandapplications.com/content/2013/1/594

Hussain and Gao Journal of Inequalities and Applications 2013, 2013:594
http://www.journalofinequalitiesandapplications.com/content/2013/1/594

Proof of Theorem 3.1 Notice that

O(|x|/yl)
25 16 e = | ( [, i 0= bW D) |
O(|x|/lyl)
SH (/R” |yl (b(x)_ka)f(y)dy>XCk L92 (RM)
O(|x|/1yl) )
2 (b(y) - by, ) f ()
’ H </Rn [yl ( 0) Bk)f(y) V) K L92 (R")
=1+].

Let % =1 _ qil. Then by Holder’s inequality, Lemma 3.2, and Lemma 3.3, we have

q2
(o} a ”111

1
I< b(x)-b ’dx> (/
(Ck| Bk‘ Ci |J’|"y

< C|Bx] e 1611 4 5 () |(Ho,f)xc, ||Lq1(Rn)

I<I>(t)| z
t1+y

k(
< CHT Dbl gy [ G U i .

Now, using polar coordinates, Minkowski’s inequality and Holder’s inequality, we approx-

imate J as

1O L 5 -,
”(/ /S“@(t) (Ix1e7)” (B(1xle™y") = ba )f (1217 ’)dd(’)dt))(ck

o)
fzhﬁﬁ |ﬂ$n‘(ﬁnfb@ﬂtWﬁ—b&ﬁTMVIV)dGQ»)XQ

1 poo .
_ /0 |i(ty (/ /5 (b(lel™y") = b ) (117 ) [ dor (y ’)dx)qz dr.

Again by means of polar decomposition and change of the variables, we obtain

L92(R")

dt

L92(R")

1
n— 00|q) t)| n— -1,/ -1,/ / )
p=2s| [ (/“ N6y =ty " o) as) at

= cz"V/oo kdOIPE> (/ |(60) - b5, ) 5)]|™ dy>ﬁ dt

0 t1C

()] n O\
<C2¥ /0 T 1 ( ftlckl(b(w—bt-lsk)fmlq dy) dt

o |<I>(t>|( e V[ )q—
+C2 /0 /t-lck|(b3k erk)f(y)| dy| dt

t1+y

=N+

Page 8 of 12
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For J;, using Holder’s inequality and Lemma 3.3, we have

Jlsczkvfo e (f ) |b(x)—b;13k|rdx);(/ ) lf()’)\qldy)ﬁdt
1 k 1 &

4 o
< CHT Dbl [
Ap®RY | t1+1/

”th 1Ck |qu RM) t ﬁdt

Observe that if t < 1, then By C t"!By, while the reverse is true for ¢ > 1. Hence, by
Lemma 3.4, we obtain

1
X |D(t)| » 7
/2:C2kV/ LiOIP> (/ v(y)|q2dy) (b, — by1g, | dt
0 ry t1C

sczkanﬁ/Ooo'q)(t)' ‘(/ Lf(y)!‘”dy) by by, | dt

Q)| x
< CokB+y+] ||b||Aﬁ R / Py o I X1 em wmt™ P dt
. |2(t)] 2~
+ C2ET Db oy f prvey i 0 I Xl ey it

|<I>(t)l z
t1+y

< c2k<f‘+y+7>||b||Aﬁ(Rn)/ || X1 | ory max {1,677} dt.
0

Note that for £ > 1, 0 < B <1, we have 0 < t# < 1. Therefore, by combining the estimates
for I, J1, and J,, we get

| (H8 ) xci s oy = €267 DU i o

t1+y

|<D(t)| n
x / ”th 1ck||qu (RM) max{l t ﬂ}dt
0

Following [19], we let m € Z such that m — 1 < —log, t < m, then ¢t 1 Cy is contained in two
adjacent annuli Cy,,, and Ci,,,_1. Therefore,

| E ) X ny < C2XE7 1114 o

|‘b(t)| n
X / vy Z I Xy i 2 my max {1,677} dt.
0

Hereafter, we use the notation CT)(t) = tl‘EV)l far max{1, ¢} for simplicity. Then for 0 < p <1,

we get

”Hé yf”MKM (R™)

ko oo p I%
< ClIbllj yrmy sup 278 Y W( / ¢(t)|leck+m||Lq1(Rn)dt)
koeZ k=—00 0

ko

. '
+ C”b”Aﬁ(R”) sup 2_k0)» Z 2kII«P (/ q)(t)|leC/<+m_1 ”qu (Rm) dt)
koeZ 0

k=—00

= I(l + [(2

Page 9 of 12
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Here, we approximate Kj as

ko
Ky < sup2 kOA{ Z 2kmp
k

koeZ k=

0 k+m Ilﬂ r }’
x (/ ¢(t)2—(k+m)/\ ( Z zmp"fxq ”qu @ ) 2(k+m)(%—M) dt) } C“b”Aﬁ(R”)
0

i=—00

1

) VA W2
< ClB g i om S0 27 W{ > 2“P< /0 d>(t>2*"“-“>dt) }

k=—00

1

P
< CUBl o) i o S22 2 ’“”{ > 2“1"}

k=—00

X ND(L)| n
x f | )|tql max{1,¢ P }¢*~ dt
0

tl+)/
|D@)] s
= C”b”Aﬂ(Rn)”f”MKIy,’qu(Rn)A TtOH * ax{l, tﬂ}dt
Similarly,
ko oo P 119
K, < C|b|l AB(Rn)uanK,M - sup2 ko*[ Z 2kIp ( / ()20 D01 dt> ]
k=—00 0
|D(@)]  »

< CIIhIIAﬁuan)Ilfllmk,;f;guen)/0 i max{1,¢ 7} de

£y

bll oo |d)( )| a+——k B d
:C” ”Aﬂ(R”)”'f”MI(;‘;;i(Rn) t aX{l,t} t.

Now, we consider the case 1 < p < co. By Minkowski’s inequality, we write

1
ko 1;
b . —koX k
||H¢,fIIMk;;Z(Rn)EC||b||Aﬁ(Rn>ksou€32 0 fo @(t){Zwﬂw%Juﬂ Rn} dt

k=-00

X o ko . 11_7
+ Ol g sup 2% B0 3 2 W ac e | e
0€

k=—00

:Ll +L2.

Here, we estimate L; as

koeZ

00 ko+m-1 7
Li < ClIbl i pier / (¢) sup 2—“0””-“[ > 2 xe W p 270 dt
0 k=-00

|<1>( )|

1P v 2
= C”b“Aﬂ(R”)”,f”MK;;I)Ll(Rn)/ ¢ 0‘* aX{l, tﬂ}dt

Page 10 of 12
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Similarly,

Ly < Clbl ., n I/ 2O max (1,60}
2= Ap®) W W prichs: (rm) ot maxyL

ClIbll ; oo |<D(t)| a+qi—k Bl 4
= ” ”Aﬂ(Rn)”"f”MK};,L])\l(R”) A Tt 2 max{l,t} t.

Thus, we finish the proof of Theorem 3.1. g

Now, we deduce the Lipschitz estimates for the commutators of #-dimensional frac-

tional Hardy operators on the Morrey-Herz space as a special case of Theorem 3.1.

Corollary 3.5 Ifa+B+y < qi/ + A, then under the same conditions as in Theorem 3.1, the
commutator of the n-dimensional fractional Hardy operator [15],

H, o ) / CCROOL?
y|<|x]

= |x|n+y

is bounded from Mf(,’,f;,kl (R™) to MI'(I‘,"’;;Z (RM).

Proof In the operator Hg,y f (x), we replace
(2) = P1(8) = £ X(1,00)(8)s

then we obtain the commutator of the n-dimensional fractional Hardy operator,

Hg, f(®) = Hy, pf (x).

Hence, by Theorem 3.1

Clb e a+/3+y—qi,—k—ld
, < A ,
”Hy,bf”MK;('qu (R = I ||A/5(R )”f”MK;;f,lz)i(Rn) 1 t 2 L

2

Thus, the corollary is proved. O

Corollary 3.6 Ifo + qiz > A, then under the same conditions as in Theorem 3.1, the com-
mutator of the adjoint fractional Hardy operator [15],

* — 1 p—
Hyal )= /yzm |y|™=7 (b(x) = bW))f ) dy,

is bounded from MK} (R") to Mk;’;z (R™M.

Proof In the operator Hg,yf (), we replace

O(t) = Do(t) = x01(0),

Page 11 of 12
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then we obtain the commutator of the #-dimensional adjoint Hardy operator

ng,yf(x) = H;’hf(x).

Thus, by Theorem 3.1

1
a+ L —p-1
| Hy of ||M1'<;;;2<Rn)SCllbllAﬁue")”f”Mk,;f;g(Rn) /0 tn .

= ClBHA @ U pgiss: oy

With this we finish the proof of Corollary 3.6. d

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
The authors are grateful to the referees for their valuable suggestions and comments, which improved the earlier version
of the manuscript.

Received: 1 August 2013 Accepted: 12 December 2013 Published: 30 Dec 2013

References
1. Liflyand, E, Mérecz, F: The Hausdorff operator is bounded on the real Hardy space H' (R). Proc. Am. Math. Soc. 128,
1391-1396 (2000)
2. Kanjin, Y: The Hausdorff operators on real Hardy spaces H?(R). Stud. Math. 148, 37-45 (2001)
3. Liflyand, E, Miyachi, A: Boundedness of the Hausdorff operators in H” spaces, 0 < p < 1. Stud. Math. 194, 279-292
(2009)
4. Lin, X, Sun, L: Some estimates on the Hausdorff operator. Acta Sci. Math. 78, 669-681 (2012)
5. Liflyand, E, Mérecz, F: The multi-parameter Hausdorff operators is bounded on the product Hardy space H'(R x R).
Analysis 21, 107-118 (2001)
6. Chen, JC, Fan, DS, Li, J: Hausdorff operators on function spaces. Chin. Ann. Math,, Ser. B 33, 537-556 (2012)
7. Xiao, J: LP and BMO bounds of weighted Hardy-Littlewood averages. J. Math. Anal. Appl. 262, 660-666 (2001)
8. Rim, KS, Lee, J: Estimates of weighted Hardy-Littlewood averages on the p-adic vactor spa. J. Math. Anal. Appl. 324,
1470-1477 (2006)
9. Chuang, NM, Duang, DV: Weighted Hardy Littlewood operators and commutators on p-adic functional spaces.
P-Adic Numb. Ultr. Anal. Appl. 5, 65-82 (2013)
10. Wu, QY, Fu, ZW: Sharp estimates of m-linear p-adic Hardy and Hardy Littlewood Pélya operators. J. Appl. Math. 2011,
Article ID 472176 (2011)
11. Fu, ZW, Grafakos, L, Lu, SZ, Zhao, FY: Sharp bounds for m-linear Hardy and Hilbert operators. Houst. J. Math. 38,
225-244 (2012)
12. Coifman, R, Rochberg, R, Weiss, G: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103,
611-635 (1976)
13. Gao, G, Jia, H: Boundedness of commutators of high dimensional Hausdorff operator. J. Funct. Spaces Appl. 2012,
Article ID 54120 (2012)
14. Tang, CQ, Xue, F, Yu, Z: Commutators of weighted Hardy operators on Herz-type spaces. Ann. Pol. Math. 101, 267-273
(2011)
15. Fu, ZW, Liy, ZG, Lu, SZ, Wang, HB: Characterization for commutators of n-dimensional fractional Hardy operators. Sci.
China Ser. A 50, 1418-1426 (2007)
16. Lu, SZ: Yang, DC, Hu, GE: Herz Type Spaces and Their Applications. Science Press, Beijing (1995)
17. Lu, SZ, Yang, DC, Zhou, ZS: Sublinear operators with rough kernel on generalized Morrey spaces. Hokkaido Math. J.
27,219-232 (1998)
18. Paluszynski, M: Characterization of Bosev spaces via the commutator operator of Coifman, Rochberg and Weiss.
Indiana Univ. Math. J. 44, 1-18 (1995)
19. Chen, JC, Fan, DS, Zhang, CJ: Multilinear Hausdorff operators and their best constants. Acta Math. Sin. Engl. Ser. 28,
1521-1530(2012)

10.1186/1029-242X-2013-594
Cite this article as: Hussain and Gao: Multidimensional Hausdorff operators and commutators on Herz-type spaces.
Journal of Inequalities and Applications 2013, 2013:594

Page 12 of 12


http://www.journalofinequalitiesandapplications.com/content/2013/1/594

	Multidimensional Hausdorff operators and commutators on Herz-type spaces
	Abstract
	MSC
	Keywords

	Introduction
	Sharp bounds for HPhi
	Lipschitz estimates for n-dimensional fractional Hausdorff operator
	Competing interests
	Authors' contributions
	Acknowledgements
	References


