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1 Introduction and preliminaries

Statistical convergence [1] and its variants, extensions and generalizations have been
proved to be an active area of recent research in summability theory, e.g,, lacunary sta-
tistical convergence [2], A-statistical convergence [3], A-statistical convergence [4], statis-
tical A-summability [5], statistical summability (C, 1) [6], statistical summability (H,1) [7],
statistical summability (N, p) [8] and statistical o -summability [9] etc. Following the work
of Gadjiv and Orhan [10], these statistical summability methods have been used in estab-
lishing many approximation theorems (e.g., [5, 11-20] and [21]). Recently, the statistical
approximation properties have also been investigated for several operators. For instance,
in [22] Butzer and Hahn operators; in [23] and [24] g-analogue of Stancu-Beta operators;
in [25] Bleimann, Butzer and Hahn operators; in [26] Baskakov-Kantorovich operators; in
[27] Szész-Mirakjan operators; in [28] analogues of Bernstein-Kantorovich operators; and
in [29] g-Lagrange polynomials were defined and their statistical approximation proper-
ties were investigated. Most recently, the statistical summability of Walsh-Fourier series
has been discussed in [30]. In this paper, we construct a new family of operators with the
help of Erkus-Srivastava polynomials, establish some A-statistical approximation proper-
ties and direct theorems.

Let us recall the following definitions.

Let N denote the set of all natural numbers. Let K € Nand K, = {k < n: k € K}. Then the
natural density of K is defined by §(K) = lim,, n!|K,,| if the limit exists, where |K,,| denotes
the cardinality of the set K,,. A sequence x = (xx) of real numbers is said to be statistically
convergent to L (cf Fast [1]) provided that for every € > 0 the set {k € N: |xx — L| > €} has

natural density zero, i.e., for each € > 0,

liml|{k§n:|xk—L|26}|:0.
n n
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In this case, we write sz-limg xx = L. Note that every convergent sequence is statistically
convergent but not conversely.

Let A = (aw), n,k =1,2,3,..., be an infinite matrix. For a given sequence x = (xy), the
A-transform of x is defined by Ax = ((Ax),,), where (Ax), = Y_po; @nXk, provided the series
converges for each n. We say that A is regular if lim,(Ax), = L = limx. Let A be a regular
matrix.

We say that a sequence x = (xy) is A-statistically convergent to a number L (cf. Kolk [4])

if for every € > 0,

lim Z A =0

k:|xg—L|>€

In this case, we denote this limit by s¢4-lim, x,, = L.
Note that for A = C; := (¢j,), the Cesaro matrix of order 1, A-statistical convergence re-

duces to the statistical convergence.

2 Construction of a new operator and its properties

The well-known (two-variable) polynomials g,(f"ﬁ (%, ), which are generated by

A-x2)"(1—yz)F = ngf"ﬂ)(x,y)z” (Izl < min{|x|™% [y17'}), (2.1)

n=0

are the Lagrange polynomials which occur in certain problems in statistics [31]. Re-
cently, Chan [32] introduced and systematically investigated the multivariable extension of
the classical Lagrange polynomials gf,a'ﬁ (x, ). These multivariable Lagrange polynomials,
which are popularly known in the literature as the Chan-Chyan-Srivastava polynomials,
are generated by (see [32] and [33])

r o0
[[{a-x2)9} =) g ix,...,x)2"
j=1 n=0
ajeC(i=12,...,r);lzl < min{|x1|_1,..., |xr|_1}. (2.2)

Clearly, the defined generating function (2.2) yields the explicit representation given by
[34, p.140, Eq. (6)]

k1 ky

i S (2.3)

(001 50.00tr) _
ey, x) = Y (o) (), TS

ky+-+kp=n

or, equivalently, by [14, p.522, Eq. (17)]

gl (g, L)

np_1

Z Z Z (al)nl (052 ny-ny "’ (ar)n—nr—l x;qlx;zqz—nl .. ~x;’"”"1. (24)
m!(ny —m)!---(n—

1
ny_1=0 ny_o=0 n1=0 (Vl nr—l)'
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On the other hand, Altin and Erkus [34] presented a multivariable extension of the so-

called Lagrange-Hermite polynomials generated by

1_[{(1 —x/zj)_a’} = Zhn"‘l """ ) (xy, ..., %,)2",

j=1 n=0
ajeC(i=12,...,r;lzl < min{|x1|_1,..., |x,|_1/’}. (2.5)
The case r = 2 of the polynomials given by (2.5) corresponds to the familiar (two-variable)

Lagrange-Hermite polynomials considered by Dattoli et al. [23].

The multivariable polynomials

(01 ev0st)
Un,h,...,irr (215 .005%),

which are defined by the following generating function [32, p.268, Eq. (3)]:

r

o0
[T =52) 7 =D e oane
j=1 n=0

o eC(i=12..,r4eN(G=12,...,r);lzl <minflx |2, x|}, (2.6)

are a unification (and generalization) of several known families of multivariable polyno-

mials including (for example) Chan-Chyan-Srivastava polynomials

when
¢=1 (j=1,...,7),
where (as well as in what follows)
N={1,2,3,...} and Ny={0,1,2,...} =NU{0}.

Moreover, the Lagrange-Hermite polynomials
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follow as a special case of the polynomials [35]

u(al 77777 (xlr o xr);

G=1 (j=1,..,r).

The generating function (2.6) yields the following explicit representation ([35, p.268,

Eq. (4)]):
(015000, xllq ka
Un [ll”,’ r) (xly ;xr) = Z (al)kl e (ar)kr k_ll e ﬁ’ (27)

L ki ++Lrkr=n
which, in the special case when
G=1 (j=1,..,r),

corresponds to (2.3).

The following relationship is established between the polynomials due to Erkus and Sri-
vastava [35] and the Chan-Chyan-Srivastava polynomials by applying the generating func-
tions (2.2) and (2.6) in [36].

=r’[{<1-x,.sz>-w} -TTITI-o427)

i=1 i=1 j=1

Z ............... (wll’ ;a)lélr---1a)r1y~-;wrir)znr (28)

where it is tacitly assumed that the following set:

o™ :1<i<r and 1<j<¢ (W eNi=1,...,r),

1
which depends upon the ¢; distinct values of the factor xf" occurring in the expression

exists such that
(1-x:2 ]_[ [(1-0@2)79) (i=1,...,7).

Thus, by assertion (2.8), we obtain the desired relationship as follows:

L 2 IR (7 OO s SO 1,1 1,¢ 1 L
Un[b z,(xl’ ,x,):gff‘l ety "")(a)( L U GO SN G ’)).
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Now by using the Erkus-Srivastava multivariable polynomials given by (2.2), we introduce

the following family of positive linear operators on C[0,1]:

(1,1 (1@ ) (r,lr)
TZ() oo 1 ) 7 r) (f x)
r 00 kr+1
n ,,,,, r—1
= 1_[ {1 -x2" Z ue e ) (10 %,)2 f(@t)dt
i=1 m=0 kT

ro 4 0o
= H ]_[{(1 — w(z&i)z)}n ng (a)(l,l), ) “’w(l,(fl), ) ..,w(”D, .
m=0

i=1 j=1

kr+1

x (n+ k; —1)/ f(t)dt

n+kr

where

s C()(r’[r))Zn

(2.9)

. |xr|—l/lr}'

(2.10)

ajeC(i=12,...,r); tieN({=12,..,r); |z|<min{|x1|_wl,..
Throughout this paper, we assume that
o0 ={o} | 1<israndl<j<t(GeNi=1...,r),
are sequences of real numbers such that
0<aw™ <1.
For convenience, taking r =1, £; =2, a1 = a3 = n in (2.9), we have
L12) ;)
_(1_.,@D n n) D 1 o2 ke
= (1-™)"(1 x)"Y g )a™ /L f(e)dt
m= n+k-1
. S (1 1))k %
1,
= (1-™x)"(1 Z{ Z ()i, /L () dt}x’”
m=0 “ k= n+k-1
Lemma 2.1 Foreachx € [0,1) andn €N,
»(12)
(fosx) =1 (folx) =1).
Lemma 2.2 Foreachx €[0,1] andn €N,
12 1) 1
(fi;x) <xw + — (ﬁ(x) =x).
2n
Proof Let each x € [0,1] be fixed. Then from (2.10) we get
»12)
(fi;%)
00 1,1) kl k+1
_ wy Vl (a)n ) n+k-1 m
=(l-w x) Z n+k— {Z T (n)i /L tdtix
m=0 ky=m n+k-1
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e ky 27 k-1
=(1—a)(1’1)x) "; n+k— {Z(wkl!) (n)/q[g] i }x"‘

ki=m n+k-1
o0
2k +1) (i
= (1-0"%)"(1- 0"x)" ") x”
(1= )" (1 - o) Zzz(n+k—1) Mk
m=0 ky=m
oo m kl
n
:xwf}’l)x(l—a) ) 1 w”) ZZ = (n)/<l Y i
m=1 ki=1
1 (i)
1 11 l 12 m
= (1= (1 -of ZZ2(n+k Dk P
m=0 k1=
1
<w( Vg + —, O<a) <1a)11) 1.
2n
Lemma 2.3 Foreachx €[0,1] andneN,
2x(a) 1)) 1

T“’ 12)(fz,x)<x( (11))2+ t33 (Hx) =x%).

n
Proof Let each x € [0,1] be fixed. Then from (2.10) we get

12

(fis)
(Dyky Kl
= (1-0™x)"(1 Z(n+k1 1){2( ) )iy / ' tzdt}xm

> 151 37 k-1
=(1- a)(l'l)x) " Z n+k— { Z %(ﬂ)h [tg ]k }x"’

LD \ky
= (1-™x)"(1 ZZ(” ke 1)( ) (e

m=0 k=m )
X k12 + ki + 1 x™
m+k-13 (m+k-13 3m+k-1)3

0 m k (@) a, 1))1q
= xwf}’l) (1 - w(l'l)x)n (1 — a)(l’Z)x)n Z ( ) { (M1 }xm_l

(ky —1)!

m=1 k=1
(wll)kl -
n n X - 1 (w( ))/(1
11)1 1- 12 < ){ M }m
+ X ( w® )( w x) ;; St k_17 Kl (M), (%
2(, (L1)2 L1) .\" w2 e e n+k-2)
oy -t S
m=2 k=2

(L) VK —2 (L,1)

w,; )4 ey 2Ky 1
X ————(1)py_n tx" " + + —
{ (kl _ 2)! ( )kl 2}
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1)
b (1,1))\2 2xa)n 1
<x e
- (w" ) n 3n?
Ly)
12 a1\ 2 2xwy; 1
;X -1) + + —. 2.11
(i) ) =2 (@) ~1) # 0 4 @)

On the other hand, since
0<r1o™ 12)((y—x)z; x) = 70" () — 22T () + 42,

it follows from Lemma 2.1 and Lemma 2.2 that

12

(%) —fox) = 202 ((0))” —1). (212)

Combining (2.11) and (2.12), we have

@y
wy 2 Q\2y | 2Xwn’ 1
T, ;X x)| <x*(1- t—t—.
75" (i) - )] <2 (1 (1)) + 2 s
Then, taking supremum over x € [0,1], we have
1,1)
LD 4 2xw 1
75" ) )| < (1 (0)) + T2 (2.13)
O
Remark 2.1
»12) 1
o t—x;%) = x0lV —x + —
( %) =, 2n
1
- 1.1)
=x -1)—.
() ) 2n

Remark 2.2 Let x € [0,1], since Tfl‘)(l'l)"‘)“'z) is linear, we get

T“’ 12)(()/—96)2;96)

(1,1) (1,2) (1,1) (1,2) 11)
=Ty Y (o) — 22T % (fl;x)+x2T‘” (fo,

(€8

<’ (a)(l’l))2 + 2o - 2% 0™ + &2 - 2x| xw MV + 1 +
" 2n

n
2x™) 1

§x2(a)(1’1))2 + T 20 p e — -2,
n 3n2 n

3 A-statistical approximation

Let Cla, b] be a linear space of all real-valued continuous functions f on [a,b], and let T
be a linear operator which maps C[a, b] into itself. We say that T is positive if for every
non-negative f € Cla, b], we have T(f,x) > 0 for all x € [a,b] . We know that Cl[a, b] is a
Banach space with the norm

If Il clap := Sup [fx)f f€Cla,b].

x€la,b

For typographical convenience, we will write || - || in place of || - || c{4,0) if no confusion arises.

Page 7 of 14
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Theorem 3.1 Let A = (a;,) be a non-negative regular summability matrix. Then

sty —lirrln wf}’l) =1 (3.1)
if and only if for all f € C[0,1],

sta-tim | 72" (1)~ £ = 0. (3.2)
Proof Suppose that (3.2) holds for all f € C[0,1]. Then we have

sta-tim | 72" ()~ £ = 0 (3.3)

since f; € C[0,1]. By Lemma 2.2, we have

(1,1)

| 7" () = A =1 - . (3.4)
By (3.3) and (3.4), we immediately get

stq-lim will’l) =1
n

Conversely, suppose that (3.1) holds. Then from Lemma 2.1 we have lim,, || Tn“’(l'l)""(l'z) (fo) -
foll =0. Hence

stactim | 72" ()~ o =0 (@) =1). (3.5)

Also from Lemma 2.2 it follows that

(1,1)

|| TZD w12 (ﬁ) —fl || -1- (1);(,11’1).

Therefore, by using (3.1), we get

sta-tim| " (h) i =0 (@) =), (3.6)
Now we claim that

statim | 72" (B) -] =0 () = 4?). (3.7)
By Lemma 2.3, we have

w
2 1
On . (3.8)

(L1) ,(1L2)
|75 ) - = 20 off ) + 22 s

Now, for a given € > 0, we define the following sets:

D= {n: | T (B) -] = €},

I

Dl = {}’l : 1—0\)511'1) >

)
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From (3.8), it is easy to see that D € D; U D, U Ds. Then, for each j € N, we get

Zaf” < Z Ajn + Z Ajn + Z A (3.9)

neD neDy neDy neD3

Using (3.3), we get

1 _ @Dy _
sty hin(l w, V) =0

n

and

@.1)

Wy

n

st4-lim =0.
n

Now, using the above facts and taking the limit as j — 0o in (3.9), we conclude that
li}n Z aj, =0,

which gives (3.7). Now, combining (3.5)-(3.7), and using the statistical version of the Ko-
rovkin approximation theorem (see Gadjiv and Orhan [10], Theorem 1), we get the desired
result.

This completes the proof of the theorem. d

In a similar manner, we can extend Theorem 3.1 to the (i, j)-dimensional case for the

WD oLe) D) e .
operators T @ V@0 (£ ) given by (2.9) as follows.

Theorem 3.2 Let A = (a;,) be a non-negative regular summability matrix. Then
sta-limo( =1
n

if and only if for all f € C[0,1],

WD) prtr)

’’’’’ =) - f] = 0.

sta-tim | 73"

Remark 3.1 Ifin Theorem 3.2 we replace A = (a;,) by the identity matrix, we immediately

get the following theorem which is a classical case of Theorem 3.2.

Theorem 3.3 lim, o =1 if and only if for all f € C[0,1], the sequence

is uniformly convergent to f on [0,1].
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Finally, we display an example which satisfies all the hypotheses of Theorem 3.2, but not
of Theorem 3.3. Therefore, this indicates that our A-statistical approximation in Theo-
rem 3.2 is stronger than its classical case.

Take A = C; := (¢ju), the Cesaro matrix of order 1 and

o = (w(i’j))neN (j=1...,r-1)

n

are sequences of real numbers defined by

1 : 2
. = if n =m* (m e N);
wfq”l) . ( ) (3.10)
1- L

- otherwise.
n+ij

We then observe that
0<a)ff'j)<1 (neN)
and also that
Sty —lirrln wff’j) =1.

Therefore, by Theorem 3.2, we have that for all f € C[0,1],

r,1)

StA—lim” Tﬁ)(lvl) yyyyy LSS G VI w(rlr) (f) —fH -0.
n

However, since the sequence o defined by (3.10) is non-convergent, Theorem 3.3 does

not hold in this case.

4 Direct theorems
By Cz[0,1], we denote the space of all real-valued continuous bounded functions f on the
interval [0,1], the norm || - || on the space Cg[0,1] is given by

Ifll = supllf(x)l.

0<x<

Peetre’s K-functional is defined by

K>(f,8) = inf[{IIf gl + 8[¢"[ :g € W?}],
where

W? ={ge Cp[0,1]:¢,¢" € Cp[0,1]}.
By [14] there exists a positive constant ¢ > 0 s.t.

K(f,8) < cwz(f,81/2), 5>0,

Page 10 of 14
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where the second-order modulus of smoothness is

wz(f,\/g)= sup sup V(x+2h)—2f(x+h)+f(x)|.

0<h<+/50=x=1

Also, for f € Cg[0,1], the usual modulus of continuity is given by

w(f,8) = sup sup [f(x+h)—f(x)|.

0<h<8 0<x<1

Theorem 4.1 Let f € Cp[0,1] and 0 < a) ) <1, Then, for all x € [0,1] and n € N, there
exists an absolute constant C > 0 s.t.

’Twm (fx f(x|<sz(f<S )

where
, xo®)
82(x) = xz[(a)ﬁll’l)) — 20 + 1]+=—
n

Proof Let g € W2. From Taylor’s expansion
t
o) =¢w) +g )=+ [ (¢-ng'udu, tel01)
X
and from Lemmas (2.1), (2.2) and (2.3), we get

7o (g, ) = g () + T ’(/ t(t—x)g”(u)du,x),

hence

|7 (g, %) - g(w)| <

T? .0 (ft(t -x)g" () du,x)

<[ (=272l

Using Remark 2.2, we obtain

2x®) 1 x7, .,
L=,

’T‘*’ e (g,x) —g(x)| < |:x2 (a)(l'l))2 M 26200 4 4% ¢ — — =

(12

On the other hand, by the definition of T“’ (f,x), we have

|7 )| < I
Next
|7 20 - )|
< |72 (- )~ (F ~ @) + |T;°“’”'w“’”(g,x>—g<x>|

2 2x0Y
<1 gl + [P+ 2o 22 s i)
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Hence, taking infimum on the right-hand side over all g € W2, we get

T (1,0) - ()| < CE (F, 82()).

In view of the property of K-functional, for every 0 < o <1, we get

|T,‘;’(1’1) 12)(f x f(x)| < CWz(f 8 x))
This completes the proof of the theorem. d

Theorem 4.2 Letf € Cg[0,1] be such thatf',f" € Cg[0,1] and 0 < a)g’j) <1,j=123,...,n
such that a),(f” ) 1asn— oo. Then the following equality holds:

lim n(T‘”M) (f x)—f(x)) = f”(x)

n—00

uniformly on [0,1].

Proof By the Taylor’s formula, we may write
F@&) =f(x) +f (@)t - x) + %f”(x)(t - %) +r(t,%)(t - %), (4.1)

where r(z, x) is the remaining term and lim,_, , (¢, x) = 0. Applying T;"(l'n""(l'z) (f;x) to (4.1),

we obtain

(T;J“""w“'” r ~f@)

11)

= (t X5 x)f (x)

X

1"
T“’(11 wt? ((t - x)z;x)f ; ) + nT,“,’(1 Dt (r(t, x)(t - x)z;x).

By the Cauchy-Schwartz inequality, we have

T“’ 12)((tx)(t x)%x) < \/T“’(“‘”m(z(tx)2 \/T“’m 12)((1&— x)%x).  (4.2)

Observe that 72(x,x) = 0 and r2(-,x) € C[0,1]. Then it follows from Theorem 4.1 that

. (L1) ,(12)
lim 7,7 "

n—00

(r(t,x);x) = r*(%,2) = 0 (4.3)

uniformly with respect to x € [0,1].
Now, from (4.2), (4.3) and Remark 2.2, we get

(1,1),(4)(1:2) (r(t, x)(t _ x)2;x) =0.

lim »nT}

n—00

Page 12 of 14


http://www.journalofinequalitiesandapplications.com/content/2013/1/585

Mursaleen et al. Journal of Inequalities and Applications 2013, 2013:585
http://www.journalofinequalitiesandapplications.com/content/2013/1/585

Finally, using Remark 2.1, we get the following:

. L1 (1,2
lim n(T;" @
n— 00

(%) - fx)) = lim n(f @) T (¢ - x);x))
" %f @1 (¢ - 2% )
" %f T (8 - )% %)

11) . (1,2)
+Tf( Lot (r(t,x)(t—x)z;x)

X

= }f”(x). O
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