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Abstract
In this paper we study a general class of stochastic algebraic Riccati equations (SARE)
arising from the indefinite linear quadratic control and stochastic H∞ problems. Using
the Brouwer fixed point theorem, we provide sufficient conditions for the existence of
a stabilizing solution of the perturbed SARE. We obtain a theoretical perturbation
bound for measuring accurately the relative error in the exact solution of the SARE.
Moreover, we slightly modify the condition theory developed by Rice and provide
explicit expressions of the condition number with respect to the stabilizing solution
of the SARE. A numerical example is applied to illustrate the sharpness of the
perturbation bound and its correspondence with the condition number.
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1 Introduction
In this paper we consider a general class of continuous-time stochastic algebraic Riccati
equations

A�X +XA +C�XC –
(
XB +C�XD + S

)(
R +D�XD

)–(B�X +D�XC + S�)
+H = , (a)

R +D�XD � , (b)

where A ∈ R
n×n, C ∈ R

n×n, B ∈ R
n×m, D ∈ R

n×m, S ∈ R
n×m, respectively. Moreover, H ∈

R
n×n and R ∈R

m×m are symmetric matrices. Here we denoteM �  (respectively,M � )
ifM is symmetric positive definite (respectively, positive semidefinite). The unknown X ∈
R

n×n is a symmetric solution to SARE (a)-(b). Let Sn be the set of all symmetric n × n
real matrices. For any X,Y ∈ Sn, we write X � Y if X – Y � .
In essence, SARE (a)-(b) is a rational Riccati-type matrix equation associated with the

operatorR : domR→ Sn

R(X) =P(X) – S(X)Q(X)–S(X)�,

where the affine linear operators P : Sn → Sn, Q : Sn → Sm, S : Sn → R
n×m, and domR

are defined by

P(X) = A�X +XA +C�XC +H ,
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Q(X) = R +D�XD,

S(X) = XB +C�XD + S,

domR =
{
X ∈ Sn |Q(X)� 

}
.

We say that X is the maximal solution (or the greatest solution) of SARE (a)-(b) if it
satisfies (a)-(b) and X � P for any P ∈ Sn satisfying R(P) ≥  and (b), i.e., X is the
maximal solution ofR(X) ≥  with the constraint (b). Furthermore, it is easily seen that
SARE (a)-(b) also contains the continuous-time algebraic Riccati equation (CARE)

A�X +XA –XBR–B�X +H =  ()

with R � , C = , D =  and S = , and the discrete-time algebraic Riccati equation
(DARE)

X –C�XC +
(
C�XD + S

)(
R +D�XD

)–(D�XC + S�)
–H =  ()

with A = –I
 and B = , as special cases.

Matrix equations of the type (a)-(b) are encountered in the indefinite linear quadratic
(LQ) control problem [], and the disturbance attenuation problem, which is in deter-
ministic case the H∞ control theory, for linear stochastic systems with both state- and
input-dependent white noise. For example, see [–]. For simplicity, we only consider
one-dimensional Wiener process of white noise in this paper; it is straightforward but
tedious to extend all perturbation results presented in this paper for multi-dimensional
cases. In the aforementioned applications of linear stochastic systems, a symmetric solu-
tionX, called a stabilizing solution, to SARE (a)-(b) ought to be determined for the design
of optimal controllers. This stabilizing solution plays a very important role in many ap-
plications of linear system control theory. The definition of a stabilizing solution to SARE
(a)-(b) is given as follows. (See also [, Definition .].)

Definition . Let X ∈ Sn be a solution to SARE (a)-(b), � = A + BF and � = C +DF ,
where F = –Q(X)–S(X)�. The matrix X is called a stabilizing solution for R if the spec-
trum of the associated operator Lc with respect to X defined by

Lc(W ) =��W +W� +��W� , W ∈ Sn, ()

is contained in the open left half plane, i.e., σ (Lc) ⊂C–.

Note that if C = D =  in (a)-(b), then it is easily seen from Definition . that the
matrix X ∈ Sn is a stabilizing solution to SARE (a)-(b) or, equivalently, CARE () if and
only if σ (�)⊂C–. Therefore, Definition . is a natural generalization of the definition of
a stabilizing solution to CARE () in classical linear control theory. Moreover, a necessary
and sufficient condition for the existence of the stabilizing solution to amore general SARE
is derived in Theorem . of []. See also [, Theorem ]. In this case, it is also shown that
if SARE (a)-(b) has a stabilizing solution X ∈ dom(R), then it is necessarily a maximal
solution and thus unique [, ].
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The standard CARE () and DARE () are widely studied and play very important roles
in both classical LQ and H∞ control problems for deterministic linear systems [–]. In
the past four decades, an extensive amount of numerical methods were studied and de-
veloped for solving the CARE and DARE (see [–] and the references therein). There
are two major methodologies among these numerical methods or algorithms. One is the
so-called Schur method or invariant subspace method, which was first proposed by Laub
[]. According to this methodology, the unique and non-negative definite stabilizing so-
lution of the CARE (or DARE) can be obtained by computing the stable invariant subspace
(or deflating subspace) of the associated Hamiltonian matrix (or symplectic matrix pen-
cil). Some variants of the invariant subspace method, which preserve the structure of the
Hamiltonian matrix (or symplectic matrix pencil) by special orthogonal transformations
in the whole computational process, are considered byMehrmann and his coauthors [–
]. The other methodology comes from the iterative method, for example, it is referred to
asNewton’smethod [], matrix sign functionmethod [], disk functionmethod [], and
structured doubling algorithms [, ] and references therein. So far there has been no
sources in applying the invariant subspace methods for solving SARE (a)-(b), since the
structures of associated Hamiltonianmatrix or symplectic matrix pencil are not available.
Only the iterative methods, e.g., Newton’s method [] and the interior-point algorithm
presented in [], can be applied to computing the numerical solutions of SARE (a)-(b).
Recently, normwise residual bounds were proposed for assessing the accuracy of a com-
puted solution to SARE (a)-(b) [].
Due to the effect of roundoff errors or the measurement errors of experimental data,

small perturbations are often incorporated in the coefficient matrices of SARE (a)-(b),
and hence we obtain the perturbed SARE

Ã�X̃ + X̃Ã + C̃�X̃C̃ –
(
X̃B̃ + C̃�X̃D̃ + S̃

)(̃
R + D̃�X̃D̃

)–(̃B�X̃ + D̃�X̃C̃ + S̃�)
+ H̃ = , (a)

R̃ + D̃�X̃D̃� , (b)

where Ã, B̃, C̃, D̃, H̃ , R̃ and S̃ are perturbed coefficient matrices of compatible sizes. The
main question is under what conditions perturbed SARE (a)-(b) still has a stabilizing
solution X̃ ∈ Sn.Moreover, how sensitive is the stabilizing solutionX ∈ dom(R) of original
SARE (a)-(b) with respect to small changes in the coefficient matrices? This is related to
the conditioning of SARE (a)-(b). Therefore, we will try to answer these questions for
SARE (a)-(b) in this paper. For CARE () and DARE (), the normwise non-local and
local perturbation bounds have been widely studied in the literature. See, e.g., [–].
Also, computable residual bounds were derived formeasuring the accuracy of a computed
solution to CARE () and DARE (), respectively [, ]. To our best knowledge, these
issues have not been taken into account for constrained SARE (a)-(b) in the literature.
To facilitate our discussion, we use ‖·‖F to denote the Frobenius norm and ‖·‖ to denote

the operator norm induced by the Frobenius norm. For A = (A, . . . ,An) = (aij) ∈ Rm×n and
B ∈R

p×q, the Kronecker product of A and B is defined by A⊗B = (aijB) ∈R
mp×nq, and the

operator vec(A) is denoted by vec(A) = (A�
 , . . . ,A�

n )�. It is known that

vec(ABC) =
(
C� ⊗A

)
vec(B), vec

(
A�)

= Pn,m vec(A),

http://www.journalofinequalitiesandapplications.com/content/2013/1/580
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where A ∈ R
n×m, B ∈ R

m×�, C ∈ R
�×k , and Pn,m is the Kronecker permutation matrix

which maps vec(A) into vec(A�) for a rectangle matrix A, i.e.,

Pn,m =
n,m∑
i,j=

Ei,j,n×m ⊗ Ej,i,m×n,

where the n×mmatrix Ei,j,n×m has  as its (i, j) entry and ’s elsewhere.
This paper is organized as follows. In Section , a perturbation equation is derived from

SAREs (a)-(b) and (a)-(b) without dropping any higher-order terms. By using Brouwer
fixed point theorem, we obtain a perturbation bound for the stabilizing solution of SARE
(a)-(b) in Section . In order to guarantee the existence of the stabilizing solution of
perturbed SARE (a)-(b), some stability analysis of the operator Lc is established in Sec-
tion . A theoretical formula of the normwise condition number of the stabilizing solution
to SARE (a)-(b) is derived in Section . Finally, in Section , a numerical example is given
to illustrate the sharpness and tightness of our perturbation bounds, and Section  con-
cludes the paper.

2 Perturbation equation
Assume that X ∈ Sn is the unique stabilizing solution to SARE (a)-(b) and X̃ ∈ Sn is a
symmetric solution of perturbed SARE (a)-(b), that is,

R(X) := A�X +XA +C�XC –�(X) +H = , ()

R̃(X̃) := Ã�X̃ + X̃Ã + C̃�X̃C̃ – �̃(X̃) + H̃ = , ()

where the two operator � : Sn → Sn and �̃ : Sn → Sn are given by

�(X) = S(X)Q(X)–S(X)�,

�̃(X̃) = S̃(X̃)Q̃(X̃)–S̃(X̃)�,
()

and two affine linear operators S̃ : Sn → Sn, Q̃ : Sn → Sm are defined by

S̃(X̃) = X̃B̃ + C̃�X̃D̃ + S̃,

Q̃(X̃) = R̃ + D̃�X̃D̃

for all X̃ ∈ Sn. Let

�X = X̃ –X.

The purpose of this section is to derive a perturbation equation of �X from SAREs (a)-
(b) and (a)-(b). For the sake of perturbation analysis, we adopt the following notations:

�A = Ã –A, �B = B̃ – B, �C = C̃ –C, �D = D̃ –D,

�S = S̃ – S, �R = R̃ – R, �H = H̃ –H
()

and

δQ =�R +D�X�D +�D�XD +�D�X�D,

δS =�S +C�X�D +�C�XD +�C�X�D +X�B.
()

http://www.journalofinequalitiesandapplications.com/content/2013/1/580
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Moreover, let

F = –Q(X)–S(X)�, F̃ = –Q̃(X)–S̃(X)�,

� = C +DF , �̃ = C̃ + D̃F̃ , ()

� = A + BF , �̃ = Ã + B̃F̃ ,

and by the definition of � , we define

K := X� . ()

Note that S̃(X) = S(X) + δS and Q̃(X) =Q(X) + δQ. Substituting () into (), we observe
that

�(X) = –S(X)F ,

�̃(X̃) =
(
S̃(X) +�XB̃ + C̃��XD̃

)(
Q̃(X) + D̃��XD̃

)– ()

× (
S̃(X) +�XB̃ + C̃��XD̃

)�.

Thus far, we have not specified the relation betweenR(X) and R̃(X̃). Such a tedious task
can be turned into a breeze by repeatedly applying the matrix identities []

(I +U)– = I –U(I +U)–, V (I +UV )– = (I +VU)–V . ()

To begin with, assume that �R and �D are sufficiently small so that Q̃(X) is invertible.
We see that the product

(
S̃(X) +�XB̃ + C̃��XD̃

)(
Q̃(X) + D̃��XD̃

)–
=

(
S̃(X) +�XB̃ + C̃��XD̃

)
× [

I – Q̃(X)–D̃��XD̃
(
I + Q̃(X)–D̃��XD̃

)–]Q̃(X)–

= –F̃� +�XB̃
(
I + Q̃(X)–D̃��XD̃

)–Q̃(X)–

+ �̃��XD̃
(
I + Q̃(X)–D̃��XD̃

)–Q̃(X)–.

It follows that

�̃(X̃) = –S̃(X )̃F – F̃�B̃��X – F̃�D̃��XC̃ – �̃��XD̃F̃ –�XB̃F̃

+
(
�̃��XD̃ +�XB̃

)(
I + Q̃(X)–D̃��XD̃

)–Q̃(X)–

× (
D̃��X�̃ + B̃��X

)
since F̃�S̃(X)� = S̃(X )̃F . Next, from () we can see that

�̃��X +�X�̃ = Ã��X +�XÃ + F̃�B̃��X +�XB̃F̃ ,

�̃��X�̃ = C̃��XC̃ + F̃�D̃��XC̃ + �̃��XD̃F̃ .
()

http://www.journalofinequalitiesandapplications.com/content/2013/1/580
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Applying (), we obtain the linear equation

R̃(X̃) –R(X) = �̃��X +�X�̃ + �̃��X�̃ – E – h(�X) = , ()

where

E := –
(
�A�X +X�A + C̃�XC̃ –C�XC + S̃(X )̃F – S(X)F +�H

)
,

h(�X) := �̃��XD̃
(
I + Q̃(X)–D̃��XD̃

)–Q̃(X)–D̃��X�̃

+�XB̃
(
I + Q̃(X)–D̃��XD̃

)–Q̃(X)–B̃��X

+�XB̃
(
I + Q̃(X)–D̃��XD̃

)–Q̃(X)–D̃��X�̃

+ �̃��XD̃
(
I + Q̃(X)–D̃��XD̃

)–Q̃(X)–B̃��X.

It follows from () that

�̃��X +�X�̃ + �̃��X�̃ = E + h(�X). ()

Equipped with this fact, we now are going to derive a perturbation equation in terms of
�X by using �A, �B, �C, �D, �S, �R, δS, and δQ. It should be noted that

�̃ = (�C +C) – (�D +D)
(
Q(X) + δQ

)–(S(X) + δS
)�

= � +�� ,

with

�� := �C –�DQ(X)–S(X)� –�DQ(X)–δS� –DQ(X)–δS�

+ (�D +D)Q(X)–δQQ(X)–
(
I +Q(X)–δQ

)–(S(X)� + δS�)
()

and

�̃ = (�A +A) – (�B + B)
(
Q(X) + δQ

)–(S(X) + δS
)�

= � +��,

with

�� := �A –�BQ(X)–S(X)� –�BQ(X)–δS� – BQ(X)–δS�

+ (�B + B)Q(X)–δQQ(X)–
(
I +Q(X)–δQ

)–(S(X)� + δS�)
. ()

It then is natural to express the left-hand side of () by �� and �� such that

�̃��X +�X�̃ + �̃��X�̃ =���X +�X� +���X� – h(�X),

with

h(�X) := –
(
����X +�X�� +���X�� +����X� +����X��

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/580
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Observe further that

C̃�XC̃ –C�XC = C�X�C +�C�XC +�C�X�C,

S̃(X )̃F – S(X)F = –
(
S(X) + δS

)(
Q(X) + δQ

)–(S(X) + δS
)�

+ S(X)Q(X)–S(X)�

= F�δS� + δSF – δS
(
I +Q(X)–δQ

)–Q(X)–δS�

– F�δQ
(
I +Q(X)–δQ

)–Q(X)–δS�

– δSQ(X)–δQ
(
I +Q(X)–δQ

)–F
+ F�δQF – F�δQ

(
I +Q(X)–δQ

)–Q(X)–δQF .

Upon substituting () into δSF and F�δQF , we have

δSF =�SF +C�X�DF +�C�XDF +�C�X�DF +X�BF ,

F�δQF = F��RF + F�D�X�DF + F��D�XDF + F��D�X�DF ,

so that the structure of E in () can be partitioned into linear equations

E := –
(
K��DF + F��D�K +K��C +�C�K + F��RF + F��S� +�SF +�H

)
,

E := –
[
�A�X +X�A +�C�X�C + F��B�X +X�BF

+ F��D�X�C +�C�X�DF + F��D�X�DF

–
(
F�δQ + δS

)(
I +Q(X)–δR

)–Q(X)–
(
δQF + δS�)]

,

that is, E = E + E.

Lemma . Let X be the stabilizing solution of SARE (a)-(b) and X̃ be a symmetric solu-
tion of perturbed SARE (a)-(b). If �X = X̃ –X, then �X satisfies the equation

���X +�X� +���X� = E + E + h(�X) + h(�X), ()

where

E = –
(
K��DF + F��D�K +K��C +�C�K + F��RF

+ F��S� +�SF +�H
)
, (a)

E = –
[
�A�X +X�A +�C�X�C + F��B�X +X�BF

+ F��D�X�C +�C�X�DF + F��D�X�DF

–
(
F�δQ + δS

)(
I +Q(X)–δR

)–Q(X)–
(
δQF + δS�)]

,

h(�X) = –
(
����X +�X�� +���X�� +����X� +����X��

)
, (b)

h(�X) = �̃��XD̃	D̃��X�̃ +�XB̃	B̃��X

+�XB̃	D̃��X�̃ + �̃��XD̃	B̃��X, (c)

http://www.journalofinequalitiesandapplications.com/content/2013/1/580
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where 	 = (I + Q̃(X)–D̃��XD̃)–Q̃(X)–, the matrices �A, �B, and so on are given by
()-().

Note that E and E are not dependent on �X, h(�X) is a linear function of �X, and
h(�X) is a function of �X with degree at most . Assume that the linear operator Lc of
() is invertible. It is easy to see that the perturbed equation () is true if and only if

�X =L–
c E +L–

c E +L–
c h(�X) +L–

c h(�X). ()

Thus far, we have not specified the condition for the existence of the solution�X in ().
In the subsequent discussion, we shall limit our attention to identifying the condition of
the existence of a fixed point of (), that is, to determine an upper bound on the size
of �X.

3 Perturbation bounds
Let f : Sn → Sn be a continuous mapping defined by

f (Y ) =L–
c E +L–

c E +L–
c h(Y ) +L–

c h(Y ) for Y ∈ Sn. ()

We see that any fixed point of the mapping f is a solution to the perturbed equation ().
Our approach in this section is to present an upper bound for the existence of some fixed
points �X. It starts with the discussion that the mapping f given by () satisfies

∥∥f (�X)
∥∥
F ≤ ∥∥L–

c E
∥∥
F +

∥∥L–
c E

∥∥
F +

∥∥L–
c h(�X)

∥∥
F +

∥∥L–
c h(�X)

∥∥
F .

Define linear operatorsM :Rn×n → Sn,N :Rn×m → Sn, T : Sm → Sn andH :Rn×m →
Sn by

M�C =L–
c

(
K��C +�C�K

)
, (a)

N�D =L–
c

(
K��DF + F��D�K

)
, (b)

T �R =L–
c

(
F��RF

)
, (c)

H�S =L–
c

(
F��S� +�SF

)
, (d)

and the scalars ω, μ, ν , τ , η by

ω =
∥∥L–

c
∥∥, μ = ‖M‖, ν = ‖N ‖, τ = ‖T ‖, η = ‖H‖. ()

From (a) we then have

∥∥L–
c E

∥∥
F ≤ μ‖�C‖F + ν‖�D‖F + τ‖�S‖F + η‖�R‖F +ω‖�H‖ ≡ ε. ()

We now move into more specific details pertaining to the discussion of the fixed point
of the continuous mapping f . Before doing so, we need to describe an important prop-
erty of the norm of the product of two matrices and repeatedly employ it in the following
discussion. For the proof, the reader is referred to [, Theorem .].
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Lemma . Let A and B be two matrices in R
n×n. Then ‖AB‖F ≤ ‖A‖‖B‖F and ‖AB‖F ≤

‖A‖F‖B‖.

It immediately follows that the matrices δQ and δS, defined by (), satisfy

‖δQ‖F ≤ ‖�R‖F + ‖XD‖‖�D‖F + ‖X‖‖�D‖F ≡ δr ,

‖δS‖F ≤ ‖�S‖F + ‖XC‖‖�D‖F + ‖XD‖‖�C‖F ()

+ ‖X‖‖�D‖F‖�C‖F + ‖X‖‖�B‖F ≡ δs.

Assume that the scalar δr satisfies

 –
∥∥Q(X)–

∥∥
δr > . ()

Then ‖L–
c E‖F is bounded by∥∥L–

c E
∥∥
F ≤ ω‖X‖

(‖�A‖F + ‖F‖‖�B‖F
)
+ω‖X‖

(‖�C‖F + ‖F‖‖�D‖F
)

+
ω‖Q(X)–‖(‖F‖δr + δs)

 – ‖Q(X)–‖δr ≡ ε. ()

From (b) we see that∥∥h(�X)
∥∥
F ≤ (

‖��‖F + ‖�‖‖��‖F + ‖��‖F
)‖�X‖F ,

and also from () and () we have

‖��‖F ≤ ‖�A‖F + ‖F‖‖�B‖F +
(∥∥BQ(X)–

∥∥
 +

∥∥Q(X)–
∥∥
‖�B‖F

)
δs

+
‖Q(X)–‖(‖B‖ + ‖�B‖F )(‖F‖ + ‖Q(X)–‖δs)δr

 – ‖Q(X)–‖δr ≡ δ�, ()

‖��‖F ≤ ‖�C‖F + ‖F‖‖�D‖F +
(∥∥DQ(X)–

∥∥
 +

∥∥Q(X)–
∥∥
‖�D‖F

)
δs

+
‖Q(X)–‖(‖D‖ + ‖�D‖F )(‖F‖ + ‖Q(X)–‖δs)δr

 – ‖Q(X)–‖δr ≡ δ� . ()

It follows that∥∥L–
c h(�X)

∥∥
F ≤ ωδ‖�X‖F , ()

where the positive scalar δ is defined by

δ = δ� + ψδ� + δ� with ‖�‖ =ψ . ()

Also, from () and Lemma . we know that Q̃(X) =Q(X) + δQ =Q(X)–(I +Q(X)–δQ)
and ‖Q(X)–δQ‖F ≤ ‖Q(X)–‖δr < . This implies that Q̃(X) is nonsingular,

‖B̃‖
∥∥Q̃(X)–

∥∥
 = ‖B +�B‖

∥∥(
Q(X) + δQ

)–∥∥


= ‖B +�B‖
∥∥(
I +Q(X)–δQ

)–Q(X)–
∥∥


≤ ‖Q(X)–‖(‖B‖ + ‖�B‖F )
 – ‖Q(X)–‖δr ≡ γB. ()
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Similarly, we have

‖D̃‖
∥∥Q̃(X)–

∥∥
 ≤ ‖Q(X)–‖(‖D‖ + ‖�D‖F )

 – ‖Q(X)–‖δr ≡ γD. ()

Assume that

 – γD‖�X‖F > . ()

It then follows from Lemma . and (c) that

∥∥h(�X)
∥∥
F ≤ (‖�̃‖‖D̃‖ + ‖B̃‖)‖Q̃(X)–‖‖�X‖F

 – ‖D̃‖‖Q̃(X)–‖‖�X‖F
, ()

and from (), () and () that

‖B̃‖ ≤ ‖B‖ + ‖�B‖ ≡ αB,

‖D̃‖ ≤ ‖D‖ + ‖�D‖ ≡ αD, ()

‖�̃‖ ≤ ‖�‖ + ‖��‖F ≤ ‖�‖ + δ� ≡ ψ̃ .

Upon substituting (), () and () into (), we see that

∥∥L–
c h(�X)

∥∥
F ≤ ω(ψ̃γD + ψ̃αBαD + γB)‖�X‖F

 – γD‖�X‖F .

Finally, by (), () and (), we arrive at the statement

∥∥f (�X)
∥∥
F ≤ ε +ωδ‖�X‖F + ωα‖�X‖F

 – γD‖�X‖F , ()

where

α ≡ ψ̃γD + ψ̃αBαD + γB, ε ≡ ε + ε. ()

Consider the quadratic equation

(γD –ωδγD +ωα)ξ  – ( –ωδ + εγD)ξ + ε = . ()

It is true that if

δ <

ω
, (a)

ε ≤ ( –ωδ)

γD –ωδγD + ωα +
√
(γD –ωδγD + ωα) – γ 

D( –ωδ)
, (b)

then the positive scalar ξ∗ denoted by

ξ∗ =
ε

( –ωδ + εγD) +
√
( –ωδ + εγD) – (γD –ωδγD +ωα)ε

()
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is a solution to (). Let Sn
ξ∗ be a compact subset of Sn given by

Sn
ξ∗ =

{
�X ∈ Sn : ‖�X‖F ≤ ξ∗

}
.

It can be seen that in ()

∥∥f (�X)
∥∥
F ≤ ξ∗ if �X ∈ Sn

ξ∗ .

It then follows from the Brouwer fixed-point theorem (see []) that the continuous map-
ping f has a fixed point �X∗ ∈ Sn

ξ∗ , that is, condition () automatically holds.
Observe also that if �X ∈ Sn

ξ∗ , then

 – γD‖�X‖F ≥ ( – γDξ∗) (by ())

≥  –
εγD

 –ωδ + εγD
=
 –ωδ – εγD

 –ωδ + εγD
(by (b))

≥  –ωδ – (–ωδ)γD
γD–ωδγD+ωα

 –ωδ + εγD
(by (a))

=
( –ωδ)ωα

( –ωδ + εγD)(γD –ωδγD + ωα)
≥ .

This implies that assumption () is true, if assumption (a)-(b) is true.

4 Stability analysis
We have shown that the mapping f given by () has a Hermitian fixed point �X∗. This
further implies that perturbed SARE (a)-(b) has a Hermitian solution X̃ = X + �X∗. In
this section, we want to discuss the stability of the solution X̃ , i.e., show that the solution X̃
is the unique maximal solution to SARE (a)-(b). Let ϒ and � be two operators defined
by

ϒ(W ) =��W +W�, �(W ) =��W� , W ∈ Sn,

with the notations � and � given in Definition .. It follows that the operator Lc defined
by () can also be written as

Lc(W ) =ϒ(W ) +�(W ), W ∈ Sn. ()

We then have the following important result addressing the condition for a linear operator
to be stable. To see a few necessary and sufficient conditions on the stability, we refer to
the results and proofs given in [].

Theorem . The linear operator Lc = ϒ + � given by () is stable, i.e., σ (Lc) ⊂ C–, if
and only if σ (�)⊂C– and det(ϒ + τ�) �=  for all τ ∈ [, ].

When small perturbations Z,Z ∈ R
n×n are taken into consideration, the perturbed

operator of Lc can be expressed by

L̃c(W ) = ϒ̃(W ) + �̃(W ), ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/580
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where ϒ̃(W ) = (�+Z)�W +W (�+Z) and �̃(W ) = (� +Z)�W (� +Z) for allW ∈ Sn.
Define the quantity

�(θ ) =
∥∥(ϒ + θ�)–

∥∥
for θ ∈ [, ] and

β(Lc) = min
(Z,Z)∈Z

max
{‖Z‖,‖Z‖

}
,

where the set Z = {(Z,Z) ∈R
n×n ×R

n×n | det(ϒ̃ + θ�̃) =  for some θ ∈ [, ]}. It should
be noted that if σ (�)⊂C–, � =  and Z = , then

β(Lc) ≤ β(�), ()

where the value β(�) is defined by []

β(�) =min
{
‖Z‖

∣∣ max
≤j≤n

Reλj(� + Z) = ,Z ∈R
n×n

}
. ()

Here, λj(� + Z) (j = , . . . ,n) denote the eigenvalues of � + Z.
The connection between β(Lc) and the maximum of the scalar function �(θ ) on [, ]

can be established in the following form.

Theorem . [] Suppose that the linear operator Lc given by () is stable, and let

�c = max
θ∈[,]

�(θ ), ψ = ‖�‖. ()

Then

β(Lc) ≥ �–c

(ψ + ) +
√
(ψ + ) + �–c

.

We now apply Theorem . to () and obtain that

β(�)≥ β(Lc) ≥ �–c

(ψ + ) +
√
(ψ + ) + �–c

.

Hence, if a perturbation matrix Z ∈R
n×n satisfies

‖Z‖ < �–c

(ψ + ) +
√
(ψ + ) + �–c

,

then () implies that the matrix � + Z must be c-stable.
We now turn to a key stability test of the operator Lc, the striking tool of our stability

analysis.

Theorem . [] Suppose that the linear operator Lc is stable, and let the scalars �c and
ψ be defined as in (). If the perturbation matrices Z,Z ∈R

n×n satisfy

max
{‖Z‖,‖Z‖

}
<

�–c

(ψ + ) +
√
(ψ + ) + �–c

, ()
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then � + Z is c-stable and the perturbed linear operator L̃c defined by () is also stable,
i.e., σ (L̃c) ⊂C–.

Upon substituting X̃ for X in S̃(X) and Q̃(X) of (), we shall have

Q̃(X̃) = R̃ + D̃�X̃D̃ =Q(X) + δQ + D̃��XD̃ ≡Q(X) +�R, ()

S̃(X̃) = S̃ + C̃�X̃D̃ + X̃B̃ = S(X) + δS +�XB̃ + C̃��XD̃

≡ S(X) +�S. ()

Also, corresponding to X̃ , the perturbed �X̃ and �X̃ of � and �, respectively, can be
expressed in terms of the formulae

�X̃ = (�A +A) – (�B + B)(� +�S)–(� +�R)� :=� +��,

�X̃ = (�C +C) – (�D +D)(� +�R)–(� +�S)� :=� +�� ,
()

with

�� :=�A –�BQ(X)–S(X)� –�BQ(X)–�S� – BQ(X)–�S�

+ (�B + B)Q(X)–�RQ(X)–
(
I +Q(X)–�R

)–(S(X)� +�S�)
,

�� :=�C –�DQ(X)–S(X)� –�DQ(X)–�S� –DQ(X)–�S�

+ (�D +D)Q(X)–�RQ(X)–
(
I +Q(X)–�R

)–(S(X)� +�S�)
.

Let αC := ‖C‖ + ‖�C‖. Since ‖�X‖F ≤ ξ∗, it follows from (), () and () that

‖�R‖F ≤ δr + α
Dξ∗ := cr ,

‖�S‖F ≤ δs + (αB + αCαD)ξ∗ := cs.

Thus ‖��‖F and ‖��‖F are bounded by the inequalities

‖��‖F ≤ ‖�A‖F + ‖F‖‖�B‖F + αB‖Q(X)–‖(cs + cr‖F‖)
 – cr‖Q(X)–‖ ,

‖��‖F ≤ ‖�C‖F + ‖F‖‖�D‖F + αD‖Q(X)–‖(cs + cr‖F‖)
 – cr‖Q(X)–‖ .

Here, the above upper bounds are obtained by simplifying those given by () and ().
Let

f = ‖F‖, γ =
∥∥Q(X)–

∥∥
,

αC = ‖C‖ + ‖�C‖F , ζ =max
{‖�A‖F ,‖�C‖F

}
, ()

ζ =max
{‖�B‖F ,‖�D‖F

}
, ζ =max{αB,αD},

where αB and αD are defined by () and � is defined to be the right-hand side of (),
that is,

� =
�–c

(ψ + ) +
√
(ψ + ) + �–c

. ()
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We then have

max
{‖��‖F ,‖��‖F

} ≤ ζ + f ζ +
γ ζ(δs + δrf ) + γ ζ(αB + αCαD + α

Df )ξ∗
 – δrf – α

Df ξ∗
.

It follows that if the condition

ζ + f ζ +
γ ζ(δs + δrf ) + γ ζ(αB + αCαD + α

Df )ξ∗
 – δrf – α

Df ξ∗
< �

or, equivalently,

ξ∗ <
(� – ζ – f ζ)( – δrf ) – γ ζ(δs + δrf )

(� – ζ – f ζ)α
Df + γ ζ(αB + αCαD + α

Df )

holds, then corresponding to Theorem ., the perturbed linear operator L̃c with respect
to X̃ is stable. In other words, the matrix X̃ ∈ Sn must be the unique stabilizing (and max-
imal) solution to perturbed SARE (a)-(b).
We now have all the materials needed for the existence of a stabilizing solution of (a)-

(b).

Theorem . (Perturbation bound) Let X be the stabilizing solution of (a)-(b). Let ω, δr ,
δs, δ, γD, αB, αD, α, ε, f , γ , αC , ζ, ζ, ζ, � be the scalars defined by (), (), (), (),
(), (), () and (), respectively. Define

ξ∗ =
ε

( –ωδ + εγD) +
√
( –ωδ + εγD) – (γD –ωδγD +ωα)ε

.

If the perturbed quantities of the coefficients of (a)-(b) are sufficiently small, for example,
ε � , such that

 –
∥∥Q(X)–

∥∥
δr > ,

 –ωδ > ,

( –ωδ)

γD –ωδγD + ωα +
√
(γD –ωδγD + ωα) – γ 

D( –ωδ)
– ε ≥ ,

(� – ζ – f ζ)( – δrf ) – γ ζ(δs + δrf )
(� – ζ – f ζ)α

Df + γ ζ(αB + αCαD + α
Df )

– ξ∗ > ,

then perturbed SARE (a)-(b) has the unique stabilizing solution X̃, and

‖X̃ –X‖F
‖X‖F ≤ ξ∗

‖X‖F . ()

5 Condition number of the SARE
In the study of a computational problem, a fundamental issue is to determine the condition
number of a problem to be the ratio of the relative change in the solution to the relative
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change in the argument. Applying the theory of condition number given by Rice [], we
define the condition number c(X) of the stabilizing solution X of SARE (a)-(b) by

c(X) = lim
δ→+

sup
	δ

‖�X‖F
κδ

, ()

where the set of perturbed matrices 	δ is defined by

	δ = 	δ(κA,κB,κC ,κD,κS,κR,κH )

=
{
(�A,�B,�C,�D,�S) ∈R

n×n ×R
n×m ×R

n×n ×R
n×m ×R

n×m,

(�R,�H) ∈ Sn × Sm |  < δp ≤ δ
}
, ()

with

δp =
∥∥∥∥(

�A
κA

,
�B
κB

,
�C
κC

,
�D
κD

,
�S
κS

,
�R
κR

,
�H
κH

)∥∥∥∥
F
,

and κA, κB, κC , κD, κS , κR, κH , κ are positive parameters. Then () gives the absolute
condition number cabs(X) if

(κA,κB,κC ,κD,κS,κR,κH ,κ) = (, , , , , , , )

and gives the relative condition number crel(X) if

(κA,κB,κC ,κD,κS,κR,κH ,κ) =
(‖A‖F ,‖B‖F ,‖C‖F ,‖D‖F ,‖S‖F ,‖R‖F ,‖H‖F ,‖X‖F

)
.

It follows from () and (a)-(d) that

�X =P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H +O

(
δp

)
,

where the linear operators P :Rn×n → Sn andQ :Rn×m → Sn are defined by

P�A =L–
c

(
X�A +�A�X

)
, (a)

Q�B =L–
c

(
X�BF + F��B�X

)
. (b)

In order to derive the explicit expression for the condition number c(X) of the stabilizing
solution X of (a)-(b), we require a theorem concerning the form of the optimal solution.
This theorem can be regarded as a theoretical extension of the results discussed in [,
]. Most strategies have been established earlier by using much heavier machinery. Since
this theorem ismost relevant to our stability analysis, we briefly outline a direct proof with
ideas from [] to make this presentation more self-contained.

Theorem . Let L :Rn×n ×R
m×m →R

k×k be a linear operator and

L(Z,Z)� =L
(
Z,Z�


)

()
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for all Z ∈ R
n×n and Z ∈R

m×m. Then the optimal solution (Z�,Z�) to the problem

max
‖(Z,Z)‖F=

∥∥L(Z,Z)
∥∥
F ()

exists for some Z� ∈ Rn×n and Z� = ±Z�
� ∈ Rm×m. Furthermore, if the linear operator

L(,Z) is a positive operator with respect to any Z ∈C
m×m, that is, for all Z ∈C

m×m, we
have

L(,Z) �  if Z � .

Then there exists an optimal solution (Z�,Z�) ∈ R
n×n ×R

m×m to problem () such that
Z� is symmetric.

Proof Since L is a linear operator on a finite dimensional space, it is clear that the optimal
solution of () exists. Assume that (Z�,Z�) solves this optimization problem. Let σmax =
‖L(Z�,Z�)‖F and L ∈R

k×(n+m) be thematrix representation of the operatorL such that

vec
(
L(Z,Z)

)
= L

[
vec(Z)
vec(Z)

]
. ()

By () and (), we have

[
vec(Z�)
vec(Z�)

]�
L�L

[
vec(Z�)
vec(Z�)

]
=

[
vec(Z�)
vec(Z�

�)

]�
L�L

[
vec(Z�)
vec(Z�

�)

]
= σ 

max. ()

Note that

� := ‖Z�‖F +
∥∥∥∥  (

Z� + Z�
�

)∥∥∥∥

F
= , only if Z� = ,Z� = –Z�

�.

It follows that if Z�
� �= –Z�, by (), we see that √

�
(Z�,  (Z� + Z�

�)) is another optimal
solution for (). This proves the first part of the theorem.
For the second part, if there exists a symmetric optimal solution, then it completes

the proof. Otherwise, from the first part, we know that there exists an optimal solution
(Z�,Z�) with Z� = , Z� = –Z�

� ∈ R
m×m and ‖(Z�,Z�)‖F =  to (). Let i =

√
–. We

have the following matrix decomposition:

Z� =Q� diag

([
 –ω

ω 

]
, . . . ,

[
 –ωk

ωk 

]
, r

)
Q,

where r is a zero matrix with size r × r, Q is anm×m orthogonal matrix, and ωj >  for
≤ j ≤ k. Let

Z̃� :=Q� diag

([
ω 
 ω

]
, . . . ,

[
ωk 
 ωk

]
, r

)
Q
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be a real symmetric matrix. Since –Z̃� � iZ� � Z̃�, it is true that

L(, Z̃�)�L(, iZ�) �L(,–Z̃�) = –L(, Z̃�).

Using the fact that ‖iZ�‖F = ‖Z̃�‖F , we see that ‖(, Z̃�)‖F = ‖(, iZ�)‖F = ‖(,Z�)‖F = 
and

∥∥L(, Z̃�)
∥∥
F ≥ ∥∥L(, iZ�)

∥∥
F =

∥∥L(,Z�)
∥∥
F .

IfW �W � –W, then ‖W‖F ≥ ‖W‖F , which implies that (, Z̃�) is a symmetric opti-
mal solution to () (see [, Lemma A.]). This completes the proof. �

With the existence theory established above, it is interesting to note that the condition
number c(X) defined by () can be written as

c(X) =

κ

lim
δ→+

sup
	δ

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δ

=

κ
max
δp>

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δp
. ()

Note that the second equality in () is only an application of linearity of the norm. (For
the proof, see Lemma A..) Observe further that the inverse operator L–

c of () satisfies

[
L–

c (W )
]� =L–

c
(
W�)

since [Lc(W )]� =Lc(W�) for allW ∈ C
n×n. It follows that

[T �R]� = T �R�, [P�A]� =P�A, [Q�B]� =Q�B,

[M�C]� =M�C, [N�D]� =N�D, [H�S]� =H�S.

Also, it is known that the inverse operator L–
c is positive [, Corollary .]. It follows that

T is also a positive operator. Now, applying Theorem . to the operator P�A +Q�B +
M�C +N�D +H�S + T �R +L–

c �H in (), we obtain the equality

c(X)

=

κ
max

	̃

‖κAP�A + κBQ�B + κCM�C + κDN�D + κSH�S + κRT �R + κHL–
c �H‖F

‖(�A,�B,�C,�D,�S,�R,�H)‖F ,

where the extended set 	̃ is defined by

	̃ =
{
(�A,�B,�C,�D,�S,�R,�H) ∈R

n×n ×R
n×m ×R

n×n ×R
n×m

×R
n×n ×R

n×n ×R
m×m | ∥∥(�A,�B,�C,�D,�S,�R,�H)

∥∥
F > 

}
.

On the other hand, observe that the matrix representation of the operationLc in () can
be written in terms of Lc = I ⊗ � +�� ⊗ I +�� ⊗ � . Corresponding to (a)-(d) and
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(a)-(b), we let

Mc = L–c
(
I ⊗K� +

(
K� ⊗ I

)
Pn,n

)
,

Nc = L–c
(
F� ⊗K� +

(
K� ⊗ F�)

Pm,n
)
,

Tc = L–c
(
F� ⊗ F�)

,

Hc = L–c
(
F� ⊗ I +

(
I ⊗ F�)

Pm,n
)
,

Pc = L–c
(
I ⊗X + (X ⊗ I)Pn,n

)
,

Qc = L–c
(
F� ⊗X +

(
X ⊗ F�)

Pm,n
)

and

U =
(
κAPc,κBQc,κCMc,κDNc,κSHc,κRTc,κHL–c

)
.

It follows that

c(X) =

κ
max
V∈	̃

‖U vec(V )‖
‖vec(V )‖ =

‖U‖
κ

.

Based on the above discussion, we have the following result.

Theorem . The condition number c(X) given by () has the explicit expression ‖U‖
κ

.
In particular, we have the relative condition number

crel(X) =
‖(‖A‖FPc,‖B‖FQc,‖C‖FMc,‖D‖FNc,‖S‖FHc,‖R‖FTc,‖H‖FL–c )‖

‖X‖F . ()

6 Numerical experiment
In this section we want to demonstrate the sharpness of perturbation bound () and
its relationship with the relative condition number (). Based on Newton’s iteration [],
a numerical example, done with × coefficientmatrices, is illustrated. The numerical al-
gorithm is described in Algorithm . The corresponding stopping criterion is determined
when the value of the Normalized Residual (NRes)

NRes =
‖P̃(X̃) – S̃(X̃)Q̃(X̃)–S̃(X̃)�‖

‖P̃(X̃)‖ + ‖S̃(X̃)‖‖Q̃(X̃)–‖‖S̃(X̃)�‖
is less than or equal to a prescribed tolerance.

Example  Given a parameter r = –m, for some m > , let the matrices A, B, C, D be
defined by

A =

[
– 
 –

]
, B =

[
 
 –

√
r

]
, C = I, D =

[
 
 

]
,

and the matrices S, R, H be defined by

S =

[
 
 

]
, R =

[
 
 r

]
, H =

[
–/ 
 

]
.
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Algorithm : SARE [X̃] = Sare(Ã, B̃, C̃, D̃, R̃, S̃, H̃)
Input: Matrices Ã, C̃ ∈R

n×n, B̃, D̃, S̃ ∈ R
n×m, H̃ ∈ Sn, R̃ ∈ Sm

Output: Matrix X̃ ∈ Sn

begin
Choose X̃ ∈R

n×n;
for i← , . . . do

F̃k = –(̃R + D̃�X̃kD̃)–(̃B�X̃kC̃ + S̃�); �̃k = Ã + B̃F̃k ; �̃k = C̃ + D̃F̃k ;
R̃(X̃k) as defined by ();
Updating X̃k+ by solving
�̃�

k X̃k+ + X̃k+�̃k + �̃�
k X̃k+�̃k = �̃�

k X̃k + X̃k�̃k + �̃�
k X̃k�̃k – R̃(X̃k);

end
end

Table 1 Relative errors and perturbation bounds

j Relative error ξ∗‖X‖F
5 6.28× 10–5 5.74× 10–4

6 6.34× 10–6 5.22× 10–5

7 1.14× 10–6 8.42× 10–6

8 1.61× 10–7 7.42× 10–7

9 1.05× 10–8 5.58× 10–8

It is easily seen that the unique stabilizing and maximal solution is

X =

[
– 
 (

√
 – )/

]
.

Let the perturbed coefficientmatrices�A,�B,�C,�D,�S,�R and�H be generated us-
ing the MATLAB command randn with the weighted coefficient –j. That is, the matrices
�A,�B,�C,�D,�S,�R and�H are generated in forms of randn()×–j, respectively.
Since �R and �H are required to be symmetric, we need to fine-tune the perturbed ma-
trices �R and �H by redefining �R and �H as �R +�R� and �H +�H�, respectively.
Now, let (Ã, B̃, C̃, D̃, S̃, R̃, H̃) = (A +�A,B+�B,C +�C,D +�D,S +�S,R+�R,H +�H),
which are coefficient matrices of SARE (a)-(b).
Firstly, we would like to evaluate the accuracy of the perturbation bound with the fixed

parameter r = –, i.e., m = , and different weighted coefficients, –j, for j = , . . . , . It
can be seen from Table  that the values of the relative errors are closely bounded by our
perturbation bounds of (). In other words, () does provide a sharp upper bound of
the relative errors of the stabilizing solution X.
Secondly, we want to investigate how ill-conditioned matrices affect the quantities of

perturbation bounds. In this sense, the weighted coefficients are fixed to be –, i.e.,
j = . The relationships among relative errors, perturbation bounds, and relative con-
dition numbers are shown in Table . Due to the singularity of the matrix R caused by
parameter r, the accuracy of the perturbation bounds is highly affected by the singularity.
When the value of m increases, the perturbation bound is still tight to the relative error.
Also, it can be seen that the number of accurate digits of the perturbation bounds is re-
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Table 2 Relative errors, perturbation bounds and relative condition numbers

m Relative error ξ∗‖X‖F crel(X)

1 5.94× 10–15 1.64× 10–14 5.84× 101

2 5.28× 10–14 9.47× 10–14 5.56× 102

3 4.75× 10–13 7.85× 10–13 5.56× 103

4 4.58× 10–12 7.40× 10–12 5.56× 104

5 4.85× 10–11 7.26× 10–11 5.56× 105

6 4.56× 10–10 7.22× 10–10 5.57× 106

7 4.69× 10–9 8.61× 10–9 5.57× 107

duced proportionally to the increase of the quantities of the relative condition numbers.
In other words, if the accurate digits of the perturbation bound are added to the digits
in the relative condition numbers, this number is almost equal to . (While using IEEE
double-precision, the machine precision is around .× –.) This implies that the de-
rived perturbation bound of () is fairly sharp.

7 Conclusion
While doing numerical computation, it is important in practice to have an accurate
method for estimating the relative error and the condition number of the given problems.
In this paper, we focus on providing a tight perturbation bound of the stabilizing solu-
tion to SARE (a)-(b) under small changes in the coefficient matrices. Also, some suffi-
cient conditions are presented for the existence of the stabilizing solution to the perturbed
SARE. The corresponding condition number of the stabilizing solution is provided in this
work. We highlight and compare the practical performance of the derived perturbation
bound and condition number through a numerical example. Numerical results show that
our perturbation bound is very sensitive to the condition number of the stabilizing solu-
tion. As a consequence, they provide good measurement tools for the sensitivity analysis
of SARE (a)-(b).

Appendix
We provide here a proof of the condition given by ().

Lemma A. Let P , Q, M, N , H, T , L–
c be the operators defined by (a)-(b), (a)-

(d) and (), and let 	δ , δp be defined by (). Then the following equality holds:

lim
δ→+

sup
	δ

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δ

=max
δp>

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δp
. ()

Proof For any δ > ,  < δp ≤ δ, we see that

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δ

=
δp

δ

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δp

≤max
δp̃>

‖P�Ã +Q�B̃ +M�C̃ +N�D̃ +H�S̃ + T �R̃ +L–
c �H̃‖F

δp̃
,
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where δp̃ = ‖(�Ã
κA

, �B̃
κB
, �C̃

κC
, �D̃

κD
, �S̃

κS
, �R̃

κR
, �H̃

κH
)‖F . It follows that

lim
δ→+

sup
	δ

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δ

≤max
δp>

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δp
. ()

On the other hand, for any fixed δ > , choose any perturbation matrices

(�A,�B,�C,�D,�S,�R,�H) ∈ 	δ

and therefore∥∥∥∥(
�A

κA
,
�B

κB
,
�C

κC
,
�D

κD
,
�S
κS

,
�R

κR
,
�H

κH

)∥∥∥∥
F
= δp ≤ δ.

It is true that ( δ
δp

�A, δ
δp

�B, δ
δp

�C, δ
δp

�D, δ
δp

�S, δ
δp

�R, δ
δp

�H) ∈ 	δ and this
gives the fact that

lim
δ→+

sup
	δ

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δ

≥
‖P δ

δp
�A +Q δ

δp
�B +M δ

δp
�C +N δ

δp
�D +H δ

δp
�S + T δ

δp
�R +L–

c
δ

δp
�H‖F

δ

=
‖P�A +Q�B +M�C +N�D +H�S + T �R +L–

c �H)‖F
δp

.

Hence

lim
δ→+

sup
	δ

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δ

≥max
δp>

‖P�A +Q�B +M�C +N�D +H�S + T �R +L–
c �H‖F

δp
. ()

Comparison of () and () gives (). �
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