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Abstract
In this paper, we establish a Dancer-type unilateral global bifurcation theorem for the
one-dimensional p-Laplacian with a singular weight which may not be in L1. As the
applications of this theorem, we prove the existence of nodal solutions for
p-Laplacian with f0 ∈ [0, +∞] or f∞ ∈ [0, +∞], where f (s)/(|s|p–2s) approaches f0 and f∞
as s approaches 0 and ∞, respectively.
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1 Introduction
In this paper, we shall establish a unilateral global bifurcation theorem for the following
one-dimensional p-Laplacian problem

{
–(ϕp(u′))′ = λm(x)f (u), a.e. x ∈ (, ),
u() = u() = ,

(.)

where ϕp(s) = |s|p–s,  < p < +∞, λ is a positive parameter, m(x) and f ∈ C(R,R) satisfy
the following assumptions:
(A) m(x) ∈A,m(x)≥  andm(x) �≡  on any subinterval of (, ), where

A =
{
m(x) ∈ Lloc(, )

∣∣∣ ∫ 


xp–( – x)p–m(x)dx < +∞

}
;

(A) f (s)s >  for s �= .
Let S denote the closure of the set of nontrivial solutions to problem (.), and let λk

denote the kth eigenvalue which is obtained in [, Theorem .] of the following problem

{
–(ϕp(u′))′ = λm(x)ϕp(u), a.e. x ∈ (, ),
u() = u() = .

(.)

Let f := lims→ f (s)/ϕp(s). By an argument similar to Rabinowitz’s unilateral global bifur-
cation theory [, Theorem .], Kajikiya et al. [] established the following result.

Theorem . Assume that (A)-(A) hold and f ∈ (, +∞). Then, for each k ∈ N, there
exist two unbounded sub-continua C±

k in S bifurcating from (λk/f, ). Furthermore, C±
k ∩
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(R× {}) = {(λk/f, )} and if (λ,u) ∈ C+
k \ {(λk/f, )} (C–

k \ {(λk/f, )}), then u is a (k – )-
nodal solution in (, ) satisfying u′() >  (u′() < ), respectively.

However, as pointed out by Dancer [, ], López-Gómez [] and Shi and Wang [], the
original statement of Theorem . of [] is stronger than what one can actually prove so
far. In [], Dancer gave a corrected version of the unilateral global bifurcation theorem for
a linear operatorwhich has been extended to the one-dimensional p-Laplacian problemby
Dai andMa []. The first purpose of the present work is to repair the proof of Theorem .
by the methods which we used in [].
Let f∞ := lims→+∞ f (s)/ϕp(s). Based on Theorem ., Kajikiya et al. [] studied the ex-

istence of positive solutions as well as sign-changing solutions of problem (.) with
f ∈ (, +∞) and f∞ = . Later, they [] again considered the case of f ∈ (, +∞) and
f∞ = +∞. Another aim of this paper is to investigate the existence of nodal solutions for
problem (.) with all of the following six cases:
() f ∈ (, +∞) and f∞ ∈ (, +∞);
() f =  and f∞ ∈ (, +∞);
() f = +∞ and f∞ ∈ (, +∞);
() f =  and f∞ = +∞;
() f =∞ and f∞ = +∞;
() f =  and f∞ = .
When p = , m(x) ∈ C[, ], Ma and Thompson [] considered the interval of λ, in

which there exist nodal solutions of problem (.) under some suitable assumptions on f .
In [], Ma extended the above results to the case of m ∈ C(, ) satisfying  <

∫ 
 x( –

x)m(x)dx < +∞. For p �= , Del Pino et al. [] investigated the existence of solutions for
problem (.) withm ≡  using the Leray-Schauder degree by the deformation along p. By
the upper and lower solutionsmethod, fixed point index theory on cones and the shooting
method, the authors of [–] studied the existence of positive solutions or sign-changing
solutions for problem (.) under some suitable assumptions on m and f . In [, ], Lee
and Sim studied the existence of positive solutions as well as sign-changing solutions for
problem (.) whenm ∈ L(, ). Recently, Dai [] studied the existence of nodal solutions
for problem (.) when m ∈ C[, ] and f /∈ (, +∞) or f∞ /∈ (, +∞). In this paper, we
extend the corresponding results of [] to the case ofm satisfying (A). Clearly, the above
six cases for problem (.) have not been studied by now.
The main results of the present paper are the following two theorems.

Theorem . Let (A)-(A) hold and f ∈ (, +∞). Then from each (λk/f, ) it bifurcates
an unbounded continuum Ck of solutions to problem (.), with exactly k –  simple zeros.

Theorem . Let (A)-(A) hold and f, f∞ ∈ (, +∞). If λ ∈ (λk/f∞,λk/f)∪ (λk/f,λk/f∞),
then problem (.) has at least two solutions u+k and u

–
k such that u

+
k has exactly k– simple

zeros in (, ) and is positive near , and u–k has exactly k –  simple zeros in (, ) and is
negative near .

The rest of this paper is arranged as follows. In Section , we establish the unilateral
global bifurcation theory for problem (.). In Section , we prove the existence of nodal
solutions for problem (.) with any one of the above six cases.
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2 Unilateral global bifurcation
Let E be the Banach space C

[, ] with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞, where ‖u‖∞ =
maxx∈[,] |u|. Consider the following auxiliary problem{

(ϕp(u′))′ = h, a.e. x ∈ (, ),
u() = u() = 

(.)

for a given h ∈ L(, ). By a solution of problem (.), we understand a function u ∈ E with
ϕp(u′) absolutely continuous which satisfies problem (.). Problem (.) is equivalently
written as

u(x) =Gp(h)(x) :=
∫ x


ϕ–
p

(
a(h) +

∫ s


h(τ )dτ

)
ds,

where a : L(, )→R is a continuous function satisfying

∫ 


ϕ–
p

(
a(h) +

∫ s


h(τ )dτ

)
ds = .

It is well known that Gp : L(, ) → E is continuous and maps equi-integrable sets of
L(, ) into relatively compacts of E. One may refer to Lee and Sim [] and Manásevich
and Mawhin [] for details.
Lemma . of [] shows that m(x)f (v) ∈ L(, ) for any v ∈ E and f satisfying (A).

Hence, for (λ,u) ∈R× E, we can define

Tλ(u) =Gp
(
–λfm(x)ϕp(u)

)
and F(λ,u) =G

(
–λm(x)f (u)

)
.

Lemma . of [] has shown that Tλ and F are completely continuous from R×E to E. So
I –Tλ is a completely continuous vector field in C[, ]. Thus the Leray-Schauder degree
dLS(I – Tλ,Br(), ) is well defined for an arbitrary r-ball Br() and λ �= λk , k ∈N.

Lemma . ([, Theorem .]) Assume that (A) holds and let {λk}k∈N be the sequence of
eigenvalues of problem (.). Let λ be a constant with λ �= λk for all k ∈N.Then, for arbitrary
r > ,

deg
(
I – Tλ,Br(), 

)
= (–)β ,

where β is the number of eigenvalues λk of problem (.) less than λ.

Using Lemma . and the famous global interval bifurcation theorem due to Schmitt
and Thompson [], the authors of [] established the following result.

Lemma. ([, Lemma.]) Assume that (A)-(A) hold and f ∈ (, +∞).Then (λk/f, )
is a bifurcation point ofS and the associated bifurcation branch Ck inR×E whose closure
contains (λk/f, ) is either unbounded or contains a pair (λj/f, ) with j �= k.

Next, we shall prove that the first choice of the alternative of Lemma . is the only
possibility. Let S+k denote the set of functions in E which have exactly k –  interior nodal
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zeros in (, ) and are positive near x = , and set S–k = –S+k , and Sk = S+k ∪ S–k . It is clear that
S+k and S–k are disjoint and open in E. Finally, let �±

k =R× S±
k and �k =R× Sk under the

product topology.

Lemma . Under the assumptions of Lemma ., the last alternative of Lemma . is
impossible if Ck ⊂ (�k ∪ {(λk/f, )}).

Proof Suppose on the contrary that if there exists (λm,um) → (λj/f, ) when m → +∞
with (λm,um) ∈ Ck , um �≡  and j �= k. Let f (s) = fϕp(s) + ξ (s) with ξ (s)/ϕp(s) →  as s → .
Set vm := um/‖um‖, then vm should be a solution of the problem

v =Gp

(
–λmm(x)fϕp

(
v(x)

)
–

ξ (um(x))
‖um(x)‖p–

)
.

Let

ξ̃ (u) = max
≤|s|≤u

∣∣ξ (s)∣∣,
then ξ̃ is nondecreasing with respect to u and

lim
u→+

ξ̃ (u)
up–

= . (.)

It follows from (.) that

ξ (u)
‖u‖p– ≤ ξ̃ (|u|)

‖u‖p– ≤ ξ̃ (‖u‖∞)
‖u‖p– ≤ ξ̃ (‖u‖)

‖u‖p– →  as ‖u‖ → . (.)

By (.) and the continuity and compactness of Gp, we obtain that for some convenient
subsequence vm → v asm → +∞. Now v verifies the equation

–
(
ϕp

(
v′

))′ = λjm(x)ϕp(v)

and ‖v‖ = . Hence v ∈ Sj which is an open set in E, and as a consequence for some m
large enough, vm ∈ Sj, and this is a contradiction. �

Proof of Theorem . Taking into account Lemma . and Lemma ., we only need to
prove that Ck ⊂ (�k ∪ {(λk/f, )}). By an argument similar to that of Lemma ., we can
show that there exists a neighborhoodO of (λk/f, ) such thatO ∩Ck ⊂ (�k ∪{(λk/f, )}).
Suppose Ck �⊂ (�k ∪ {(λk/f, )}). Then there exists (λ,u) ∈ Ck ∩ (R × ∂Sk) such that
(λ,u) �= (λk/f, ), u /∈ Sk , and (λn,un) → (λ,u) with (λn,un) ∈ Ck ∩ (R× Sk). Since u ∈ ∂Sk ,
by Lemma . of [], u≡ . Let wn := un/‖un‖, thenwn should be a solution of the problem

w =Gp

(
–λnm(x)fϕp

(
w(x)

)
–

ξ (un(x))
‖un(x)‖p–

)
. (.)

By (.), (.) and the continuity and compactness of Gp, we obtain that for some conve-
nient subsequence wn → w �=  as n→ +∞. Now w verifies the equation

–
(
ϕp

(
w′

))′ = λfm(x)ϕp(w)

http://www.journalofinequalitiesandapplications.com/content/2013/1/577
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and ‖w‖ = . Hence λf = λj for some j �= k. Therefore, (λn,un)→ (λj/f, ) with (λn,un) ∈
Ck ∩ (R× Sk). This contradicts Lemma .. �

Proof of Theorem . Applying a similar method to prove [, Theorem .] with obvious
changes (we only need to replace g(t,u;μ) with ξ (u) in the proof of Lemmas ., . and .
of []), we can obtain the result of Theorem .. �

3 Nodal solutions
In this section, we use Theorem . to prove the existence of nodal solutions for problem
(.) with all of the six cases introduced at the start.

Proof of Theorem . Applying Theorem . to problem (.), we have that there are two
distinct unbounded continua C+

k and C–
k , consisting of the bifurcation branch Ck emanating

from (λk/f, ), such that

Cν
k ⊂ ({

(λk , )
} ∪ (

R× Sν
k
))
.

To complete the proof of this theorem, it will be enough to show that Cν
k joins (λk/f, )

to (λk/f∞, +∞). Let (λn,un) ∈ Cν
k satisfy λn + ‖un‖ → +∞. We note that λn >  for all n ∈N

since (, ) is the only solution of problem (.) for λ =  and Cν
k ∩ ({} × E) = ∅.

We divide the rest of the proof into two steps.
Step . We show that there exists a constant M such that λn ∈ (,M] for n ∈ N large

enough.
On the contrary, we suppose that limn→+∞ λn = +∞. On the other hand, we note that

{
–(ϕp(u′

n))′ = λnm(x)̃fn(x)ϕp(un), a.e. x ∈ (, ),
u() = u() = ,

where

f̃n(x) =

{ f (un)
ϕp(un) if un �= ,
f if un = .

The signum condition implies that there exists a positive constant 
 such that f̃n(x) ≥ 


for any x ∈ [, ]. By Theorem . of [], we get un must change its sign more than k – 
times in (, ) for n large enough, and this contradicts the fact that un ∈ Cν

k .
Step . We show that Cν

k joins (λk/f, ) to (λk/f∞, +∞).
It follows fromStep  that ‖un‖ → +∞. Let η ∈ C(R) such that f (s) = f∞ϕp(s)+η(s). Then

lim|s|→+∞ η(s)/ϕp(s) = . Let η̃(u) =max≤|s|≤u |η(s)|. Then η̃ is nondecreasing and

lim
u→+∞

η̃(u)
ϕp(u)

= . (.)

We divide the equation{
–(ϕp(u′

n))′ = λnm(x)f∞ϕp(un) + λnm(x)η(un), a.e. x ∈ (, ),
u() = u() = 
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by ‖un‖ and set vn = un/‖un‖. Since vn are bounded in E, after taking a subsequence if
necessary, we have that vn ⇀ v for some v ∈ E. Moreover, from (.) and the fact that η̃ is
nondecreasing, we have that

lim
n→+∞

η(un(x))
‖un‖p– = ,

since

|η(un(x))|
‖un‖p– ≤ η̃(|un(x)|)

‖un‖p– ≤ η̃(‖un(x)‖)
‖un‖p– .

By the continuity and compactness of F , it follows that{
–(ϕp(v′))′ = λm(x)f∞ϕp(v), a.e. t ∈ (, ),
u() = u() = ,

where λ = lim
n→+∞λn, again choosing a subsequence and relabeling it if necessary.

It is clear that ‖v‖ =  and v ∈ Cν
k ⊆ Cν

k since Cν
k is closed in R× E. Therefore, λf∞ = λk ,

so that λ = λk/f∞. Therefore, Cν
k joins (λk/f, ) to (λk/f∞, +∞). �

Theorem . Let (A) and (A) hold. If f =  and f∞ ∈ (, +∞), then for any λ ∈
(λk/f∞, +∞), problem (.) has at least two solutions u+k and u–k such that u+k has exactly
k –  simple zeros in (, ) and is positive near , and u–k has exactly k –  simple zeros in
(, ) and is negative near .

Proof If (λ,u) is any solution of problem (.) with ‖u‖∞ �= , dividing problem (.) by
‖u‖(p–)∞ and setting w = u/‖u‖∞ yields

{
–(ϕp(w′))′ = λm(x)( f (u)

‖u‖(p–)∞
) in (, ),

w() = w() = .
(.)

Define f̃ :R →R by

f̃ (w) =

{
‖w‖(p–)∞ f (w/‖w‖∞) if w �= ,
 if w = .

Clearly, problem (.) is equivalent to{
–(ϕp(w′))′ = λm(x)̃f (w) in (, ),
w() = w() = .

(.)

It is obvious that (λ, ) is always the solution of problem (.). On the other hand, we have
that

f̃ = lim
w→

f̃ (w)
ϕp(w)

= lim
w→

‖w‖(p–)f (w/‖w‖)
ϕp(w)

= lim|u|→+∞
f (u)
ϕp(u)

= f∞.

Similarly, we can also show that f̃∞ = f.

http://www.journalofinequalitiesandapplications.com/content/2013/1/577
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Now, applying Theorem . of [] and the inversion w → w/‖w‖∞ = u, we can achieve
the conclusion. �

The following result is a direct corollary of Theorem . of [].

Theorem . Let (A) and (A) hold. If f =  and f∞ = +∞, then for any λ ∈ (, +∞),
problem (.) has two solutions u+

k and u–k such that u+k has exactly k –  simple zeros in
(, ) and is positive near , and u–k has exactly k –  simple zeros in (, ) and is negative
near .

Theorem . Let (A) and (A) hold. If f = +∞ and f∞ ∈ (, +∞), then for any λ ∈
(,λ/f∞), problem (.) has two solutions u+k and u–k such that u+k has exactly k –  sim-
ple zeros in (, ) and is positive near , and u–k has exactly k –  simple zeros in (, ) and
is negative near .

Proof By an argument similar to Theorem . and the conclusion of [, Theorem .], we
can obtain the conclusion. �

Next, we shall need the following topological lemma.

Lemma . (see []) Let X be a Banach space and let Cn be a family of closed connected
subsets of X. Assume that:

(i) there exist zn ∈ Cn, n = , , . . . , and z∗ ∈ X such that zn → z∗;
(ii) rn = sup{‖x‖|x ∈ Cn} = +∞;
(iii) for every R > , (

⋃+∞
n= Cn)∩ BR is a relatively compact set of X , where

BR =
{
x ∈ X|‖x‖ ≤ R

}
.

Using Theorem ., Lemma . and a similar method to prove [, Theorems . and
.] with obvious changes, we may obtain the following two theorems.

Theorem . Let (A) and (A) hold. If f = +∞ and f∞ = +∞, then there exists λ+ > 
such that for any λ ∈ (,λ+), problem (.) has two solutions u+k, and u

+
k, such that they have

exactly k – simple zeros in (, ) and are positive near . Similarly, there exists λ– >  such
that for any λ ∈ (,λ–), problem (.) has two solutions u–k, and u–k, such that they have
exactly k –  simple zeros in (, ) and are negative near .

Theorem . Let (A) and (A) hold. If f =  and f∞ = , then there exists λ+∗ >  such
that for any λ ∈ (λ+∗ , +∞), problem (.) has two solutions u+k, and u+k, such that they have
exactly k – simple zeros in (, ) and are positive near . Similarly, there exists λ–∗ >  such
that for any λ ∈ (λ–∗ , +∞), problem (.) has two solutions u–k, and u–k, such that they have
exactly k –  simple zeros in (, ) and are negative near .
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