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Abstract

In this paper we continue to study two-dimensional analogues of Bernstein-Walsh
estimates for arbitrary Jordan domains.
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1 Introduction and main results
Let G C C be a finite region, with 0 € G, bounded by a Jordan curve L := 3G, A := {w:
lw| > 1}, Q := ext G (with respect to C). Let w = ®(z) be the univalent conformal mapping
of Q onto the A normalized by ®(c0) = 0o, ®'(0c0) > 0,and W := d7L,
Let g, denote the class of arbitrary algebraic polynomials P, (z) of degree at most n € N.
Let A,(G), p > 0, denote the class of functions f which are analytic in G and satisfy the

condition

1/p
If 4y = (/:/G[f(z)vg daz> <00,

where o denotes a two-dimensional Lebesgue measure.
When L is rectifiable, let £,(L), p > 0, denote the class of functions f which are integrable
on L and satisfy the condition

1/p
il zpr) = </L‘ [f(z)|p|dz|> < 00.

From the well-known Bernstein-Walsh lemma [1, p.101], we see that
Pu(2)] < |2@)|"|IPullcigy 2z€ R (L1)

For R > 1, let us set Ly := {z : |®(z)| = R}, Gg := intLp, Q := extLg. Then (1.1) can be
written as follows:

1Pl @y <RIl ey (1.2)

Hence, setting R=1+ %, according to (1.2), we see that the C-norm of a polynomial P,(z)
in Gg and G is equivalent, i.e., the norm ||P,, @Gy increases with no more than a constant
with respect to || Py |l ¢(g)-
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In the case when L is rectifiable, a similar estimate of (1.2) type in space £,(L) was ob-
tained in [2] as follows:

1
1Pl 2per) < R™FI1Pallcyyy P> 0. (13)

The Berstein-Walsh type estimation for regions with quasiconformal boundary [3, p.97]
in the space A,(G), p > 0, is contained in [4]:

n+l
1Pally 6y < 2R IPal p>0, (L4)

Ap(G)?
where R* :=1 + ¢;(R-1) and ¢; > 0, ¢ = cp(c1, p, G) > 0 are constants. Therefore, if we
choose R=1+ %3, then (1.4) we can see that the A,-norm of polynomials P,(z) in Gr and
G is equivalent.

In this work, we study a problem similar to (1.4) in A,(G), p > 0, for regions with arbitrary
Jordan boundary.

Now we can state our new result.

Theorem 1.1 Let p > 0; G be a Jordan region. Then, for any P, € g,, Ry =1+ % and arbi-
trary R, R > Ry, we have

2

n+ =

P p
” n ”AP(GR) S C4R ”Pn ”Ap(GRl), (15)

where ¢4 = (ﬁ)}“ [1+0(1)], n— oo.
The sharpness of (1.5) can be seen from the following remark:

Remark 1.1 For any # =1,2,..., there exist a polynomial P} € g,, region G* C C and
number R>R; =1+ % such that

il = (55) % 1
"Mapep — \er -1 n Ap<G}§1>' )

2 Some auxiliary results
Let G C Cbe afinite region bounded by the Jordan curve L. Let Lg := {z: |®(z)| = R,R > 1},
G, :=intL;, Q; := extL;.

We note that, throughout this paper, ¢;, ¢y, . .. (in general, different in different relations)

are positive constants.

Lemma 2.1 Letp > 0; f be an analytic function in |z| > 1 and have a pole of degree at most
n,n>1atz=o00. Then, for any Ry and R > Ry, we have

np+2 _ R”P+2

1
R 2N
W lap@ictzi<ny <\ =) W lla,a<izicry- 21

R

Proof The function g(z) := % is analytic in |z| > 1 and continuous in |z| > 1. Applying

Hardy’s convexity theorem [5, p.9: Th.1.5], for any arbitrary R; and R (R > R;), and p, s
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such that R; < p <R, 1< s < Ry, we can write

(z (2)
/ O ) < < [ 1O 4, (22)
lzl=p| 7" b lzI=Ry | 2" p
f SO 4 < f 1O g, (2.3)
lzl=Ry | 7" 5 |zl=s z’”p
respectively. Thus,
z
f @) 1dz] < p™* f 1D F g, (2.4)
lzl=p lzl=Ry | 2" p
gl / AP <[ P, 2.5)
lzl=Ry | 2" P |z]=s
Integrating (2.4) over p from R; to R, and (2.5) over s from 1 to R;, we get
R P 1 2 np+2 f(Z)
[ ] r@liaas = wrr-rr?) [ dal,
R Jidl=p np +2 =Ry | 71 5
1
(RYP** -1) /@ |d | < If (2)|" |dz| ds.
1
np +2 jel=Ry | 25 1 Jiz=s
After calculation we have
Rnp+2 _ R”’I"r2
// [f(z) |p do, < np+2 // (z)| do,, (2.6)
Ri<|z|<R 1<|z|<Ry
and we see that (2.1) is true. O
Corollary 2.2 Under the assumptions of Lemma 2.1 for Ry =1 + -, we have
n+ 2
I 4, Ry<tzi<r) < 1R P |If |4y (1<121<Ry)» (2.7)
where ¢, := c(p,n) = (dj—)}’ (1+0(3)], n— oo.
Proof Let us put
Rp+2 _R”’P+2 1 — (RLynp+2
SP = SP(R,Rl,n,p) = # = Rnp+2 . VI(J+)’
R -1 R -1
and taking Ry =1 + %, we have
1-— Ri \np+2 Rnp+2
G <— . (2.8)
(1 + ;)le+2 -1

Sp — Rnp+2 .
1+ Lywr2-1

According to the right-hand side of the well-known estimation (see, for example, [6, p.52

(Problem 170)])
(2.9)
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we have

1 np+2 1 np e p 1 p
1+— >(1+=) >le- =€l (1- > (& -
n n 2n+1 2n+1

where
2 1
—<g,:=1- -1, n—> o0
3 2n+1
Therefore
SP<-——£——RW”2=RW”—3—-1+O 1 , n— 00.
~ (eue) -1 e’ -1 n

From (2.8) and (2.11) we complete the proof.
Remark 2.1 For the polynomial Q,(z) =z", Ry =1+ % and any R > Ry,
n+2
1Qulla, @& <lzi<r) = 2R P [|Qulla, (<z1<ry)s

where ¢, := ¢y (p, n) := (e%_l)ll’ 1- O(%)], n— oo.

Proof Really, from (2.6) we get

R 2
SP = R ﬂ - R"P*2. i,
1+ Lywr2 -1 1+ Lywr2 -1
where
R np+2
e (ﬁ) — 0, n—o0.

According to the left-hand side of (2.9), we obtain

1 np+2 1 np 1 2 e P
1+ — ={1+— 1+—) <|e- N
n n n 2n+2

where

1\2
nn::(1+—) —1, n— oo

Therefore,

1-38,
nue? —1

— Rnp+2 . 1 _ 5”
e =1 n,ef —1

Sp > Rnp+2 .

e,

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Page 4 of 7


http://www.journalofinequalitiesandapplications.com/content/2013/1/570

Abdullayev and Ozkartepe Journal of Inequalities and Applications 2013, 2013:570 Page 5 of 7
http://www.journalofinequalitiesandapplications.com/content/2013/1/570

o o] o
e’ -1 n
= R"*2. 1_1 |:1 O<n>i| n— 00. 0

Corollary 2.3 For f = P,, we have

2
n+ %
1Pull 4, (z1<r) < €3R™P [Pyl ay(121<ry)s

S

where c3 := c3(p, n) := (ﬁ) 1+ O(%)], n— 00.

Proof Really, (2.1) implies, for any f = P,,,

<SP.

”P ”Ap (R1<|z|<R) — ”P ”Ap (1<|z|<Ry)*

Adding || P, ||p to the both sides, we obtain

(Izl<Ry)

V4 p p
= S ”Pn”Ap (1<|z|<R7) + ”P"”Ap(|z|<R1)

<2max{$”,1} - |IP, ||p (I21<Ry)"

”P ”Ap (|z|<R)

Passing to the limitas R; =1 + % — 1, from (2.11) we obtain

2 1 )
”P ”Ap (lz|<R) = —ep 1 |:1 + O(;):| - R"P* ||P ||Ap (Izl<Ry)* O

3 Proof of the theorem

Proof First of all, let us convince ourselves that for the proof of (1.5) it is sufficient to show
the fulfilment of estimation

2
I1Pulla,(Gr\Gry) = cR"P I1Pull4,(Gr,\G) (3.1

for some constant ¢ = c(p, R;) > 0 independent of R and n. Really, let (3.1) be true. Then

IIPnIIip(GR\GR ) SERP|P, II’” (Gr\G)* (32)
Now, we will add to both sides || P, ”ip(GRl):
1Palls, Gy < c’”R””*ZIIPnIIi’,p(le\G) + IIPnllﬁp(GR)
< ’R"P*2||P, |1 G\ * PR\ Pyl (Gry)
= ZCPRnp+2||Pn||ip(GRl). (3.3)

Therefore,

1 2
1Pl apiGr) = 2P cR"" P 1Pollay(Gr,)-
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Now, let us make a proof of (3.1).

For the p > 0, let us set

AN

Suw) =Py (W) [W'W)]7, w=d(2).

The function f, is analytic in A and has a pole of degree at most n at w = co. Then, accord-

ing to Lemma 2.1, we have

p p
|lfn||Ap(Rl<\w|<R) <S(R, Rl’n’p)”ﬂ’”Ap(k\kal)’

where
T R;1p+2 -1 - R;lp+2 -1 ‘
Then

//GR\GRI |P.(2)|f do, = /‘/meﬂlfn(w)vdaw
< s //1<W|<Rllﬁ,(w)|pdaw

1
§R”p*2-—// P,(2)|! do,.
R;zp+2 -1 GRl\G} n } z

Therefore,

/ / |Pu(2)|” do, < 2R"** . % / / |Pu(2)|” do.. (3.4)
Gr Rlp -1 GRl

Taking R; =1+ %, from (2.9) and (2.11) we get

1 1 1
o)) e 85
RIP -1 e -1 n

Now, from (3.4) and (3.5) we complete the proof. O

3.1 Proof of the remark

Proof Let P} =2",G*=B:={z:|z|] <1} and R < jffl. Then
* || P _ n|P
Il = [T e
_ 2 p-(np+2) p
=R R Hpjz ||Ap(G;1)
__R 2 p
= W . R"P* HP:; ||Ap(G}}1)' (3.6)
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ForR; =1+ %, from (2.9) we obtain

1\"”%
1+ - <le-
n 2n+2

1\2
<1+—) <4,
n

Then
R R

7

Ry
and

» R 2 p

||Pz ||Ap(6§) > ) R HP: ”Ap(G};l)'

In particular, for R = 57{71

n

4pGR el —1
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