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1 Introduction
The abstract characterization given for linear spaces of bounded Hilbert space operators
in terms of matricially normed spaces [1] implies that quotients, mapping spaces and var-
ious tensor products of operator spaces may again be regarded as operator spaces. The
proof given in [1] appealed to the theory of ordered operator spaces [2]. Effros and Ruan
[3] showed that one can give a purely metric proof of this important theorem by using a
technique of Pisier [4] and Haagerup [5]. The theory of operator spaces has an increasingly
significant effect on operator algebra theory (see [6, 7]).

The stability problem of functional equations originated from a question of Ulam [8]
concerning the stability of group homomorphisms. The functional equation

flx+y)=fx)+f(y)

is called the Cauchy additive functional equation. In particular, every solution of the
Cauchy additive functional equation is said to be an additive mapping. Hyers [9] gave the
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by Aoki [10] for additive mappings and by Rassias [11] for linear mappings
by considering an unbounded Cauchy difference. A generalization of the Rassias theorem
was obtained by Gavruta [12] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Rassias’ approach.
In [13], Gilanyi showed that if f satisfies the functional inequality

12£@) + 2 0) = f (™) | = [ ey

’

then f satisfies the Jordan-von Neumann functional equation

2f (%) +2f(9) = f(xy) + f (xy7").
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See also [14]. Gildnyi [15] and Fechner [16] proved the Hyers-Ulam stability of the above
functional inequality.
Park et al. [17] proved the Hyers-Ulam stability of the following functional inequalities:

Hf(x) +f(y) +f(2) || < Hf(x +y+2)|, 1)

Zf(g +z)

In the sequel, we adopt the usual terminology, notations and conventions of the theory

[f ) +£0) +2f(2)] <

’. (1.2)

of random normed spaces, as in [18—21]. Throughout this paper, A* is the space of dis-
tribution functions, that is, the space of all mappings F : R U {-00, 00} — [0,1] such that
F is left-continuous and non-decreasing on R, F(0) = 0 and F(+o0) = 1. D* is a subset of
A* consisting of all functions F € A* for which ["F(+00) = 1, where /" f(x) denotes the left
limit of the function f at the point x, that is, [”f(x) = lim,_, .- f(¢). The space A* is partially
ordered by the usual point-wise ordering of functions, i.e., F < G if and only if F(¢) < G(t)
for all ¢ in R. The maximal element for A* in this order is the distribution function &g

given by

0 ift<o,
1 ift>0.

go(t) =

Definition 1.1 ([20]) A mapping 7 : [0,1] x [0,1] — [0, 1] is a continuous triangular norm
(briefly, a continuous t-norm) if 7T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(¢) T(a,1)=aforalla €[0,1];

(d) T(a,b) <T(c,d) whenevera <cand b <dforalla,b,cd e [0,1].

Definition 1.2 ([21]) A random normed space (briefly, RN-space) is a triple (X, u, T),
where X is a vector space, T is a continuous t-norm and p is a mapping from X into
D* such that the following conditions hold:

(RN7) px(t) = €o(2) for all £ > 0 if and only if x = 0;
(RN3) fhax(t) = ux(ﬁ) forallx € X, a #0;
(RN3) flary(t +5) = T(px(t), py(s)) for allx,y € X and all £,5 > 0.

Every normed space (X, || - ||) defines a random normed space (X, i, Tar), where

¢
£+ [lx]l

M (2)

for all £ > 0, and Ty, is the minimum ¢-norm. This space is called the induced random

normed space.

Definition 1.3 Let (X, u, T') be an RN-space.
(1) A sequence {x,} in X is said to be convergent to x in X if, for every € >0 and A > 0,
there exists a positive integer N such that p,_x(€) >1 — A whenever n > N.
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(2) A sequence {x,} in X is called a Cauchy sequence if, for every € > 0 and A > 0, there

exists a positive integer N such that p,_y, (€) >1— A whenever n > m > N.

—Xm

(3) An RN-space (X, u, T) is said to be complete if and only if every Cauchy sequence in

X is convergent to a point in X.

Theorem 1.4 ([20]) If (X, u, T) is an RN-space and {x,} is a sequence such that x, — x,
then limy,_, oo [y, (t) = y(2) almost everywhere.

We introduce the concept of matrix random normed space.

Definition 1.5 Let (X, u, T) be a random normed space. Then
1) (X, {u"™}, T) is called a matrix random normed space if for each positive integer #,

(M,(X), ™, T) is a random normed space and MX?:B(” > ul( IIAHfHBII) forall ¢ >0,
A e My ,(R), x = [x;] € M,(X) and B € M,,x(R) with ||A] - | B]| #0.
2) (X, {u"™}, T) is called a matrix random Banach space if (X, j1, T) is a random

Banach space and (X, {1£"}, T) is a matrix random normed space.

Let E, F be vector spaces. For a given mapping / : E — F and a given positive integer n,
define &, : M,,(E) — M, (F) by

hy ([xL]]) = [h(xlj)]

for all [x;] € M, (E).

Let X be a set. A function d : X x X — [0,00] is called a generalized metric on X if d
satisfies

(1) d(x,y)=0if and only if x = y;

(2) d(x,y) =d(y,x) for all x,y € X;

(3) d(x,2) <d(x,y) +d(y,z) for all x,9,z € X.

We recall a fundamental result in fixed point theory.

Theorem 1.6 ([22, 23]) Let (X,d) be a complete generalized metric space, and let ] : X —
X be a strictly contractive mapping with a Lipschitz constant o < 1. Then, for each given
element x € X, either

d(]nx’]m—lx) =00

for all nonnegative integers n or there exists a positive integer ng such that
1) d(™x,J"1x) < o0, Yn > ny;
(2) the sequence {J"x} converges to a fixed point y* of J;
(3) y* is the unique fixed point of ] in the set Y ={y € X | d(J"x,y) < oo};
(4) dy,y") < Z5d,Jy) forally € Y.

The stability problem in a random normed space was considered by Mihet and Radu
[24]; next some authors proved some stability results in random normed spaces by differ-
ent methods (see [25-27]).

In 1996, Isac and Rassias [28] were the first to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. By
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using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [29-34]).

Throughout this paper, let X be a normed space and (Y, {11}, T) be a matrix random
Banach space. In Section 2, we prove the Hyers-Ulam stability of the Cauchy additive func-
tional inequality (1.1) in matrix normed spaces by using the direct method. In Section 3, we
prove the Hyers-Ulam stability of the Cauchy-Jensen additive functional inequality (1.2)
in matrix normed spaces by using the fixed point method.

2 Hyers-Ulam stability of the Cauchy additive functional inequality

In this section, we prove the Hyers-Ulam stability of the Cauchy additive functional in-
equality (1.1) in matrix random normed spaces by using the fixed point method.
Theorem 2.1 Let ¢ : X3 — [0, 00) be a function such that there exists a < 1 with

¢(a,b,c) < %(,0(261, 2b,2c)

foralla,b,ce X. Let f : X — Y be an odd mapping satisfying

) (t) > min{ 1) L t (2.1)
(L) fo D 41 (L2 ) ) = R ACY S S )
SJorall t >0 and x = [x;],y = [y],z = [z;5] € Mu(X). Then A(a) := lim;_ 2’]’(%) exists for
each a € X and defines an additive mapping A : X — Y such that

21— a)t

DA, (i) () = 2.2
)=l () = 201 —a)t + m2a o (g, x5, —24;) 22

Sforallt>0 and x = [x;] € M,(X).
Proof Let n=1. Then (2.1) is equivalent to

. t t
Kt (@)+f B)+f (o) (£) = mln{ Hf(arbeo) (5) —_— } (2.3)

"t+¢la, b,c)
forallt>0anda,b,ccX.
Letting b = a and ¢ = —2a in (2.3), we get

Hrea-2f @) (E) = (2.4)

t+ola,a,-2a)
and so

t t

Kfa)-2(5)(8) = > — (2.5)
f@-2(3) t+¢(%,%,-a) ~ t+%¢(a,a,—2a)

forallt>0anda € X.

Consider the set

S={g: X—>Y}
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and introduce the generalized metric on S:

d(g,h) = inf{v e R Ug@)-n@ (V) = VYa € X,Vt > 0},

t+¢la,a,—2a) ’

where, as usual, inf ¢ = +00. It is easy to show that (S, d) is complete (see the proof of [24,
Lemma 2.1]).
Now we consider the linear mapping J : S — S such that

Jg(a) := 2g<g)

foralla € X.
Let g, 1 € S be given such that d(g, i) = ¢. Then

_ &t) > —
Mg(a)-h(a) (L) = PR

foralla € X and ¢ > 0. Hence

Wg(a)-h(@)(XEE) = [hog(2)-2(g)(et) = Mg(%)-h(§)(%€t>
at at
> 2 > 2
T Y1 05,5-a) T §+5Sela,a,-2a)
t
Tte ol(a,a,—2a)

foralla € X and ¢ > 0. So d(g, k) = ¢ implies that d(Jg, /i) < ae. This means that

d(Jg,Jh) < ad(g, h)
forallg,h e S.
It follows from (2.5) that d(f, Jf) < 5.

By Theorem 1.6, there exists a mapping A : X — Y satisfying the following:
(1) A isafixed point of ], i.e.,

a 1

A(—) = —Ala)
2 2

for all @ € X. The mapping A is a unique fixed point of J in the set
M={geS:d(f,g) < oo}
(2) d(J'f,A) — 0 as [ — oo. This implies the equality
. 1 ay
zl—lfgozf(?) =A@

forall a € X.

Page 5 of 12
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(3) d(f,A) < ﬁd(f,]f), which implies the inequality

o

,A) < .
af )<2—2a

(2.6)

By (2.3),

t

>
a b a+b

I
Hotrashy_olray _gipby(2E) 2 —————F———
Zf(“z*,)Zf(Z%)2f(27)( ) tro(s, B2

foralla,b € X and ¢ > 0. So

ST

t) >
lef(‘lleb)—Zlf(zﬁ[)*ﬂf(z%)( )= ,b,—a - b)

N

t ol
o+ o9l

i
for all a,b € X and ¢ > 0. Since lim;_, o, 12—1 =1foralla,be X and ¢t >0,
ﬁ + %w(ﬂ,b,—a—b)

MA(a+b)-Ala)-Aw) (E) =1

for all a,b € X and ¢ > 0. Thus A(a + b) — A(a) — A(b) = 0. So the mapping A : X — Y is
additive.

We note that e; € M ,(R) is that jth component is 1 and the others are zero, E; € M,(R)
is that (i,j)-component is 1 and the others are zero, and E; ® x € M,(X) is that (i, )-
component is x and the others are zero. Since M’g;()]@x(t) = (), we have

(n)

(n)
Moy

t) = "
®) MZi,j:IEi/@xii

" (©) = min{ue, (6):j=1,2,...,n}

= min{ iy, (&) :i,j = 1,2,...,n},

where ¢ = ZZFI tij. So /Lg:?i](t) > min{py;(55) 16,/ =1,2,...,n}.
By (2.6),

(n) . A
Il -An(ig) () = mm{“ﬂxi/)—fﬂxw (;) hj=12....n }

. 2(1-a)t .
> min 2,j=12,...,n
2(1 - a)t + nPag(xy, x4, —2x;)

- 2(1 - o)t
T 20— o)t + mPa YT (g xy, —2x)

for all x = [x;] € M,,(X). Thus A : X — Y is a unique additive mapping satisfying (2.2), as
desired. 0

Corollary 2.2 Letr,0 be positive real numbers withr > 1. Letf : X — Y be an odd mapping
satisfying

)
Il i) iz ()

t t
zmln{ﬂ;rz[x,rerz])(_); 7 - ; - } (2.7)
TN 2 ) e+ 3 Oy 7+ Nyl + llziill”)
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SJorall t >0 and x = [x;],y = [yij],z = [z;] € M(X). Then A(a) :=lim;_ 2’]‘(%) exists for
each a € X and defines an additive mapping A : X — Y such that

(2" -2)¢t
(2r _ Z)t + n2(2 + 2r) ZZ/:I 0 ”xl]“r

Ifo () -An (L) (8) =

Sforallt >0 and x = [x;] € M,(X).

Proof The proof follows from Theorem 2.1 by taking ¢(a,b,c) = 0(||la|” + ||b]|" + |Ic||") for
all a4, b, ¢ € X. Then we can choose « = 21" and we get the desired result. O

Theorem 2.3 Let f : X — Y be an odd mapping satisfying (2.1) for which there exists a
Sfunction ¢ : X3 — [0,00) such that there exists a < 1 with

abc
)b¢ 52 N’ A’ A
<2 %.0.9)

foralla,b,c € X. Then A(a) := lim;_, o %f(2la) exists for each a € X and defines an additive
mapping A : X — Y such that

2(1 - )t
t) Z 2 n
20-a)t+n Zi,j:l @ (i, %55, —2x;7)

Wt (i =An () (

forallt >0 and x = [x;;] € M,(X).

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping J : S — S such that

Jg(a) := 2g<g>

foralla e X.
It follows from (2.4) that d(f,Jf) < % So

A :
WA =5 0

The rest of the proof is similar to the proof of Theorem 2.1. g

Corollary 2.4 Let r, 6 be positive real numbers with r < 1. Let f : X — Y be a mapping
satisfying (2.7). Then A(a) := lim;_, o 27(%) exists for each a € X and defines an additive
mapping A : X — Y such that

2-2"t
@ -2+ 22+ 2) 31, Oyl

Ifo () -An (L) (8) =

Sforallt>0 and x = [x;] € M,(X).

Proof The proof follows from Theorem 2.3 by taking ¢(a, b,c) = 6(||a||” + ||b]|" + ||c||") for
all a4, b, ¢ € X. Then we can choose « = 2"~! and we get the desired result. O
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3 Hyers-Ulam stability of the Cauchy-Jensen additive functional inequality
In this section, we prove the Hyers-Ulam stability of Cauchy-Jensen additive functional
inequality (1.2) in matrix random normed spaces by using the fixed point method.

Theorem 3.1 Let ¢ : X3 — [0, 00) be a function such that there exists a < 1 with
o
¢(a,b,c) < 5¢(2a, 2b,2¢)
foralla,b,ce X. Let f : X — Y be an odd mapping satisfying
i ®
LA ET AT A(PEM)

> min{pc(") (%) ! } (3.1)
a an([w+zzj]) 3 ’ t+ szﬂ w(xlj,yij,zij) '

SJorall t >0 and x = [x;],y = [y],z = [z;] € M(X). Then A(a) :=lim;_ 27(%) exists for
each a € X and defines an additive mapping A : X — Y such that

Iy )-Ang) (£) = 2 _na)t (3.2)
et ~2(1 - a)t + nca Zi,j:l @ (xij, %45, —x37)
SJorallt>0 and x = [x;] € M,(X).
Proof Let n =1. Then (3.1) is equivalent to
2t t
(@) +f (b)+f 2¢) (E) = Ming oo asp = T N (3.3)
f(a)+f (b)+f (2¢) 2f (%57 +c) 3 t+(p(6le)
forallt>0anda,b,ce X.
Letting b = a and ¢ = —a in (3.3), we get
t
_ t)y> ——, 3.4
Hra)-2f@)(E) = P pp— (3.4)
and so
t t
Pfa)-2r(5)(8) = > (3.5)

t+9(3,5,-5) ~ t+35¢(aa-a)

forallz>0anda € X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping J : S — S such that

Jg(a) := 2g<§)

foralla e X.
Let g, i € S be given such that d(g, &) = ¢. Then

t
_ et) > ——
Mg(a)-h(a)(et) = P p—

Page 8 of 12
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foralla € X and ¢ > 0. Hence

o
Wig(a)-Jh(a) (XEE) = Mog(a) an(a)(aet) = Mg(ﬁ)—h(;‘)(g”)

Z at Z a a Z at o
5+9(55-3) " 5 +39@a-a)

t+gla,a-a)
foralla € X and £ > 0. So d(g, k) = ¢ implies that d(Jg, Jh) < ae. This means that
d(lg,Jh) < ad(g, h)
forallg,h e S.
It follows from (3.5) that d(f, Jf) < 5.

By Theorem 1.6, there exists a mapping A : X — Y satisfying the following:
(1) A isafixed point of J, i.e.,

a 1
AlZ)=:z4
(5)-34@
for all @ € X. The mapping A is a unique fixed point of J in the set
M={geS:d(f,g) < oo}
(2) d(J'f,A) — 0 as [ — oo. This implies the equality
e
llgng(;) =Ala)

foralla e X.
(3) d(f,A) < ﬁd(f,]f), which implies the inequality

d(f,A) < 5 _“20[. (3.6)

By (3.3),

t
l
Molecarhy_olecay ot by (2°F) >
2f(21)2f(21)2f(21)( ) t+¢(%:§;—:l+f;)

foralla,b e X and ¢ > 0. So

N~

le atby_olecay_olg( b (t)Z
f( 2[) f(Zl) f(Zl) é"'(;_ll(p(ﬂ,b,—%ﬁ)

&t
forall a,b € X and ¢ > 0. Since lim;_, o, 12—1 =1foralla,be X andt>0,
;tl + %q)(a,b,—a—b)

HA(arb)-A@)-Ap)(£) =1
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for all a,b € X and ¢ > 0. Thus A(a + b) — A(a) — A(b) = 0. So the mapping A : X — Y is
additive.
By (2.6),

o) > mi L) =12
)~ (8 = TN A )-AGwy) 2 )T s

2(1 - )t
2(1 - a)t + n2ag(xj, x5, —x;)
- 2(1 - a)t
T 2(L-a)t+ma Y (g, a, =)

Zmin{ :i,j=1,2,...,n}

for all x = [x;] € M,,(X). Thus A : X — Y is a unique additive mapping satisfying (3.2), as
desired. 0

Corollary 3.2 Letr, 0 be positive real numbers withr > 1. Letf : X — Y be an odd mapping
satisfying

(n)
g e /(1225 ()

> min{u(") (3.7)

A\ 3 ) e+ 30 Ol + g + Nz ")

Sforall t >0 and x = [x;],y = [yi],z = [z;] € Mp(X). Then A(a) :=lim;_, 2’]”(%) exists for
each a € X and defines an additive mapping A : X — Y such that

(2" -2)t
(27 —2)t + 3n? ZZ/:I Ol |l”

Kol ~An(l) () =

Sforallt>0 and x = [x;] € M,(X).

Proof The proof follows from Theorem 3.1 by taking ¢(a,b,c) = 0(||la||” + ||b]|" + ||c||") for
all @, b,c € X. Then we can choose « = 2" and we get the desired result. 0

Theorem 3.3 Let f : X — Y be an odd mapping satisfying (3.1) for which there exists a
Sfunction ¢ : X3 — [0,00) such that there exists a < 1 with

abc
)b) <2 N’ A’ A
s <2as(52.)

foralla,b,c € X. Then A(a) := lim;_, « % f(2la) exists for each a € X and defines an additive
mapping A : X — Y such that

2(1 - )t

1-a)t+n? szzl (x5, X3, —%i7)

Pefuleg~An () (£) = 2

Sforallt>0 and x = [x;] € M,(X).

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem 2.1.
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Now we consider the linear mapping J : S — S such that

Jg(a) := 2g<g>

foralla € X.
It follows from (3.4) that d(f, Jf) < % So

1
2-2a

d(f,A) <
The rest of the proof is similar to the proof of Theorem 3.1. d

Corollary 3.4 Let r, 6 be positive real numbers with r < 1. Let f : X — Y be a mapping
satisfying (3.7). Then A(a) := lim;_, o 21f(§) exists for each a € X and defines an additive
mapping A : X — Y such that

2-2"t
2 -2t +3n Z;fjﬂ 0 llx;11"

Iefu(legD-Anleg)) (£) = (

Sforallt >0 and x = [x;] € M,(X).

Proof The proof follows from Theorem 3.3 by taking ¢(a, b,c) = 6(|lall” + ||b]|" + ||c||") for
all a4, b, ¢ € X. Then we can choose « = 2"~! and we get the desired result. O

Competing interests
The author declares that she has no competing interests.

Received: 15 July 2013 Accepted: 29 October 2013 Published: 27 Nov 2013

References
1. Ruan, Z-J: Subspaces of C*-algebras. J. Funct. Anal. 76, 217-230 (1988)
2. Choi, M-D, Effros, E: Injectivity and operator spaces. J. Funct. Anal. 24, 156-209 (1977)
3. Effros, E, Ruan, Z-J: On the abstract characterization of operator spaces. Proc. Am. Math. Soc. 119, 579-584 (1993)
4. Pisier, G: Grothendieck’s Theorem for non-commutative C*-algebras with an appendix on Grothendieck’s constants.
J.Funct. Anal. 29, 397-415 (1978)
Haagerup, U: Decomp. of completely bounded maps. Unpublished manuscript
. Effros, E: On Multilinear Completely Bounded Module Maps. Contemp. Math., vol. 62, pp. 479-501. Am. Math. Soc,,
Providence (1987)
. Effros, E, Ruan, Z-J: On approximation properties for operator spaces. Int. J. Math. 1, 163-187 (1990)
. Ulam, SM: A Collection of the Mathematical Problems. Interscience, New York (1960)
Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
10. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64-66 (1950)
11. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
12. Gavruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal.
Appl. 184, 431-436 (1994)
13. Gilanyi, A: Eine zur Parallelogrammgleichung dquivalente Ungleichung. Aequ. Math. 62, 303-309 (2001)
14. Ratz, J: On inequalities associated with the Jordan-von Neumann functional equation. Aequ. Math. 66, 191-200
(2003)
15. Gildnyi, A: On a problem by K. Nikodem. Math. Inequal. Appl. 5, 707-710 (2002)
16. Fechner, W: Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequ.
Math. 71, 149-161 (2006)
17. Park, C, Cho, Y, Han, M: Functional inequalities associated with Jordan-von Neumann type additive functional
equations. J. Inequal. Appl. 2007, Article ID 41820 (2007)
18. Chang, SS, Cho, Y, Kang, S: Nonlinear Operator Theory in Probabilistic Metric Spaces. Nova Publ,, New York (2001)
19. Cho, Y, Rassias, TM, Saadati, R: Stability of Functional Equations in Random Normed Spaces. Springer Optimization
and Its Applications, vol. 86. Springer, Berlin (2013)
20. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. North-Holand, New York (1983)
21. Sherstnev, AN: On the notion of a random normed space. Dokl. Akad. Nauk SSSR 149, 280-283 (1963) (in Russian)

O 0 N o wn


http://www.journalofinequalitiesandapplications.com/content/2013/1/569

Lee Journal of Inequalities and Applications 2013, 2013:569
http://www.journalofinequalitiesandapplications.com/content/2013/1/569

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Cadariu, L, Radu, V: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4(1),
Article ID 4 (2003)

Diaz, J, Margolis, B: A fixed point theorem of the alternative for contractions on a generalized complete metric space.
Bull. Am. Math. Soc. 74, 305-309 (1968)

Mihet, D, Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math.
Anal. Appl. 343, 567-572 (2008)

Cho, Y, Kang, S, Saadati, R: Nonlinear random stability via fixed-point method. J. Appl. Math. 2012, Article ID 902931
(2012)

Mihet, D, Saadati, R: On the stability of the additive Cauchy functional equation in random normed spaces. Appl.
Math. Lett. 24, 2005-2009 (2011)

Mihet, D, Saadati, R, Vaezpour, SM: The stability of the quartic functional equation in random normed spaces. Acta
Appl. Math. 110, 797-803 (2010)

Isac, G, Rassias, TM: Stability of vr-additive mappings: applications to nonlinear analysis. Int. J. Math. Math. Sci. 19,
219-228 (1996)

Cadariu, L, Radu, V: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346,
43-52 (2004)

Cadariu, L, Radu, V: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed
Point Theory Appl. 2008, Article ID 749392 (2008)

Mirzavaziri, M, Moslehian, MS: A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc. 37,
361-376 (2006)

Park, C: Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach. Fixed
Point Theory Appl. 2008, Article ID 493751 (2008)

Park, C: Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras.
Fixed Point Theory Appl. 2007, Article ID 50175 (2007)

Radu, V: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4, 91-96 (2003)

10.1186/1029-242X-2013-569
Cite this article as: Lee: Stability of functional inequalities in matrix random normed spaces. Journal of Inequalities
and Applications 2013, 2013:569

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 12 of 12


http://www.journalofinequalitiesandapplications.com/content/2013/1/569

	Stability of functional inequalities in matrix random normed spaces
	Abstract
	MSC
	Keywords

	Introduction
	Hyers-Ulam stability of the Cauchy additive functional inequality
	Hyers-Ulam stability of the Cauchy-Jensen additive functional inequality
	Competing interests
	References


