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1 Introduction

In many problems, it is quite often to seek a particular solution of the minimum-norm
solution of a given nonlinear problem. In an abstract way, we may formulate such problems
as finding a point x* with the property

x* € C such that ||x* || = miél{||x||}, (1.1)
X€E

where C is a nonempty closed convex subset of a real Hilbert space H. In other words, x*
is the (nearest point or metric) projection of the origin onto C,

x* = Pc(0), (1.2)

where P is the metric (or nearest point) projection from H onto C. For instance, the split
feasibility problem (SFP), introduced in [1, 2], is to find a point

x* € C suchthat Ax*e€Q, (1.3)

where C and Q are closed convex subsets of Hilbert spaces H; and H,, respectively, and A
is a linear bounded operator from H; to H,. We note that problem (1.3) can be extended
to a problem of finding

xeD(A)ND(B) suchthat xeA71(0)NB(0), (1.4)

where A : D(A) — E* and B : D(B) — E* are monotone mappings on a subset of a Ba-
nach space E. The problem has been addressed by many authors in view of the applica-
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tions in image recovery and signal processing; see, for example, [3-5] and the references
therein.

A mapping A : C — E* is said to be monotone if for each x, y € C, the following inequality
holds:

(x—y,Ax — Ay) > 0, 1.5)

where C is a nonempty subset of a real Banach space E with E* as its dual. A is said to
be maximal monotone if its graph is not properly contained in the graph of any other
monotone mapping. A mapping A : C — E* is said to be y-inverse strongly monotone if
there exists a positive real number y such that

(x—y,Ax — Ay) > )/||Ax—Ay||2 forallx,y € C, (1.6)
and it is called strongly monotone if there exists k > 0 such that

(x—y,Ax — Ay) > k|x —y||> forallx,ye C. (1.7)
An operator A : C — E is called accretive if there exists j(x — y) € J(x — y) such that

(Ax — Ay, j(x —y)) >0 forallx,yeC, (1.8)

where J is the normalized duality mapping from E into 2F" defined for each x € E by

Joi= {f* € Bl f ) = Il = £}

It is well known that E is smooth if and only if J is single-valued, and if E is uniformly
smooth, then J is uniformly continuous on bounded subsets of E (see [6]). A is called m-
accretive if it is accretive and R(I + rA), the range of (I + rA), is E for all r > 0; and an
accretive mapping A is said to satisfy range condition if

DA)CCC ﬂR(l +7rA) (1.9)

r>0

for some nonempty closed convex subset C of a real Banach space H.

Clearly, the class of monotone mappings includes the class of strongly monotone and
the class of y-inverse strongly monotone mappings. However, we observe that accretive
mappings and monotone mappings have different natures in Banach spaces more general
than Hilbert spaces.

When A and B are maximal monotone mappings in Hilbert spaces, Bauschke et al. [7]
proved that sequences generated from the method of alternating resolvents given by

Xons = J§ (Xan), 1 =0,
ani1 = Jig (%2n) (1.10)

Xon = JB(%2n1), m >0,

where Ji! := (I + £A)™ is the resolvent of A, converge weakly to a point of A™(0) N B(0)
provided that A~1(0) N B~1(0) is nonempty. Note that strong convergence of these methods
fails in general (see a counter example by Hundal [8]).
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With regard to a finite family of m-accretive mappings, Zegeye and Shahzad [9] proved
that under appropriate conditions, an iterative process of Halpern type defined by

KXp1 = Atk + (L—y)Sy, %0, n>0, (1.11)

where «, € (0,1) for all n > 0, u,xy € H, S, := apl + aiJ} + axJ? + -+ + anJN with J =
(I +rA) fora; € (0,1),i=0,1,...,N,and )_,_, a¥ =1, converges strongly to a point in
ﬂf\il A71(0) nearest to i, where {4, : i = 1,2, ..., N} is the set of a finite family of m-accretive
mappings in a strictly convex and reflexive (real) Banach space E which has a uniformly
Géteaux differentiable norm.

In 2009, Hu and Liu [10] also proved that under appropriate conditions, an iterative
process of Halpern type defined by

Xp+l = Oyl + 8;,,96,, + )’nSr,,xn; n=> 0; (112)

where o, 8,, v, € (0,1) with , + 8, + v, =1, forall n > 0, u =x € H, S,,, := aol + arJ} +
ayJ? + -+ +anJY with Ji = (I + rA;)7, for a; € (0,1), i =0,1,...,N,and }_, ;a =1, and
{r,} € (0,00), for A;, i =1,2,...,N, accretive mappings satisfying range condition (1.9),
converges strongly to a point in ﬂf\il A7(0) nearest to u in a strictly convex and reflexive
(real) Banach space E which has a uniformly Gateaux differentiable norm.

A natural question arises whether we can have the results of Zegeye and Shahzad [9] and
Hu and Liu [10] for the class of monotone mappings or not, in Banach spaces more general
than Hilbert spaces?

Let C be a nonempty, closed, and convex subset of a smooth and uniformly convex real
Banach space E. Let A;: C — E* for i = 1,2,...,N be continuous monotone mappings
satisfying range condition (2.1) with F := ﬂZIAi‘l(O) #0.

It is our purpose in this paper to introduce an iterative scheme (see (3.1)) which con-
verges strongly to the common minimum-norm zero of the family {4;,i =1,2,...,N}. Our
theorems improve and unify most of the results that have been proved for this important

class of nonlinear mappings.

2 Preliminaries
Let E be a normed linear space with dimE > 2. The modulus of smoothness of E is the
function pg : [0,00) — [0, 00) defined by

[+ yll + llx =yl

pE(T) = sup{ 2

—1: %l =TIyl = f}~

The space E is said to be smooth if pg(t) >0, VT > 0, and E is called uniformly smooth if

PEW®) _
E[ =0.

The modulus of convexity of E is the function df : (0,2] — [0,1] defined by

and only if lim,_, o+

. X +
k(€)= mf{l - H Ty H dxll =1yl =1Le = llx -yl }

E is called uniformly convex if and only if 6(€) > O for every € € (0,2].
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Let C be a nonempty, closed, and convex subset of a smooth, strictly convex, and reflex-
ive Banach space E with dual £*. A monotone mapping A is said to satisfy range condition
if we have that

DA)CCC ﬂ JIR(J +rA) (2.1)

>0

for some nonempty closed convex subset C of a smooth, strictly convex, and reflexive
Banach space E. In the sequel, the resolvent of a monotone mapping A : C — E* shall be
denoted by Q% := (J + rA)™YJ for r > 0. We know the following lemma.

Lemma 2.1 [11] Let E be a smooth and strictly convex Banach space, C be a nonempty,
closed, and convex subset of E, and A C E x E* be a monotone mapping satisfying (2.1). Let
an be the resolvent of A for {r,} C (0,00) such that lim,_, o r, = 00. If {x,,} is a bounded
sequence of C such that Q2 x,, — z, then z € A™(0).

Let E be a smooth Banach space with dual E*. Let the Lyapunov function ¢ : E X E — R,
introduced by Alber [12], be defined by

d»,%) = |yI1> - 2(y, Jx) + ||x||> forx,y €E, (2.2)

where J is the normalized duality mapping. If E = H, a Hilbert space, then the duality
mapping becomes the identity map on H. We observe that in a Hilbert space H, (2.2)
reduces to ¢(x,y) = ||lx — y||* for x,y € H.

In the sequel, we shall make use of the following lemmas.

Lemma 2.2 [13] Let E be a smooth and strictly convex Banach space, and C be a nonempty,
closed, and convex subset of E. Let A C E x E* be a monotone mapping satisfying (2.1),
A7Y(0) be nonempty and Q? be the resolvent of A for some r > 0. Then, for each r > 0, we
have that

¢ (0 Q') + B(Qxx) < d(po)
forallpe A71(0) and x € C.

Lemma 2.3 [14] Let E be a smooth and strictly convex Banach space, C be a nonempty,
closed, and convex subset of E, and T be a mapping from C into itself such that F(T) is
nonempty and ¢(p, Tx) < ¢p(p,x) forallp € F(T) and x € C. Then F(T) is closed and convex.

Lemma 2.4 [15] Let E be a real smooth and uniformly convex Banach space, and let {x,}
and {y,} be two sequences of E. If either {x,,} or {y,} is bounded and ¢(x,, y,) — 0 asn — oo,
then x, — y, — 0 as n — oo.

We make use of the function V' : E x E* — R defined by
V(x,x*) = ||| - 2<x,x*) + Hx* ||2 forallx € E and x* € E,

studied by Alber [12]. That is, V/(x,x*) = ¢(x,/'x*) for all x € E and x* € E*.
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Lemma 2.5 [12] Let E be a reflexive, strictly convex, and smooth Banach space with E* as
its dual. Then

V(x,x*) + 2(]_1x* —x,y*) < V(x,x* +y*)
forall x € E and x*,y* € E*.

Let E be a reflexive, strictly convex, and smooth Banach space, and let C be a nonempty,
closed, and convex subset of E. The generalized projection mapping, introduced by Alber
[12], is a mapping I1¢ : E — C that assigns an arbitrary point x € E to the minimizer, X, of
(-, x) over C, that is, [Tcx = x, where X is the solution to the minimization problem

o(x,x) = min{qb(y,x),y € C}. (2.3)

Lemma 2.6 [12] Let C be a nonempty, closed, and convex subset of a real reflexive, strictly
convex, and smooth Banach space E, and let x € E. Then, Vy € C,

o, Mex) + p(Mex, x) < Py, x).

Lemma 2.7 [12] Let C be a convex subset of a real smooth Banach space E. Let x € E. Then
xo = [ if and only if

(z—x0,Jx—Jx0) <0, VzeC.

Lemma 2.8 [16] Let E be a uniformly convex Banach space and Br(0) be a closed ball of E.
Then there exists a continuous strictly increasing convex function g : [0,00) — [0, 00) with
2(0) = 0 such that

N
2 2
lloroxo + oty + -+ + anan |* < D atillsill” — e (Il — ;1)
i=0

for a; € (0,1) such that Zi‘\:[o a; =1 and x; € BR(0) := {x € E: ||x|| < R} for some R > 0.

Lemma 2.9 [17] Let{a,} be a sequence of nonnegative real numbers satisfying the following
relation:

Ape1 = (1 - ﬂn)an + ﬂn‘srn Vn = Ny,

where {B,} C (0,1) and {5,,} C R satisfy the following conditions: lim,_,« B, = 0, Z,ﬁl B =
00, and limsup,,_, ., 8, < 0. Then lim,_, o a, = 0.

Lemma 2.10 [18] Let {a,} be sequences of real numbers such that there exists a subse-
quence {n;} of {n} such that a,, < a,. for all i € N. Then there exists a nondecreasing
sequence {my} C N such that my — o0, and the following properties are satisfied by all
(sufficiently large) numbers k € N:

Ay < Ayl ANA g < Ay 1.
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In fact, my is the largest number n in the set {1,2,...,k} such that the condition a, < a,,
holds.

3 Main result
We now prove the following theorem.

Theorem 3.1 Let C be a nonempty, closed, and convex subset of a smooth and uniformly
convex real Banach space E. Let A;: C — E*, for i =1,2,...,N, be continuous monotone
mappings satisfying (2.1). Assume that F := ﬂfil A71(0) is nonempty. Let {x,,} be a sequence
generated by

xo € C, chosen arbitrarily,
In = Hcl(l - ap)x,], (3.1)
Xn+l :]_1(,30])’;4 + Zi\:fl ﬂz’ Q?,,iyn); Vn=>0,

where a,, € (0,1), {B:i}Y, C [¢,d] C (0,1) and {r,} C (0,00) satisfy the following conditions:

lim, 0000, =0, Y 00) 0ty = 00, Zf:{o Bi =1, andlim,_, o r, = 00. Then {x,} converges strongly
to the minimum-norm point of F.

Proof From Lemmas 2.2 and 2.3 we get that Ai‘l(O) is closed and convex. Thus, IT£(0) is
well defined. Let p = [1x(0). Then from (3.1), Lemma 2.6 and the property of ¢, we get
that

dp,yn) = (0, Tc( - an)xn) < d(p, (1 — )
= ¢(p,) " (anJO + (1 — an)Jxn))
= P12 = 2(p, @J O + (1 = ) + || @uJO + (1 — )|
< lpl* = 20 (p,J0) = 2(1 — ), Jt)
+ O + (1= ) 1 1

= and)(p» 0)+(1- Oln)¢(P» Xn). (3.2)

Moreover, from (3.1), Lemma 2.8, Lemma 2.2 and (3.2), we get that

N
¢ xni1) = ¢ (PJ_I (,30]%: + Z Bi Qf,f)%))
i=1

2

N
Bolyn + Z BIQi

i=1 i=1

N
= lIpll* - 2<p, BoJyn + ZﬁJQﬁjyn> +

N
<lpI* = 2B0(pyu) =2 Bilp, JQiyn)
i=1

N
+ Bollyall> + 3 Bl Qya|” ~ BoBig (|9 ~IQiya])

i=1

N
= Bop@yn) + Y Bid (0, Qi) — BoBig ([Jym = TQyn )

i=1
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= ,30¢(p:yn) + (1 - ,30)¢(p’yn) - ﬂoﬁtg(”]yn _]Qfﬂiyn ”)

<@y - ,Boﬂig(”]yn —]aniyn ”) <o®,yn) (3.3)
< a9, 0) + (1 -y, x,) (3.4)

for each i € {1,2,...,N}. Thus, by induction,

¢(P, xn+1) E maX{¢(p:O)» ¢(prx0)}r Vn 2 O;

which implies that {x,} and hence {y,} are bounded. Now let z,, = (1 — «,,)x,,. Then we note

that y,, = [1¢z,. Using Lemma 2.6, Lemma 2.5 and the property of ¢, we obtain that

P, yn) < ¢ 24) = V(s Jzn)
< V(0. Jzn — x(J0 = Jp)) = 2(2, — p» —n(JO — Jp))
= ¢ (p.J  (alp + (1= a)fxn)) — 20 (20 — p,Jp)
< aup(p,p) + (1 = )PP, %) — 20t (2, — p, Jp)
= (1 -, xn) = 204 (20 — p,Jp)

<(@1- Oln)¢(P,xn) = 20a,(z, — p,Jp). (3.5

Furthermore, from (3.3) and (3.5) we have that

¢(p:xn+1) <@1- an)d’(prxn) — 20,2, — p, Jp)

= BoBig(||/yn = TQyn]) (3.6)
<(1- an)(b(p’xn) = 20,(z, = p, Jp). (3.7)

Now, following the method of proof of Lemma 3.2 of Maingé [18], we consider two cases
as follows.
Case 1. Suppose that there exists 1y € N such that {¢(p,x,)} is nonincreasing for all

n > np. In this situation, {¢(p, x,,)} is convergent. Then from (3.6) we have that

BoBig(|1yn —1Qy4]) — 0, (3:8)
which implies, by the property of g, that

P =T Qiy, — 0 asn— oo, (3.9)
and hence, since J ! is uniformly continuous on bounded sets, we obtain that

Y — Q‘;‘n"yn —0 asn— oo, (3.10)

foreachie{1,2,...,N}.
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Furthermore, Lemma 2.6, the property of ¢ and the fact that o, — 0, as n — oo, imply
that

X yu) = P (xn, czn)
< ¢u 24)
= ¢ (%0, ] (@O + (1 - 0n)Jxn) )
< oy (x4, 0) + (1 = )P (%, 1)

<0y (x,,0) + (1 — )P (0, x,) = 0 asn— 00, (3.11)
and hence from Lemma 2.4 we get that
Xy —yn — 0, Xy —2,—> 0 asn— oo. (3.12)

Since {z,} is bounded and E is reflexive, we choose a subsequence {z,,} of {z,} such that
zy, = zand limsup,,_, . (z, — p,Jp) = lim;_, (2., — p,Jp). Then from (3.12) we get that

n, —Z asi— 00, (3.13)
Y

i

Thus, from (3.10) and Lemma 2.1, we obtain that z € A;%(0) for each i € {1,2,...,N} and
hence z € (Y, 4;1(0).

Therefore, by Lemma 2.7, we immediately obtain that limsup,_, (z, — p,Jp) =
lim;_, oo (zs; — p,JP) = {z—p,Jp) = 0. It follows from Lemma 2.9 and (3.7) that ¢(p,x,,) — 0
as n — 00. Consequently, from Lemma 2.4 we obtain that x,, — p.

Case 2. Suppose that there exists a subsequence {#;} of {n} such that

¢(p!xn,') < ¢(p! xn,'+l)

for all i € N. Then, by Lemma 2.10, there exists a nondecreasing sequence {m;} C N such
that m; — 00, (P, %) < P, %y 1), and @(p,xx) < G(p, X 11) for all k € N. Then, from
(3.6) and the fact that «,, — 0, we obtain that

g(H]ymk —/Qf,f;kymk H) — 0 ask— oo,

for each i € {1,2,...,N}. Thus, following the method of proof of Case 1, we obtain that
Vi — Q’;\rikymk — 0, % = Yy —> 0, Xy — Ziy, — 0 as k — 00, and hence we obtain that

lim sup(z,,, —p,Jp) > 0. (3.14)

k— o0

Then from (3.7) we have that
¢(P: xmk+l) =< (1 - amk)(b(p! xmk) - 2amk <ka —PJP)o (3‘15)
Now, since ¢(p, %, ) < ¢(p, %, +1), inequality (3.15) implies that

Olmk¢(lﬂ: xmk) = ¢(10, xmk) - ¢(P, xmkH) - 2amk <ka -p,Jp)

= —2amk <ka -p,Jp).


http://www.journalofinequalitiesandapplications.com/content/2013/1/566

Zegeye and Shahzad Journal of Inequalities and Applications 2013, 2013:566 Page 9 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/566

In particular, since o, >0, we get

dW:s Xmy) < —2(Zim;, — P, D).

Then from (3.14) we obtain ¢(p,x,,) — 0 as k — oo. This together with (3.15) gives
O, %y 1) = 0 as k — 00. But ¢(p,ax) < d(p, % 41) for all k € N, thus we obtain that
xx — p. Therefore, from the above two cases, we can conclude that {x,} converges strongly
to p, which is the common minimum-norm zero of the family {4;,i =1,2,...,N}, and the
proof is complete. 0

We would like to mention that the method of proof of Theorem 3.1 provides the follow-

ing theorem.

Theorem 3.2 Let C be a nonempty, closed, and convex subset of a smooth and uniformly
convex real Banach space E. Let A;: C — E*, for i =1,2,...,N, be continuous monotone
mappings satisfying (2.1). Assume that F := ﬂf\il A71(0) is nonempty. Let {x,,} be a sequence
generated by

u=x9€C, chosen arbitrarily,
Yo = Do HaJu + 1 - a,)ix,), (3.16)
Xn+l =]_1(,BO]yn + Zf\il ,Bi Ql;t,lyn): Vn > 0;

where a, € (0,1), {:}Y, C [¢,d] C (0,1), and {r,} C (0,00) satisfylim, 0, = 0,> o) 0t =
00, Zf\io Bi =1, and lim,_, o 1, = 00. Then {x,} converges strongly to 1 x(u).

If in Theorem 3.1, N =1, then we get the following corollary.

Corollary 3.3 Let C be a nonempty, closed, and convex subset of a smooth and uniformly
convex real Banach space E. Let A : C — E* be a continuous monotone mapping satisfying
(2.1). Assume that A1(0) is nonempty. Let {x,,} be a sequence generated by

x0 € C, chosen arbitrarily,
Vn = [ - a,)x,], (3.17)
Xn+l =]71(/3]yn + (1 - ﬁ)]%yn)) Vn>0,

where a, € (0,1), B € (0,1), and {r,} C (0,00) satisfy lim,_,oc 0y = 0, Y o) &y = 00, and
1im,,_, o 74 = 00. Then {x,,} converges strongly to the minimum-norm element of A1(0).

We remark that if A is a maximal monotone mapping, then A71(0) is closed and convex
(see [6] for more details). The following lemma is well known.

Lemma 3.4 [19] Let E be a smooth, strictly convex, and reflexive Banach space, let C be a
nonempty closed convex subset of E, and let A C E x E* be a monotone mapping. Then A
is maximal if and only if R(J + rA) = E* for all r > 0.

We note from the above lemma that if A is maximal, then it satisfies condition (2.1) and
hence we have the following corollary.


http://www.journalofinequalitiesandapplications.com/content/2013/1/566

Zegeye and Shahzad Journal of Inequalities and Applications 2013, 2013:566 Page 10 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/566

Corollary 3.5 Let C be a nonempty, closed, and convex subset of a smooth and uniformly
convex real Banach space E. Let A;: C — E*, i=1,2,...,N, be maximal monotone map-

pings. Assume that F := ﬂf\il A7(0) is nonempty. Let {x,} be a sequence generated by

xo9 € C, chosen arbitrarily,
Vn = N[ - a,)x], (3.18)
KXn+l :]_l(ﬂojyn + Z?:ll /3;‘ Q’:\,fyn), Vn>0,

where a,, € (0,1), {8}, C [c,d] C (0,1) and {r,} C (0, 00) satisfylim,_. o &, = 0, Yooy =
0, Zﬁo Bi =1 and lim,_, o r, = 00. Then {x,} converges strongly to the minimum-norm
element of F.

If in Corollary 3.5, N =1, then we get the following corollary.

Corollary 3.6 Let C be a nonempty, closed and convex subset of a smooth and uniformly
convex real Banach space E. Let A : C — E* be a maximal monotone mapping. Assume

that A71(0) is nonempty. Let {x,} be a sequence generated by

xo0 € C, chosen arbitrarily,
In = Mc[(1 = ay)x,], (3.19)
Xn+l :]_l(ﬂ]yn +(1- ﬁ)/anyn), Vn >0,

where a,, € (0,1), B € (0,1), and {r,} C (0,00) satisfy lim,_,oc 0y =0, Y o) &, = 00, and

1im,,_, o 74 = 00. Then {x,,} converges strongly to the minimum-norm element of A~1(0).

If E = H, areal Hilbert space, then E is uniformly convex and smooth real Banach space.
In this case, J = I, identity map on H, and Il¢ = P, projection mapping from H onto C.
Furthermore, (2.1) reduces to (1.9). Thus, the following corollaries hold.

Corollary 3.7 Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
A;:C— E* fori=1,2,...,N, be continuous monotone mappings satisfying (1.9). Assume

that F := ﬂf\il A7Y(0) is nonempty. Let {x,} be a sequence generated by

x9 € C, chosen arbitrarily,
Yn = Pc[(1 = an)x,], (3.20)
K1 = Py + Yoy BiQyyns V120,

where Q4 := (I + rA)™, a, € (0,1), (B}, C e, d] C (0,1), and {r,} C (0,00) satisfy
lim, 0000, =0, Y 0y 0ty = 00, Zﬁo Bi =1, andlim,_, o r, = 00. Then {x,} converges strongly

to the minimum-norm element of F.

Corollary 3.8 Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
A;:C— H,i=1,2,...,N, be maximal monotone mappings. Assume that F := ﬂﬁlAi‘l(O)
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is nonempty. Let {x,} be a sequence generated by

xo0 € C, chosen arbitrarily,
Yn = Pcl(1 = an)x], (3.21)
K1 = Poyu + Yoy BiQuyns V120,

where Q% := (I + rA)™Y, a, € (0,1), (B}, C [e.d] C (0,1), and {r,} C (0,00) satisfy
limy, 0o 0t = 0, Y oy 0ty = 00, Zﬁo Bi =1, andlim,_, o r,, = 00. Then {x,} converges strongly

to the minimum-norm element of F.

4 Application

In this section, we study the problem of finding a minimizer of a continuously Fréchet dif-
ferentiable convex functional which has minimum-norm in Banach spaces. The following
is deduced from Corollary 3.6.

Theorem 4.1 Let E be a uniformly convex and uniformly smooth real Banach space. Let
fi be a continuously Fréchet differentiable convex functional on E, and let v/ f; be maximal
monotone with F := (X, (vf)(0) # @, where (vf)™(0) = {z € E : fi(2) = min,egf;()}, for
i=1,2,...,N. Let {x,} be a sequence generated by

x0 € C, chosen arbitrarily,
Yn = I_IC[(1 - an)xn]’ (41)
X+l = jil(ﬂojyn + Zf\zll ,Bz](] +71y Vft)iljyn); Vn > 0,

where a,, € (0,1), {B:}Y, C [¢,d] C (0,1),and {r,} C (0, 00) satisfylim,_, o o, = 0,> 0, o, =
0, Zﬁo Bi =1, and lim,_, o 1, = 00. Then {x,} converges strongly to the minimum-norm
element of F.

Remark 4.2 Theorem 3.1 provides convergence scheme to the common minimum-norm
zero of a finite family of monotone mappings which improves the results of Bauschke et al.
[7] to Banach spaces more general than Hilbert spaces. We also note that our results com-
plement the results of Zegeye and Shahzad [9] and Hu and Liu [10] which are convergence
results for accretive mappings.
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