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Abstract

In this paper, we introduce the notion of almost contractive mapping F: X x X — X
with respect to the mapping g : X — X and establish some existence and uniqueness
theorems of a coupled common coincidence point in ordered complete metric
spaces. Also, we introduce an example to support our main results. Our results
generalize several well-known comparable results in the literature.

MSC: 54H25;47H10; 34B15

Keywords: coupled fixed point; partially ordered set; mixed monotone property

1 Introduction and preliminaries

The existence and uniqueness theorems of a fixed point in complete metric spaces play
an important role in constructing methods for solving problems in differential equations,
matrix equations, and integral equations. Furthermore, the fixed point theory is a crucial
method in numerical analysis to present a way for solving and approximating the roots of
many equations in real analysis. One of the main theorems on a fixed point is the Banach
contraction theorem [1]. Many authors generalized the Banach contraction theorem in
different metric spaces in different ways. For some works on fixed point theory, we refer
the readers to [2-17]. The study of a coupled fixed point was initiated by Bhaskar and
Lakshmikantham [18]. Bhaskar and Lakshmikantham [18] obtained some nice results on
a coupled fixed point and applied their results to solve a pair of differential equations. For
some results on a coupled fixed point in ordered metric spaces, we refer the reader to
[18-26].

The following definitions will be needed in the sequel.

Definition 1.1 Let (X, <) be a partially ordered set and F : X x X — X. The mapping F is
said to have the mixed monotone property if F(x, y) is monotone non-decreasing in x and

is monotone non-increasing in y, that is, for any
xy€eX,x,%€X, x=<x = F(x,y) X F(x,%)
and
My €X, Ny = Flon)>=Fxy).
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Definition 1.2 We call an element (x,y) € X x X a coupled fixed point of the mapping
F: XxX—Xif

F(x,y)=x and F(y,x)=y.
Definition 1.3 [20] Let (X, <) bea partially ordered setand F: X x X — X andg: X — X.
The mapping F is said to have the mixed g-monotone property if F is monotone g-non-

decreasing in its first argument and is monotone g-non-increasing in its second argument,

that is, for any x,y € X,
X1,%2 € X: g(xl) fg(xZ) = F(xlry) f F(xZ,y) (1)

and

yy2€X, gn)=xgln) = Fly)=Fxy). (2)

Definition 1.4 An element (x,y) € X x X is called a coupled coincidence point of the
mappings F: X x X > X and g: X — X if

F(x,y)=g(x) and F(y,x)=g(y).
The main results of Bhaskar and Lakshmikantham in [18] are the following.

Theorem 1.1 [18] Let (X, X) be a partially ordered set and d be a metric on X such that
(X, d) is a complete metric space. Let F : X x X — X be a continuous mapping having the
mixed monotone property on X. Assume that there exists a k € [0,1) with

d(F(x,y),F(u, v)) < [d(x, u) +d(y, V)] Vx> uandy <.

N A

If there exist two elements xy,yo € X with

xo X F(x0,y0) and yo > F(yo,%o),

then there exist x,y € X such that

x=F(x,y) and y=F(@,x).

Theorem 1.2 [18] Let (X, <) be a partially ordered set and d be a metric on X such that
(X, d) is a complete metric space. Assume that X has the following property:

(i) if a nondecreasing sequence {x,} in X converges to x € X, then x,, < x for all n,

(ii) if a nonincreasing sequence {y,} in X converges to y € X, then y, >y for all n.
Let F: X x X — X be a mapping having the mixed monotone property on X. Assume that
there exists k € [0,1) with

N A

d(F(x,y),F(u,v)) < =[d(xu) +d(y,v)] Vx=uandy=<v.
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If there exist two elements xy,yo € X with
xo X F(x0,y0) and yo = F(yo,%0),

then there exist x,y € X such that
x=F(x,y) and y=F(@,x).

Definition1.5 Let (X,d) beametricspaceand F: X x X — X and g : X — X be mappings.
We say that F and ¢ commute if

F(g(x),80)) =¢(F(x,)
forall x,y € X.
Nashine and Shatanawi [22] proved the following coupled coincidence point theorems.

Theorem 1.3 [22] Let (X,d, X) be an ordered metric space. Let F : X x X — X and
g:X — X be mappings such that F has the mixed g-monotone property on X such that
there exist two elements xo,yo € X with g(xo) < F(xo,y0) and g(yo) > F(yo,%0). Suppose
that there exist non-negative real numbers o, B, L with o + 8 <1 such that

d(F(x,y),F(u,v)) < a min{d(F(x,y),g(x)),d(F(u,v),g(x))}
+ B min{d(F(x,y),g(u)),d(F(u,v),gw))}
+ Lmin{d(F(x,y),g(u)),d(F(u,v),gx))} 3)
for all (x,y), (u,v) € X x X with g(x) < g(u) and g(y) = g(v). Further suppose that F(X x
X) C g(X) and g(X) is a complete subspace of X. Also suppose that X satisfies the following
properties:
(i) if a nondecreasing sequence {x,} in X converges to x € X, then x, < x for all n,

(ii) if a nonincreasing sequence {y,} in X converges to y € X, then y, >y for all n.
Then there exist x,y € X such that

F(x,y) =g(x) and F(y,x)=g0),
that is, F and g have a coupled coincidence point (x,y) € X x X.

Theorem 1.4 [22] Let (X, <X) be a partially ordered set and suppose that there is a metric
d on X such that (X,d) is a complete metric space. Let F: X x X — X and g: X — X be
mappings such that F has the mixed g-monotone property on X such that there exist two
elements xo,y0 € X with g(xo) < F(x0,y0) and g(yo) > F(yo,%0). Suppose that there exist
non-negative real numbers o, 8, L with o + 8 <1 such that

d(F(x,), F(u,v)) < amin{d(F(x,),g(x)),d(F(u,v),g(x))}
+ Bmin{d(F(x,y),g(w)), d(F(u,v),g(w))}
+ Lmin{d(F(x,7),g(w)),d(F(u,v),g(x))} (4)
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forall (x,y), (u,v) € X x X with g(x) < g(u) and g(y) = g(v). Further suppose that F(X x X) C
g(X), g is continuous nondecreasing and commutes with F, and also suppose that either
(a) F is continuous, or
(b) X has the following property:
(i) if a nondecreasing sequence {x,} in X converges to x € X, then x, < x for all n,
(ii) if a nonincreasing sequence {y,} in X converges to y € X, then y, > y for all n.
Then there exist x,y € X such that

F(x,y) =g(x) and F(y,x)=g(©),
that is, F and g have a coupled coincidence point (x,y) € X x X.

Berinde [27-30] initiated the concept of almost contractions and studied many inter-
esting fixed point theorems for a Ciri¢ strong almost contraction. So, it is fundamental to
recall the following definition.

Definition 1.6 [27] A single-valued mapping f : X x X is called a Ciri¢ strong almost
contraction if there exist a constant « € [0,1) and some L > 0 such that

d(fx,fy) < aM(x,y) + Ld(y, fx)

for all %,y € X, where

M(x,y) = max{d(x,y), d(x, fx),d(, ), d.fy) +d0.fx) }

2

The aim of this paper is to introduce the notion of almost contractive mapping F : X x
X — X with respect to the mapping g : X — X and present some uniqueness and existence
theorems of coupled fixed and coincidence point. Our results generalize Theorems 1.1-1.4.

2 Main theorems
We start with the following definition.

Definition 2.1 Let (X,d, <) be an ordered metric space. We say that the mapping F : X x
X — X is an almost contractive mapping with respect to the mapping g : X — X if there

exist a real number « € [0,1) and a nonnegative number L such that

d(F(x,y),F(u, V))
< amax{d(g(x),g(u)),d(g@’)»g(V)),d(F(x:y)yg(x)),d(F(u» V)’g(”))}
+Lmin{d(F(x,y),g(u)),d(F(M, V),g(x))} ()

for all (x,y), (4, v) € X x X with g(x) < g(u) and g(y) = g(v).

Theorem 2.1 Let (X,d, <) be an ordered metric space. Let F: X x X - X and g: X — X
be mappings such that
(1) F is an almost contractive mapping with respect to g.
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(2) F has the mixed g-monotone property on X.
(3) There exist two elements xy,yo € X with g(xo) < F(x0,y0) and g(yo) = F(yo,%0).
(4) F(X x X) C g(X) and g(X) is a complete subspace of X.

Also, suppose that X satisfies the following properties:
(i) if a nondecreasing sequence {x,} in X converges to x € X, then x,, < x for all n,
(ii) if a nonincreasing sequence {y,} in X converges to y € X, then y, >y for all n.

Then there exist x,y € X such that

F(x,y)=g(x) and F(y,x)=g0),
that is, F and g have a coupled coincidence point (x,y) € X x X.

Proof Let xg,y0 € X be such that g(xy) < F(xo,o) and g(¥) = F(yo,%o). Since F(X x X) C
g(X), we can choose x1,y; € X such that g(x1) = F(x0,y0) and g(y1) = F(¥0,%0)-

In the same way, we construct g(x;) = F(x1,y1) and g(y2) = F(y1,%1).

Continuing in this way, we construct two sequences {x,} and {y,} in X such that

g(xn+1) = F(xmyn) and g(y;ﬂl) = F(Yn;xn) VneNU {0} (6)
Since F has the mixed g-monotone property, by induction we may show that

glwo) < glwr) < glxg) <+ < glxpn) < -+

and

g0o) =gn) = glya) = - = gpa1) = -+

If (g(xn+l):g(yn+l)) = (g(xn)rg(yn)) for some n € N, then F(xmyn) = g(xn) and F(ymxn) =
g(yn), that is, (x,,,,) is a coincidence point of F and g. So we may assume that (g(x,1),

W) # (g(x,),2(y,)) for all n € N. Let n € N. Since g(x,) > g(x,-1) and g(y,) < g(,-1),
from (5) and (6), we have

d(g(xn), g(xns1))
= d(F(%n-1,Yn-1), F®ns yn))
< amax{d(g(x,1),8(®), d(€0n-1),80), d(F s y), £()
A(Fn-1,Yn-1):&%n-1)) } + Lmin{d(F (@, yn), g(%n-1))> A(F -1, ¥u-1), &%) }
= amax{ (g(xn 1), 8%, ) (g(yn 1),8n) ) (g(xml),g(xn))’d(g(x”)’g(x”‘l))}
+ Lmin{d(g(xu1),g(xa-1)), d(g0xa), g0xa)) }
:amax{ (§(n-1),g(xn)), d(gn-1),80m)), (g(xml),g(xn))}-

If max{d(g(x,-1),g(xn)), A€Yn-1), €Wn)) A(@(Xns1), §X0))} = A(g(x1141), (%)), then d(g(x41),
g(xy)) < ad(g(®y.1),g(x,)) and hence d(g(x,.1),g(x,)) = 0. Thus d(g(x,-1),g(x,)) =
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d(@Wn-1),2(yn)) = 0. Therefore d(g(x,-1),g(yu-1)) = d(g(x,),2(y»)), a contradiction. Thus

max {d(g(x%u-1),2(%n)), A(€Wn-1),80n)), A(g(Xns1), g(xn)) }
= max{d(g(xn—l))g(xn))r d(g(yn—l)7g(yn)) }

Therefore

A(g(xn11),g(x4)) < & max{d(g(xn-1), &%), d(gYn-1),g07n)) }- 7)

Similarly, we may show that

A(gn), gns1)) < @ max{d(g(xu1),g(xn)), d(g¥n-1),g0n)) }- (8)

From (7) and (8), we have

max{d(g(x,,+1),g(xn)),d(g@n),g()’nﬂ))}
< amax{d(g(x,-1),g(*1)), d(g¥n-1),2n)) }. 9)

Repeating (9) n-times, we get

max{d( (xn+1) g xn)) (g()’n) g(y””l))}
< " max{d(g(x0),g(x1)),d(g(0).g0)) }. 10)

Now, we shall prove that {g(x,)} and {g(y,)} are Cauchy sequences in g(X).

For each m > n, we have

d(g(m), g(xn))
< d(g(%n), g(%ns1)) + A(g(011), g(012)) +
+ d(g(m1),8(6m))
< o max{d(g(x0),g(x1)),d(g(y0),g01)) } + -
+ o max {d(g(x0),g(x1)), d(g0),gn)) )

’ max{d(g(x0),g(*1)),d(g(0),g)) }-

o
=

l-«o

Letting n,m — +00 in the above inequalities, we get that {g(x,)} is a Cauchy sequence
in g(X). Similarly, we may show that {g(y,)} is a Cauchy sequence in g(X). Since g(X) is
a complete subspace of X, there exists (x,y) € X x X such that g(x,,) — g(x) and g(y,,) —
g(). Since {g(x,)} is a non-decreasing sequence and g(x,) — g(x) and as {g(y,)} is a non-
increasing sequence and g(y,) — g(y), by the assumption we have g(x,) < g(x) and g(y,,) >
g(y) for all x. Since

d(g(anrl)rF(x’y))
= d(F(xmyn)¢F(x’y))
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< amax{d(g(x,),g(x)), d(gyn),g)), d(g(*ns1), &%), d(F(x, ), g(x)) }
+L min{d(g(xn+1)!g(x))t d(F(x’y)’g(xn)) }

Letting n — oo in the above inequality, we get d(g(x), F(x,y)) = 0. Hence g(x) = F(x, y).
Similarly, one can show that g(y) = F(y,x). Thus we proved that F and g have a coupled
coincidence point. 0

Theorem 2.2 Let (X, <) be a partially ordered set and suppose that there is a metric d on X
such that (X, d) is a complete metric space. Let F: X x X — X and g : X — X be mappings
such that
(1) F is an almost contractive mapping with respect to g.
(2) F has the mixed g-monotone property on X.
(3) There exist two elements x,yo € X with g(xo) < F(x0,y0) and g(yo) = F(yo,%0).
(4) F(X x X) C g(X).
(5) g is continuous nondecreasing and commutes with F.
Also suppose that either
(a) F is continuous, or
(b) X has the following property:
(i) if a nondecreasing sequence {x,} in X converges to x € X, then x,, < x for all n,
(ii) if a nonincreasing sequence {y,} in X converges to y € X, then y, > y for all n.
Then there exist x,y € X such that

F(x,y)=g(x) and F(y,x)=g0),
that is, F and g have a coupled coincidence point (x,y) € X x X.

Proof As in the proof of Theorem 2.1, we construct two Cauchy sequences (gx,) and (gy,,)
in X such that (gx,) is a nondecreasing sequence in X and (gy,/) is a nonincreasing sequence
in X. Since X is a complete metric space, there is (x,y) € X x X such that gx, — x and
gy, — ¥. Since g is continuous, we have g(gx,) — gx and g(gy,) — gy.

Suppose that (a) holds. Since F is continuous, we have F(gx,,gy.) — F(x,y) and
F(gyn,gx,) — F(y,%). Also, since ¢ commutes with F and g is continuous, we have
F(gxn,gyn) = GF X, ¥n) = 8(g%ne1) — gx and F(gyn, g%4) = GFWn»%n) = g(gVne1) — gy. By
uniqueness of limit, we get gx = F(x,y) and gy = F(y, x).

Second, suppose that (b) holds. Since g(x,) is a nondecreasing sequence such that
g(x,) — x, g(y,) is a nonincreasing sequence such that g(y,) — y, and g is a nondecreasing
function, we get that g(gx,) < gx and g(gy,) > g(y) hold for all n € N. By (5), we have

d(g(grnn), F,9))
= d(F(gxngyn), F(%,))
< ermax{d(g(gxn),g)), d(¢(gyn) €1)), d(g(grun1), g(gxn)), d(F(x,5), (%)) }
+ Lmin{d(g(grnn) g)), d(F(x9),(gxn) ).

Letting n — +00, we get d(g(x), F(x,y)) = 0 and hence g(x) = F(x,y). Similarly, one can
show that g(y) = F(y,x). Thus («,y) is a coupled coincidence point of F and g. O
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Corollary 2.1 Let (X, <) be a partially ordered set and suppose that there is a metric d on
X such that (X, d) is a complete metric space. Let F : X X X — X be a mapping such that F
has the mixed monotone property on X such that there exist two elements xy,yo € X with
xo =< F(xo,y0) and yo = F(yo,%0). Suppose that there exist a real number a € [0,1) and a
nonnegative number L such that

d(F(x,y),F(u,v)) < a max{d(x,u),d(y,v),d(F(x,),x),d(F(u,v),u)}
+ Lmin{d(F(x,y),u),d(F(u,v),x)} (11)

for all (x,),(u,v) € X x X with x < u and y > v and also suppose that either
(a) F is continuous, or
(b) X has the following property:
(i) if a nondecreasing sequence {x,} in X converges to x € X, then x, < x for all n,
(i) if a nonincreasing sequence {y,} in X converges to y € X, then y, > y for all n,
then there exist x,y € X such that

F(x,y)=x and F(y,x)=y,
that is, F has a coupled fixed point (x,y) € X x X.
Proof Follows from Theorem 2.2 by taking g = I, the identity mapping. O

Let (X, <) be a partially ordered set. Then we define a partial order < on the product
space X x X as follows:

for (x,9),(w,v) e X x X, (u,v)<(x,y) <& x>u, y=v.

Now, we prove some uniqueness theorem of a coupled common fixed point of mappings
F:XxX—Xandg: X — X.

Theorem 2.3 In addition to the hypotheses of Theorem 2.1, suppose that L = 0, a < %, F
and g commute and for every (x,7), (y*,x*) € X x X, there exists (u,v) € X x X such that
(F(u,v), F(v,u)) is comparable to (F(x,y),F(y,x)) and (F(x*,y*), F(y*,x*)). Then F and g
have a unique coupled common fixed point, that is, there exists a unique (x,y) € X x X
such that

x=gx)=F(x,y) and y=g(y)=F(@,x).

Proof The existence of coupled coincidence points of F and g follows from Theorem 2.1.
To prove the uniqueness, let (x,y) and (x*,y*) be coupled coincidence points of F and g;
that is, g(x) = F(x,y), g(y) = F(y,x), g(x*) = F(x*,y*) and g(y*) = F(y*,x*). Now, we prove
that

gx) =g(x*) and g =g(¥"). 12)

By the hypotheses, there exists (#,v) € X x X such that (F(u,v), F(v,u)) is comparable
to (F(x,9), F(y,x)) and (F(x*,y*), F(y*,x*)). Put uy = u, vo = v. Let u3,v; € X be such that
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g(u1) = F(ug,vo) and g(v1) = F(vo, up). Then as a similar proof of Theorem 2.1, we construct
two sequences {g(u,)}, {g(v,)} in g(X), where g(u,41) = F(u,,v,) and g(vy11) = F(vy, uy)
for all n € N. Further, set xg = x, yo =y, x5 = x*, y§ = y*. Define the sequences {g(x,)},
{g(,)} in the following way: define gx; = F(xo,y0) = F(x,y) and gy1 = F(y0,%0) = F(y,%).
Also, define gxy = F(x1,91) and gya = F(y1,x1). For each n € N, define gx,,,1 = F(x,,y,) and
&Vnn1 = F(¥u, %,). In the same way, we define the sequences {g(x})}, {g(y})}. Now, we prove
that

gxn) =F(x,y)=gx) and g(y,)=F(,%) =gQ).
Since (x,y) is a coupled coincidence point of F and g, we have F(x,y) = g(x) and F(y,x) =
g(»). Thus g(x1) = F(x0,90) = F(x,y) = g(x) and g(y) = F(yo,x0) = F(y,x) = g(y). There-
fore g(x;) < g(x), g(x) < g(x1), g(y1) < g(y) and g(y) < g(y1). Since F is monotone g-non-

decreasing on its first argument, g(x;) < g(x), and g(x) < g(x1), we have F(x1,y1) < F(x,y1)
and F(x, y1) < F(x1,1). Therefore,

F(x1,91) = F(x, 1) (13)

Also, since F is monotone g-non-increasing on its second argument, g(y;) < g(y) and

g() < gn), we have F(x,y) < F(x,y1) and F(x,y1) < F(x,). Therefore,

F(x,y) = F(x,91). (14)
From (13) and (14), we have

g(x2) = F(x1, 1) = F(x,7) = g().
Similarly, we may show that

gW2) = F(y,x1) = F(y,%) =g(y).

Note that g(x;) < g(x), g(x) < g(x2), g(y2) < g(») and g(y) < g(y2). Since F is monotone

g-non-decreasing on its first argument, g(x;) < g(x), and g(x) < g(x), we have F(x3,7,) <
F(x,y,) and F(x,y,) < F(xy,y,). Therefore,

F(x2,92) = F(%,92). (15)

Also, since F is monotone g-non-increasing on its second argument, g(y,) < g(y) and
g(y) < g(y2), we have F(x,y) < F(x,y,) and F(x,y,) < F(x,y). Therefore,

F(x,y) = F(x,y,). (16)
From (15) and (16), we have

g(x3) = F(x2,¥2) = F(x,y) = g(x).
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Similarly, we may show that

g(3) = F(y2,%2) = F(y,%) = g(y).

Continuing in the same way, we have that

g(xn) = F(x,y) =g(x) and  g(y.) = F(,x) =g(y)
hold for all # € N. Similarly, we can show that

g =F(x%y") =g(x*) and g(y})=F(" ") =g(y*) V¥neN
hold for all # € N. Since

(F(x,9), F(y,%)) = (g(x1),g0n)) = (g(x),g(9))

and

(F(Ll, V))F(V: M)) = (g(ul)rg(vl))

are comparable, g(x) < g(u1) and g(y) > g(v1). Since F has the mixed g-monotone prop-
erty of X, we have g(x) < g(u,) and g(y) > g(v,) for all n € N. Also, since (g(x*),g(y*)) and
(F(u,v), F(v,u)) = (g(u1),g(v1)) are comparable, and F has the g-monotone property, then
we can show that for # € N, we have that (g(x*),g(y*)) and (g(u,),g(v,)) are comparable.
Now, if (g(x),g(»)) = (g(uk),g(vk)) for some k € N or (g(x*),g(y*)) = (g(ux),g(vk)) for some
k € N, then (g(x),g(y)) and (g(x*),g(y*)) are comparable, say g(x) < g(x*) and g(y) = g(y*).
Thus from (5) we have

d(g(x).g(x"))
=d(F(x,y), F(x*,y"))
< amax{d(g®),g(x"), 4(e)g(y")), d(F(x,9), gx)), d(F(x",y7), g (x"))}
= amax{d(g(»),g(x")), (¢, g ("))} 7

and

d(g(r).g)
= d(F(y",x*), F(3,))
< amax{d(g(),2(y")), d(g().¢(x")). d(F(y",2"), £ (v")), A(F (), 2 () }
= amax{d(g(y),g(y")). d(g(x).g») }- (18)

From (17) and (18), we have

max{d(g(x),g(x*)),d(g»),g(v*))} < e max{d(g(¥).g(y")), d(g(x),g»))}.
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Since « < 1, we have d(g(x), g(x*)) = 0 and d(g(y), g(y*)) = 0. Therefore (12) is satisfied. Now,

suppose that (g(x),g(»)) # (g(u,),g(v,)) for all n € N and (g(x*),g(v*)) # (g(¢4,), g(v,,)) for all
n € N. Let n € N. Since g(x) < g(u,) and g(y) > g(v,), then from (5) we have

d(g(x),g(un))
= d(F(%,9), F(ttn, Vi)

< amax{d(g(x),g(un)),d(g(¥),gvn)), d(F(x,7),g(x)), d(F(thn, Vi), g(11)) }
max{d (g(x)gun)),d(g(y ,8Wn)), d(g (1), g(un)) }

< amax{d(g(x),g(,)),d(g(¥),gvn)), d(g(thn1), g(x)) + d(g(x), g(usn)) }

<a x{d(g(x) g(un)),d(g()’ &), 2d(g(t11),8(x)), 24 (g(x), g (1)) }

= amax{2d(g(x), g(uy)), d(2(»), g(v)), 2d (1), g x)) }.

If

maX{Zd(g(x)rg(un))’ d(g()’),g(‘/n))y 2d(g(un+l)’g(x)) } = Zd(g(unﬂ)’g(x))

then d(g(u,41),2(x)) < 2ad(g(u,.1),g(x)). Since 2« < 1, we have d(g(u,,11),g(x)) = 0. There-
fore d(g(x),g(u,)) = 0 and d(g(y),g(v,)) = 0 and hence (g(x),g(»)) = (g(,),£(v»)), a contra-
diction. Thus

d(g(x),g(ns1)) < amax{2d(g(x),g(un)),d(g(¥),g(va))}
< 2a max{d(g(x),g(un)), d(¢¥),g(va)) }. 19

Similarly, we may show that
d(gu1),g()) < 2a max{d(g(x),g(un)),d(g(»),g(vn)) }. (20)

From (19) and (20), we have

max {d(g(x),g(n1)), d(gVui1),2))}
<2« maX{d(g(Vn),g()’))y d(g(un)rg(x))¢ d(g(unﬂ)} (21)

By repeating (21) n-times, we have

max{d(g(®), g(n)), d(g(vui1), )}
<20 max{d(g(v),g(»)),d(g(un),g))}

< (20)"" max{d(g(x),g(u0)),d(g(v0),g))}-

Letting n — +00 in the above inequalities, we get that

1;«}21 maX{d(g(x):g(un+l)): d(g(VrHl):g()/)) } =
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Hence

lim d(g(x), g(un.1)) =0 (22)
and

Jlim d(g(9),g(Vms1)) = 0. (23)

Similarly, we may show that

and
nliglod(g(y);g(vnﬂ)) =0. (25)

By the triangle inequality, (22), (23), (24) and (25),

d(g(x),g(x*)) < d(gx), g(unn)) +d(g(x*),g(tns1)) > 0 asn— oo,
d(g(y),g(y*)) = d(g()/),g(vnu)) + d(g(y*),g(v,,+1)) — 0 asn— oo,
we have g(x) = g(x*) and g(y) = g(y*). Thus we have (12). This implies that (g(x),g(y)) =

gx"),g0r")).
Since g(x) = F(x,y) and g(y) = F(y,x), by commutativity of F and g, we have

2(ew) =g(F(xy) = F(g(x),g(») and g(g() =g(FO,x)) = F(g(»).g(x)).  (26)
Denote g(x) = z, g(y) = w. Then from (26)
g(z)=F(z,w) and g(w)=Fw,z). (27)

Thus (z, w) is a coupled coincidence point. Then from (26) with x* = z and y* = w it follows
g(z) = g(x) and g(w) = g(y), that is,

gz)=z and g(w)=w. (28)
From (27) and (28),
z=g(z) =F(z,w) and w=g(w)=FWw,z).

Therefore, (z,w) is a coupled common fixed point of F and g. To prove the uniqueness,
assume that (p, ) is another coupled common fixed point. Then by (26) we have p = g(p) =

g(z) =zand g =g(q) = g(w) = w. O

Corollary 2.2 In addition to the hypotheses of Corollary 2.1, suppose that L = 0, « < %, and
forevery (x,7), ", x*) € X x X, there exists (u,v) € X x X such that u < F(u,v), v > F(v,u),
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and (F(u,v), F(v,u)) is comparable to (F(x,y), F(y,x)) and (F(x*,y*), F(y*,x*)). Then F has
a unique coupled fixed point, that is, there exist a unique (x,y) € X X X such that

x=F(x,y) and y=F(@,x).
Proof Follows from Theorem 2.3 by taking g = I, the identity mapping. O

Theorem 2.4 In addition to the hypotheses of Theorem 2.1, if gxo and gy, are comparable
and L = 0, then F and g have a coupled coincidence point (x,y) such that gx = F(x,y) =

F(y,x) = gy.

Proof Follow the proof of Theorem 2.1 step by step until constructing two sequences {x,}
and {y,} in X such that gx, — gx and gy, — gy, where (x,y) is a coincidence point of F
and g. Suppose gxg < g¥o, then it is an easy matter to show that

gx, <gy, andVmeNU{0}.
Thus, by (5) we have

(g% gyn)
= d(F(n-1,Yn-1), Fn-1,%n-1))
< a max{d(g(®u-1), g0n-1), A(F (X1, Yn-1), §%n1)), A(F Y1, Xn1), 1)) }
= o max{d(g(x-1), € ¥n-1)), (), €Xn1)), A (€n), € W) }.

On taking the limit as n — +00, we get d(gx, gy) = 0. Hence

F(x,y) =gx =gy = F(y,%).
A similar argument can be used if gy < gxo. O

Corollary 2.3 In addition to the hypotheses of Corollary 2.1, if xy and y, are comparable
and L = 0, then F has a coupled fixed point of the form (x,x).

Proof Follows from Theorem 2.4 by taking g = I, the identity mapping. O
Now, we introduce the following example to support our results.

Example 2.1 Let X = [0,1]. Then (X, <) is a partially ordered set with the natural ordering
of real numbers. Define the metric 4 on X by

max{x,y} ifx+y;
d(x,y)={0 Tl

Define g: X — X by g(x) =x? and F: X x X — X by

3(x2-y%) .
Fey)={ + * 70
0, x <.
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Then
(1) g(X) is a complete subset of X.
(2) F(X x X) € g(X).
(3) X satisfies (i) and (ii) of Theorem 2.1.
(4) F has the mixed g-monotone property.
(5) Forany L € [0, +00), F and g satisfy that

d(F(x,y), F(u,v))
< ZmaX{d(g(x):g(u)):d(g()’),g(V)):d(F(x,y),g(x)),d(F(u, v),g(u))}

+ Lmin{d(F(x,y),g(w)),d(F(u,v),g(x))}

for all g(x) < g(u) and g(y) > g(v) holds for all x, y, u, v € X with g(x) < g(u) and

g0) =gW).
Thus, by Theorem 2.1, F has a coupled fixed point. Moreover, (0,0) is a coupled coinci-

dence point of F.

Proof The proof of (1)-(4) is clear. We divide the proof of (5) into the following cases.
Case 1: If g(x) < g(y) and g(u) < g(v), then x < y and u < v. Hence

d(F(x,y),F(u,v)) =d(0,0) =0

=

max{d(g(x),g(u)),d(g(),g)),d(F(x,y),gx)),d(F(u,v),g(w))}

=W

+L min{d(F(x,y),g(u)), d(F(u, v),g(x)) }

Case 2: If g(x) < g(y) and g(u) > g(v), then x < y and u > v. Hence

2 2
d(F(x,y),F(u,v)) = d(o, M)

4
2w )
< Euz
— 4

3

= 2 (Pl g0)

IA

z max{d(g(x),g(w)),d(g(),g(v)),d(F(x,9),gx)),d(F(u,v),g(u))}
+ Lmin{d(F(x,y),g(u)),d(F(My V),g(x))}.
Case 3: If g(x) > g(y) and g(u) < g(v), thenx >y and u <v.Hence v<y<x <u <w.

Therefore v < v, which is impossible.
Case 4: If g(x) > g(y) and g(u) > g(v), thenx >y and u >v. Thusv<y<x <u.
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Subcase I: x = # and y = v. Here, we have
d(F(x,y),F(u, V)) =d(0,0)=0

< = max{d(g(w)g(0), d(g0),80), d(Flx,),83), d(EGe ), 80)

+ Lmin{d(F(x,y),gu)),d(F(u,v),gx))}.

Subcase II: x # u or y # v. Here, we have u? — v* > x> — y?. Therefore

d(F(x,y), F(u,v))

’

d(3(x2 —9%) 3(u?® - v2)>

4 4

)

<3

~ 4

= imax{i(u2 - VZ)’”Z}
4 4
3

= ZmaX{F(uyV):g(u)}

- zd(F(u, v),g(u))

Zmax{d(g(x),g(m),d(gm,g(v)),d(F(x,w,g(x)),d(F(u, v),gw))}

+L min{d(F(x,y),g(u)), d(F(u,v),g(x)) }

IA

Note that the mappings F and g satisfy all the hypotheses of Theorem 2.1 for « = %
and any L > 0. Thus F and g have a coupled coincidence point. Here (0,0) is a coupled
coincidence point of F and g.

Remarks
(1) Theorem 1.1 is a special case of Corollary 2.1.
(2) Theorem 1.2 is a special case of Corollary 2.1.
(3) Theorem 1.3 is a special case of Theorem 2.1.
(4) Theorem 1.4 is a special case of Theorem 2.2.
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