
Zhao and Peng Journal of Inequalities and Applications 2013, 2013:56
http://www.journalofinequalitiesandapplications.com/content/2013/1/56

RESEARCH Open Access

Asymptotic properties of least squares
estimation for a new fuzzy autoregressive
model
Zhi-Wen Zhao1* and Cui-Xin Peng2

*Correspondence:
zhaozhiwen@126.com
1College of Mathematics, Jilin
Normal University, Siping, 136000,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we extend the standard autoregressive model to the case where the
explanatory and response variables are random fuzzy variables. The fuzzy
least-squares estimators (FLSE) of the model parameters are derived and their
asymptotic properties are established. A simulation is conducted to evaluate our
method, and it is found that the proposed method provides a better performance.

AMS Subject Classification: 94D05; 62F12

Keywords: fuzzy random variables; fuzzy numbers; fuzzy least squares estimation;
fuzzy autoregressive model; fuzzy set

1 Introduction
The time series forecasting investigates the relations on the sequential set of past data
measured over time to forecast the future values. The area has been widely studied, and
traditional forecasting is frequently conducted by statistical tools like regression analysis,
moving average, integrated moving average, and autoregressive integrated moving aver-
age.
However, the deficiencies of traditional forecasting methods are that they cannot deal

with forecasting problems in which historical data are linguistic values. In order to over-
come the drawback of the traditional forecasting methods, in [], Song and Chissom pro-
posed the concepts of fuzzy time series to investigate the forecasting problem in which
historical data are linguistic values. In [] and [], they proposed two fuzzy time series
models to study the forecasting problems of enrollments of the University of Alabama.
Some researchers such as [, ], and [] have also proposed new fuzzy time series models
to improve Song’s model. These fuzzy time series models have been applied to various
practical questions such as temperature by Chen & Hwang [], the stock index by Huarng
[], Huarng & Yu [, ], and Yu [, ] etc.
In particular, Ozawa [] proposed a fuzzy auto-regressive (AR) model to forecast the

data of living expenditure of workers’ household in Japan, where the identification and the
estimation of its model and the model parameters are optimized by the linear program-
ming problem under some conditions. Moreover, Niimura [] presented a fuzzy auto-
regressive model to estimate uncertain electricity market prices in deregulated industry
environment, and parameters are also obtained by solving linear programming problems.
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Furthermore, the uncertainty of observations or the uncertainty of the model have been
treated as having a stochastic error, and we generally analyze those data or system with
the stochastic approach. In fact, Kim et al. [] pointed out that two different kinds of
uncertainty, vagueness and randomness, coexist within a model. Randomness resulting
frommeasurement errors and fuzziness resulting from system fuzziness are two different
kinds of uncertainty. Therefore, he extended the standard linear regression model to in-
clude specific cases where the observations are vague or even linguistic. In this paper, we
further discover the analogous results for autoregressive models in time series analysis.
Consider the following new fuzzy autoregressive model:

Xt = αXt– ⊕ �t , t = , , . . . , (.)

where X is a constant triangular fuzzy number, Xt are random fuzzy variables which are
expressed by (xt , ξ l

t , ξ r
t )� with crisp random variables xt , ξ l

t , ξ r
t , �t = (εt , θ l

t , θ r
t )� are the

fuzzy random errors, and |α| <  is unknown regression crisp parameter to be estimated
on the basis of fuzzy observations Xt . Obviously, our model is different from the models
that are discussed above. Moreover, this paper is devoted to the parameter estimation of
the model and sets out the asymptotic properties of the estimation.
The rest of this paper is organized as follows. Section  briefly introduces the literature

related to fuzzy sets, fuzzy numbers, and triangular fuzzy numbers (TFN), fuzzy time
series. In Section , a fuzzy least squares estimation is proposed to estimate parameter α.
The behaviors of the present estimator are investigated in Section , and the proofs of the
theorems are given in Section . Finally, in Section , we deal with the test of the method
through simulation studies.

2 Preliminaries
In this section, we introduce some basic definitions regarding fuzzy number and fuzzy
time series as well as some basic fuzzy theories.
In , Zadeh [] first introduced the concept of a fuzzy set for modeling the vague-

ness type of uncertainty. A fuzzy set A defined on the universe X is characterized by a
membership function such that μA(x) : x → [, ]. The support of A, say sup(A), is defined
by the set {x ∈ X | μA(x) > }. For any α ∈ (, ], the crisp set Aα = {x ∈ X | μA(x) > α} is
called the α-cut of A.
A fuzzy subset A of the set of real numbers R with a membership function μA is called

a fuzzy number if
() A is normal, i.e., there exists x ∈ R such that μA(x) = .
() μA is upper semi-continuous.
() sup(A) is compact.
() A is a convex fuzzy set, i.e., μA(λx + ( – λ)y) ≥ min(μA(x),μA(y)) for all x, y ∈ R and

λ ∈ [, ].
Of extreme interest to us is the LR-fuzzy number whosemembership function is defined

as follows:

μA(x) =

⎧⎨
⎩L((m – x)/l) if x≤ m,

R((x –m)/r) if x >m,
for x ∈ R,
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where L : R+ → [, ] and R : R+ → [, ] are fixed left-continuous and non-increasing
functions with L() = R() = , and R+ denotes the set of nonnegative real numbers. L and
R are called left and right shape functions, m the mode of A, and l, r >  are the left/right
spread of A. We abbreviate an LR-fuzzy number by A = (m, l, r)LR and denote the set of
all LR-fuzzy numbers by FLR(R). If L(x) = R(x) = [ – x]+, then A = (m, l, r)LR is called a
triangular fuzzy number and is denoted by A = (m, l, r)�. The set of all triangular fuzzy
numbers is denoted by T (R). A linear structure is defined on T (R) by

(m, l, r)� ⊕ (m, l, r)� = (m +m, l + l, r + r)�,

λ(m, l, r)� =

⎧⎪⎪⎨
⎪⎪⎩
(λm,λl,λr)� if λ > ,

(λm, –λr, –λl)� if λ < ,

(, , )� if λ = .

Furthermore, Diamond [] gave a metric d on the space T (R) of all triangular fuzzy
numbers by

d(X,Y ) =
[
y – ηl –

(
x – ξ l)] + [

y + ηr –
(
x + ξ r)] + (y – x),

where X = (x, ξ l, ξ r)� and Y = (y,ηl,ηr)� are two triangular fuzzy numbers in T (R).
In this paper, we will use the modified metric

d
H (X,Y ) =

{((
y – ηl) + y +

(
y + ηr))/ – ((

x – ξ l) + x +
(
x + ξ r))/},

which is defined by Kim et al. []. By using this modified metric, they have obtained the
asymptotic theory of least squares estimator in a fuzzy linear regression model.
Based upon the fuzzy set theory, fuzzy time seriesmodels have been defined and studied

by Song and Chissom []. Let Y (t) (t = . . . , , , , . . .) be a subset of R in which the universe
of fuzzy sets fi(t) (i = , , . . . ,m) is defined and let F(t) be a collection of fi(t) (i = , , . . . ,m).
Then F(t) is called a fuzzy time series on Y (t) (t = . . . , , , , . . .).
It can be seen from the above definition that F(t) is a collection of fi(t) (i = , , . . . ,m)

which are fuzzy sets defined on R for a given t ∈ T . The main difference between the
traditional time series and the fuzzy time series is that the former has numerical values as
its observations, while the latter has fuzzy sets as its observations. One of the application
areas of fuzzy time series is the forecasting problems under a fuzzy environment in which
no numerical historical data are available but linguistic ones.

3 Fuzzy least squares estimators
In this section, we first present an estimator of parameter. Suppose then that we have
observations {Xt , t = , , . . . ,T} from model (.). We are interested in estimating α by
trying to minimize the conditional sum of squares

Q(α) =
T∑
t=

d
H (Xt ,αXt–).
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Recalling the definition of the linear structure on T (R), we have

α ≥ , αXt– =
(
αxt–,αξ l

t–,αξ r
t–

)
�,

α < , αXt– =
(
αxt–, –αξ r

t–, –αξ l
t–

)
�.

(.)

This implies

Q(α) =
T∑
t=

d
H (Xt ,αXt–)

=
T∑
t=

[
xt +

(
ξ r
t – ξ l

t
)
/ –

(
αxt– +

(
α
(
ξ r
t– – ξ l

t–
))
/

)].
The estimation is actually obtained by solving the following least squares equation:

∂Q(α)
∂α

= –
T∑
t=

((
xt +

(
ξ r
t – ξ l

t
)
/ –

(
αxt– +

(
α
(
ξ r
t– – ξ l

t–
))
/

))
× (

xt– +
(
ξ r
t– – ξ l

t–
)
/

))
= . (.)

The solution of equation (.) is termed the fuzzy least squares estimation (FLSE) of α and
denoted by α̂.
Let

Wt = xt +
(
ξ r
t – ξ l

t
)
/, t = , , , . . . .

Then

α̂ =

( T∑
t=

WtWt–

)/( T∑
t=

W 
t–

)
. (.)

Note that if observations {Xt , t = , , . . . ,T} of model (.) are crisp, i.e., ξ r
t = ξ l

t = , θ l
t =

θ r
t = , then equation (.) and estimator (.) coincide with the classical least squares
method.

4 Asymptotic normality and forecasting
In this section, we discuss the properties of the estimator. In order to obtain these prop-
erties, we need the following assumptions:
(A) {(εt , θ l

t , θ r
t ) : t = , , . . .} is a sequence of independent and identically distributed

random vectors.
(A) E[εt] = , E[θ l

t ] = E[θ r
t ].

(A) Var[εt] +Var[θ r
t ] +Var[θ l

t ] < ∞.
The following two lemmas are given by Diananda [].

Lemma . Let y, y, . . . , be a sequence of random variables such that the distribution
of (yt+t , yt+t , . . . , yt+tn ) is independent of t for every  ≤ t < t < · · · < tn and n and such
that this collection is independent of (ys+s , ys+s , . . . , ys+sp ) for every  ≤ s < s < · · · < sp and
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p if s > t + tn + m. Assume Eyt = , Eyt < ∞, where p and m are positive integers. Then∑T
t= yt/

√
T has a limiting normal distribution with mean  and variance Ey + Eyy +

· · · + Eyym+.

Lemma . Suppose that {HT }, {ZT ,S}, {XT ,S} are sequences of random variables. Let
HT = ZT ,S + XT ,S , T = , , . . . , S = , , . . . such that EX

T ,S ≤ MS , limS→∞ MS = , P{ZT ,S ≤
z} = FT ,S(z) → FS(z), as T → ∞, limS→∞ FS(z) = F(z) at every continuity point. Then
limT→∞ P{HT ≤ z} = F(z) at every continuity point of F(z).

Now, we state our main results in the following theorems.

Theorem . Under the conditions of (A)-(A), let MT =
∑T

t=WtWt– – α
∑T

t=W 
t–.

ThenMT /
√
T L→N(,σ /(–α)), as T → ∞,where σ  =Var[εt+(θ r

t –θ l
t )/], the notation

L→ stands for convergence in distribution.

Theorem . Under the conditions of (A)-(A), let BT =
∑T

t=W 
t–. Then BT /T

p→
σ /( – α), as T → ∞, where σ  = Var[εt + (θ r

t – θ l
t )/], where the notation

p→ stands for
convergence in probability.

Theorem . Under the conditions of (A)-(A), we have
√
T(α̂ – α) L→ N(,  – α) as

T → ∞.

Suppose that we have observations {Xt , t = , , . . . ,T} from model (.). Based on the
estimator of α̂, we can obtain the following forecasting procedure:
. One-step forecasting: X̂T+ = α̂XT ;
. Two-step forecasting: X̂T+ = α̂XT+;
. n-step forecasting: X̂T+n = α̂XT+n–.

5 Proofs of the theorems
In this section, we give the proofs of the theorems.

Proof of Theorem . By (.) we have

α ≥ , Xt = αXt– ⊕ �t =
(
αxt– + εt ,αξ l

t– + θ l
t ,αξ r

t– + θ r
t
)
�,

α < , Xt = αXt– ⊕ �t =
(
αxt– + εt , –αξ r

t– + θ l
t , –αξ l

t– + θ r
t
)
�.

Note that for all |α| < ,

xt = αxt– + εt ,(
ξ r
t – ξ l

t
)
/ =

[
α
(
ξ r
t– – ξ l

t–
)
+

(
θ r
t – θ l

t
)]
/.

Let ut = εt + (θ r
t – θ l

t )/, then

Wt = xt +
(
ξ r
t – ξ l

t
)
/

= αxt– + εt +
[
α
(
ξ r
t– – ξ l

t–
)
+

(
θ r
t – θ l

t
)]
/

= αWt– + ut .
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This means that

MT =
T∑
t=

WtWt– – α

T∑
t=

W 
t–

=
T∑
t=

utut– + α

T∑
t=

utut– + · · · + αT–uTu +W

T∑
t=

αt–ut . (.)

Because the last term has mean  and varianceW 
σ ( –αT )/( –α), using Chebyshev’s

inequality, we have

(
W

T∑
t=

αt–ut

)/√
T

p→ , as T → ∞. (.)

Let

HT =

( T∑
t=

utut– + α

T∑
t=

utut– + · · · + αT–uTu

)/√
T ,

ZT ,S =

⎧⎨
⎩

∑T
t= utut–+α

∑T
t= utut–+···+αS

∑T
t=S+ utut–S–√

T
, S ≤ T – ,

HT , S > T – ,

XT ,S =HT – ZT ,S.

Since HT is a linear combination of terms utus (t 
= s), and each term is uncorrelated with
other terms, we have

E
[
X
T ,S

]
< σ α(S+)/

(
 – α), (.)

lim
S→∞σ α(S+)/

(
 – α) = . (.)

In what follows, we prove that

ZT ,S
L→N

(
,σ ( – α(S+))/( – α)), as T → ∞. (.)

Further, let

Z*
T ,S =

( T∑
t=S+

[
utut– + αutut– + · · · + αSutut–S–

])/√
T .

Note that Z*
T ,S and ZT ,S have the same limiting distribution as T → ∞. Next, we show that

Z*
T ,S

L→N
(
,σ ( – α(S+))/( – α)), as T → ∞.

Now, let

yt = utut– + αutut– + · · · + αSutut–S–.

http://www.journalofinequalitiesandapplications.com/content/2013/1/56
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Then

Eyt = σ ( – α(S+))/( – α),
E(ytyl) =  (t 
= l).

Thus, combining Lemma ., we prove (.). The theorem follows from (.)-(.) and
Lemma .. �

Proof of Theorem . Note that

BT =
T∑
t=

W 
t–

=W 
 + (u + αW) + · · · + (

uT– + αuT– + · · · + αT–W
)

=
[
u

(
 + α + · · · + α(T–)) + · · · + uT–

]
+ 

[
α(uu + · · · + uT–uT–) + · · · + αT–uT–u

]
+ W

[
u

(
α + α + · · · + αT–) + · · · + αT–uT–

]
+W 


[
 + α + · · · + α(T–)]

= BT + BT + BT + BT .

It is easy to see that

BT/T → , as T → ∞. (.)

Because E(BT/T) =  and E(BT /T) ≤ W 
σ α/(T( – α)), we have

BT /T
p→ , as T → ∞. (.)

Further, from

E(BT/T) = ,

E(BT/T)
 = 

[
σ (α(T – ) + α(T – ) + · · · + α(T–))]/T

< 
[
σ ( + α + · · · )]/T → , as T → ∞,

similarly, we get

BT /T
p→ , as T → ∞. (.)

Lastly, we will show that BT /T
p→ σ /( – α). Observe that


 – α

T–∑
t=

ut – BT = u
(
α(T–) + αT + · · · ) + · · · + uT–

(
α + α + · · · )

= uα
(T–)/

(
 – α) + · · · + αuT–/

(
 – α).
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Since this is a nonnegative random variable with expected value

(
ασ ( – α(T–)))/( – α),

using Markov’s inequality, we have

(


 – α

T–∑
t=

ut – BT

)/
T

p→ , as T → ∞. (.)

Further, by the law of large numbers, we get

(


 – α

T–∑
t=

ut

)/
T

p→ σ /
(
 – α), as T → ∞.

Then it holds that

BT /T
p→ σ /

(
 – α) as T → ∞. (.)

This, together with (.)-(.), completes the proof. �

Proof of Theorem . Note that

√
T(α̂ – α) = (MT /

√
T)/(BT /T).

With the application of Slusky’s theorem and Theorems . and ., we prove Theo-
rem .. �

6 Simulation results
In this section, we conduct some simulations to show the finite performance of the pro-
posed method. The simulation uses the fuzzy autoregressive model (.).
In the first simulation, we evaluate the finite sample performance of α̂. The modes and

spreads of fuzzy random errors �t are chosen as random samples from normal and uni-
form distributions,N(, ),U[, .], respectively. To assess the sensitivity of the estimates
to sample size and parameter, simulations are conducted for different parameter values
and sample sizes. In different simulations, we set α equal to –., –., –., –., .,
., ., and ., respectively. Moreover, the sample sizes used are , , , and .
For a particular sample size, , different sets of data were generated. For each data set,
we estimate the parameter α by the proposed estimator in (.) and report the average es-
timates and average mean squared error (MMSE) over  simulations. The results are
presented in Table .
FromTable , we see that the estimation procedure works very well. For different sample

sizes and different parameters, the average mean squared errors of α̂ are very small, and
the average mean squared error of α̂ decreases as sample size increases. Furthermore, we
also find that for the same sample size, the average mean squared error of α̂ decreases as
the absolute value of the parameter becomes large.

http://www.journalofinequalitiesandapplications.com/content/2013/1/56
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Table 1 Average estimates and average mean squared errors

α n = 50 n = 100 n = 300 n = 500
FLSE MMSE FLSE MMSE FLSE MMSE FLSE MMSE

–0.8 –0.7723 0.0096 –0.7829 0.0045 –0.7961 0.0012 –0.7962 7.4056× 10–4

–0.6 –0.5834 0.0133 –0.5892 0.0066 –0.5979 0.0021 –0.5986 0.0013
–0.4 –0.3844 0.0168 –0.3916 0.0080 –0.3960 0.0028 –0.3985 0.0017
–0.2 –0.1935 0.0180 –0.1955 0.0099 –0.1981 0.0034 –0.1989 0.0019
0.2 0.1899 0.0182 0.1932 0.0095 0.1992 0.0030 0.1999 0.0017
0.4 0.3844 0.0169 0.3913 0.0079 0.3980 0.0028 0.3990 0.0017
0.6 0.5741 0.0130 0.5916 0.0067 0.5971 0.0020 0.5975 0.0012
0.8 0.7693 0.0097 0.7858 0.0042 0.7941 0.0013 0.7978 7.3562× 10–4

Table 2 Square sum of the forecast error

α SSFE

0.1 24.4591 (1.8413)
0.3 30.9102 (23.8170)
0.5 17.8231 (15.4548)
0.7 5.5013 (3.7557)
0.9 18.9895 (15.8378)

α SSFE

0.2 45.4120 (27.6935)
0.4 3.1675 (1.0148)
0.6 10.5958 (7.0525)
0.8 6.6267 (3.0133)
0.98 22.7701 (9.1734)

In the second simulation, we illustrate the performance of the forecast procedure pro-
posed above.We comparemodel (.) with the ordinary autoregressivemodelXt = αXt– +
εt , where εt is error sequence.
Firstly, we produce  samples X,X, . . . ,X of model (.). Then by using the first 

samples X,X, . . . ,X, we can obtain the estimator α̂. We forecast X,X, . . . ,X. The
modes and spreads of the fuzzy random errors �t are chosen as random samples from
normal and uniform distributions, N(, ), U[, ], respectively. For the ordinary autore-
gressive model, we only forecast modal values based on the above fuzzy data.We compare
the square sum of the forecast error (SSFE) of modal values. The results are presented in
Table , and the figures in parentheses are those for model (.). From Table , we can see
that model (.) has less forecast error than the ordinary autoregressive model.

7 Conclusions
In this paper, we introduce a new fuzzy autoregressive model. The model can be consid-
ered as an extension of the standard autoregressivemodel since crisp values can be treated
as degenerated fuzzy numbers. Least squares estimation is derived, and the asymptotic
distribution of the proposed estimator is established. This estimation procedure is well
defined because if we use crisp data instead of fuzzy observations, then our estimation
reduces to the classical estimation. The simulation results indicate that the least squares
estimation performs very well.
It should be noted that we here discuss the first-order autoregressive model with trian-

gular fuzzy data. Further research needs to be undertaken to discover the analogous re-
sults for other models, such as the unstable first-order autoregressive model or high-order
autoregressive model, with more complicated metrics and/or other types of fuzzy data. It
is also interesting to consider the problem of testing hypotheses about the parameters in
these models.
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