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Abstract

An ideal Z is a family of subsets of positive integers N x N which is closed under
taking finite unions and subsets of its elements. In this paper, we present some
definitions which are a natural combination of the definition of asymptotic
equivalence, statistical convergence, lacunary statistical convergence, double
sequences and an ideal. In addition, we also present asymptotically Z-equivalent
double sequences and study some properties of this concept.
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1 Introduction

Pobyvancts [1] introduced the concept of asymptotically regular matrices which preserve
the asymptotic equivalence of two nonnegative numbers sequences. Marouf [2] presented
definitions for asymptotically equivalent and asymptotic regular matrices. Patterson [3]
extended these concepts by presenting an asymptotically statistical equivalent analog of
these definitions and natural regularity conditions for nonnegative summability matrices.
Patterson and Savas [4] introduced the concept of an asymptotically lacunary statistical
equivalent sequences of real numbers.

The idea of statistical convergence was formerly given under the name ‘almost conver-
gence’ by Zygmund in the first edition of his celebrated monograph published in Warsaw
in 1935 [5]. The concept was formally introduced by Steinhaus [6] and Fast [7], and later,
it was introduced by Schoenberg [8] and also independently by Buck [9]. A lot of devel-
opments have been made in this area after the works of Salat [10] and Fridy [11]. Over
the years and under different names, statistical convergence has been discussed in the
theory of Fourier analysis, ergodic theory and number theory. Fridy and Orhan [12] intro-
duced the concept of lacunary statistical convergence. Mursaleen and Mohiuddine [13]
introduced the concept of lacunary statistical convergence with respect to the intuition-
istic fuzzy normed space. Savas and Patterson [14, 15] introduced the concept of lacunary
statistical convergence for double sequences. Recently Mohiuddine et al. [16] introduced
statistical convergence of double sequences in locally solid Riesz spaces. For details related
to lacunary statistical convergence, we refer to [12, 17-24].

Kostyrko et al. [25] introduced the notion of I-convergence with the help of an admis-
sible ideal, I denotes the ideal of subsets of N, which is a generalization of statistical con-
vergence. Quite recently, Das et al. [26] unified these two approaches to introduce new
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concepts of [-statistical convergence, I-lacunary statistical convergence and investigated
some of their consequences. The notion of lacunary ideal convergence of real sequences
was introduced in [27, 28]. Hazarika [29, 30] introduced the lacunary ideal convergent
sequences of fuzzy real numbers and studied some basic properties of this notion. Kumar
and Sharma [31] studied asymptotically generalized statistical equivalent sequences using
ideals. Recently Savas [32] and Savas and Gumus [33] studied ideal asymptotically lacu-
nary statistical equivalent single sequences. For more applications of ideals, we refer to
[34-47].

In this paper, we define asymptotically lacunary statistical equivalent double sequences
using an ideal and establish some basic results regarding this notion.

2 Definitions and preliminaries
In this section, we recall some definitions and notations, which form the base for the
present study.

A family of sets I C P(N) (power sets of N) is called an ideal if and only if for each A, B € I,
we have AU B € I, and for each A € I and each B C A, we have B € I. A non-empty family
of sets F C P(N) is a filter on N if and only if ¢ ¢ F, for each A,B € F,wehave ANB e F
and each A € F and each B D A, we have B € F. Anideal  is called non-trivial ideal if ] # ¢
and N ¢ . Clearly, I C P(N) is a non-trivial ideal ifand only if F = F(I) ={N-A:A €]} is
a filter on N. A non-trivial ideal I C P(N) is called admissible if and only if {{x} : x € N} C I.
A non-trivial ideal I is maximal if there cannot exists any non-trivial ideal J # I containing
I as a subset. Further details on ideals of P(N) can be found in Kostyrko et al. [25]. Recall
that a sequence x = (x;) of points in R is said to be /-convergent to a real number £ if
{k e N:|x; — £| > e} € I for every ¢ > 0 [25]. In this case, we write [ — limuxy = €.

By a lacunary sequence 6 = (k,), where ko = 0, we mean an increasing sequence of non-
negative integers with 4, := k, — k,.; — 00 as r — 00. The intervals determined by 6 will
be denoted by J, := (k,_1, k], and the ratio kk’l will be defined by g, (see [48]).

r—

The notion of statistical convergence depends on the density (asymptotic or natural) of
subsets of N. A subset of N is said to have natural density §(E) if

1
8(E) = lim —|{k§ n:keE}| exists.
n—oo

Definition 2.1 A real or complex number sequence x = (x) is said to be statistically con-
vergent to L if for every ¢ > 0,

1iml]{k§n:|xk—L|ze}‘=0.
n n

In this case, we write S — limx = L or x; — L(S), and S denotes the set of all statistically
convergent sequences.

Definition 2.2 [12] A sequence x = (x) is said to be lacunary statistically convergent to
the number L if for every ¢ > 0,

lim hly{ke],:pck—u >¢}|=0.

r—0o0

Let Sy denote the set of all lacunary statistically convergent sequences. If § = (2"), then Sy
is the same as S.
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Definition 2.3 [26] Let I C P(N) be a non-trivial ideal. A sequence (xy) is I-statistically

convergent to L if for each ¢ >0 and § > 0,
1
{neN:—|{k§n:|xk—L|zs}’ 28} el.
n

In this case, we write I(S) — limwxy = L.

Definition 2.4 [26] Let I C P(N) be a non-trivial ideal. A sequence (xy) is said to be I-

lacunary statistically convergent to L if for each ¢ >0 and § > 0,
1
{reN: h—|{ke],: e — L| > ¢} | za} el

In this case, we write I(Sy) — limuxy = L. If 6 = (2"), then I(Sy) is the same as I(S).

Definition 2.5 [2] Two nonnegative sequences x = (xx) and y = (yx) are said to be asymp-
totically equivalent if

Xk

Iim— =1,
k- Yk
denoted by x ~ y.

Definition 2.6 [3] Two nonnegative sequences x = (x;) and y = (y¢) are said to be asymp-

totically statistical equivalent of multiple L provided that for every ¢ > 0,

g

denoted by x ~st y and simply asymptotically statistical equivalent if L = 1.

X,
RS
Yk

1
lim — =0,

n n

{kfn:

Patterson and Savas [4] defined the asymptotically lacunary statistical equivalent se-

quences as follows.

Definition 2.7 Two nonnegative sequences x = (xx) and y = (yx) are said to be asymptot-
ically lacunary statistical equivalent of multiple L provided that for every ¢ > 0,

1
lim —
r r

=0

{ke],:

o=
Yk

denoted by x ~55 y and simply asymptotically lacunary statistical equivalent if L = 1. If we
take 6 = (27), then we get Definition 2.6.

By the convergence of a double sequence, we mean the convergence in Pringsheim’s
sense [49]. A double sequence x = (xx ;) has a Pringsheim limit L (denoted by P —limx = L)
provided that given an € > 0, there exists an n € N such that |x; — L| < ¢, whenever k,[ > n.
We describe such an x = (xy;) more briefly as ‘P-convergent. We denote the space of all
P-convergent sequences by ¢2. The double sequence x = (x,) is bounded if there exists
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a positive number M such that |xg;| < M for all k and /. We denote all bounded double
sequences by /2.
Let K C N x N and K(m, n) denote the number of (,j) in K such that i <m andj<n

(see [50]). Then the lower natural density of K is defined by §,(K) = liminf, ;. %

In case the sequence (%) has a limit in Pringsheim’s sense, then we say that K has a

double natural density and is defined by P — lim,;, . K(,:,n,’,n) = §(K).
For example, let K = {(i,7%) : i,j € N}. Then

K(m, .
50 =P fim U _p o VY

mn—00 N mn—oo N

0,

i.e, the set K has double natural density zero, while the set {(i,3)) : i,j € N} has double
natural density %

Definition 2.8 [50] A real double sequence x = (xy) is said to be P-statistically convergent
to £ provided that for each ¢ > 0,

1
P—lim—|{(k,l):k<mandl<n, | — £| 28}| =0.
mn mn
We denote the set of all statistical convergent double sequences by S.

The double sequence 6 = 6, = {(k,, [;)} is called double lacunary sequence if there exist
two increasing sequences of integers such that (see [15])

k, =0, h =k, —k,_1—> 00 asr— o0
and
l,=0, hy=l—1l_; — 00 ass—> oo.

Notations: k,; = k,J, h,.s = h,h1; and 6, is determined by

]r,s = {(kr l) : kr—l <k = kr and ls—l <l = ls};

k, _ _
qr = , qs=-— and qrs = qrgs-
kr—l ls—l

Definition 2.9 A double sequence (xy,) is said to be double lacunary convergent to L if

1
P—-lim— Z ka:L.

s
s (k1) €lr,s

In this case, we write 6 — limy ; x; = L. We denote Nj the set of all double lacunary con-
vergent sequences.

Definition 2.10 [51] Let Z C P(N x N) be a non-trivial ideal. A double sequence (xx ) is
said to be Z-convergent to L if for each € > 0,

{(k,l)eNxN: g — L| Z&‘} el.

In this case, we write Z — limxy; = L.
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Throughout the paper, we denote Z as admissible ideal of subsets of N x N, unless oth-
erwise stated.

3 Asymptotically lacunary statistical equivalent double sequences using ideals
In this section, we define asymptotically Z-equivalent, asymptotically Z-statistical equiv-
alent, asymptotically Z-lacunary statistical equivalent and asymptotically lacunary Z-
equivalent double sequences and obtain some analogous results from these new defini-

tions point of views.

Definition 3.1 Let Z C P(N x N) be a non-trivial ideal. A double sequence (x ) is said to
be Z-statistically convergent to L if for each ¢ >0 and § > 0,

{(m,n)eNxN:%kam;lfn:pck,;—ﬂ28}|26} el.

In this case, we write Z(S) — limxy; = L.

Definition 3.2 Let Z C P(N x N) be a non-trivial ideal. A double sequence (xy ;) is said to
be Z-lacunary statistically convergent to L if for each ¢ >0 and § > 0,

{(r,s)eNxN: hi’{(k,l)e],,s: | — L] ZEH 28} eT.

In this case, we write Z(Sz) — limxy; = L.

Definition 3.3 Two nonnegative double sequences x = (x;) and y = (yx,) are said to be
P-asymptotically equivalent if

P—lim =X -1,
kb Yil
denoted by x ~% y.

Definition 3.4 Two nonnegative double sequences x = (xx;) and y = (yx;) are said to be

asymptotically statistical equivalent of multiple L provided that for every ¢ > 0

1
P—lim —
mu mn

=0,

{kfm,lfn:

Xkl
— — L‘ > 8}
Yk,

denoted by x ~St y and simply asymptotically statistical equivalent if L = 1.

Definition 3.5 Two nonnegative double sequences x = (x;) and y = (yx,) are said to be
asymptotically lacunary statistical equivalent of multiple L provided that for every ¢ > 0,

. 1
P—-lim —

S Myg

=0

{(k, D)ers:

Xkl
Vil

L
denoted by x ~% y and simply asymptotically lacunary statistical equivalent if L = 1. If we
take 6 = (27,2%), then we get Definition 3.4.
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Definition 3.6 Two non-negative double sequences (x;) and (yx,) are said to be asymp-
totically T-equivalent of multiple L provided that for every ¢ > 0,

X
ﬂ—L‘ze} el

{(/(,Z)EN x N:
Ykl

denoted by (xi;) ~T* (y«,1) and simply asymptotically Z-equivalent if L = 1.

Lemma 3.1 Let T C P(N x N) be an admissible ideal. Let (xx;), (yx1) be two double se-
quences and (xk,[), (yk,l) € Ego with T — limy x5, =0 = T- limk,lyk,l such that (xk,l) ~T (J/k,l)-
Then there exists a sequence (zx;) € Kio with T —limg ; zx; = 0 such that (xy;) ~T (zr1) ~T

(yk,l ) .

Definition 3.7 Two non-negative double sequences (xx) and (yx,) are said to be asymp-
totically T-statistically equivalent of multiple L provided that for every & > 0 and for every

§>0,
)

denoted by (xx ;) ~I(S) (yx,;) and simply asymptotically Z-statistical equivalent if L = 1.

Xkl
ol

Ykl

1
{(m,n)eNxN:—
mn

{kfm,lgn:

23} e,

Definition 3.8 Two non-negative double sequences (xx;) and (yx,) are said to be Cesaro
asymptotically T-equivalent (or Z(o1)-equivalent) of multiple L provided that for every
§>0,

m,n

LZ%_L

{(m, n)eNxN:
mn o Ykl

28} el

denoted by (xx ;) ~To) (yx,1) and simply asymptotically Z(o7)-equivalent if L = 1.

Definition 3.9 Two non-negative double sequences (xx;) and (yx,) are said to be strongly
Cesaro asymptotically T-equivalent (or Z(|o1])-equivalent) of multiple L provided that for

every § >0,
1 Alx
(m,n)eNxN:—Z o >8r el
TN = Ykl

denoted by (xx ) ~Zllorl)* (yx1) and simply strongly Cesaro asymptotically Z(]o1|)-equiva-
lentif L =1.

Definition 3.10 Two non-negative double sequences (x;) and (yx,) are said to be strongly
asymptotically lacunary equivalent of multiple L provided that
Xkl

— —L’ =0
Vi,

1
P—1lim —

r,s
S (k) r,s

denoted by (xx,) ~ NGl (yx,;) and simply strongly asymptotically lacunary equivalent if
L=1
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Definition 3.11 Two non-negative double sequences (x;) and (yx,) are said to be asymp-
totically T-lacunary equivalent (or Z(Nj)-equivalent) of multiple L provided that for every
6>0,

Xk,
g

1
{(r,s)eNxN:—
Yl

™S (kD)er,s

28}61

denoted by (xx ;) ~TWNp)* (yx,;) and simply asymptotically Z(Nj)-equivalent if L = 1.

Definition 3.12 Two non-negative double sequences (xx ;) and (yx) are said to be asymp-
totically T-lacunary statistically equivalent (or Z(Sz)-equivalent) of multiple L provided
that for every ¢ > 0, for every é > 0,

1
{(r,s)eNxN.h—

r,S

{(kr l) Ejr,s :

Xkl
Ykl

28}61

denoted by (xx ;) ~TS) (yx) and simply asymptotically Z(S;)-equivalent if L = 1.

Theorem 3.1 LetZ C P(N x N) be a non-trivial ideal. Let 6 = {(k,, L)} be a double lacunary
sequence. If (xx), (1) € €% and (xx;) ~TSt (Yi1). Then (xx;) ~Tlo) Y,0)-

Proof (a) Suppose that (x), (yx,) € €%, and (xx) ~IS) (¥,1)- Then we can assume that

Xk,
o

Ykt

<M for almostall &, /.

Let € > 0. Then we have

1 O (% IR
() < LS
o \ Ykl mn o Yl
1 Xkl 1 Xkl
N
mn A5 1kl mn oy 1kl
ol _ kil _
\yk,l Lize ‘yk,l Li<e
1 Xkl 1
<M-—\\k<ml<n:|—-L|>ep|+—  -mn-e¢.
mn Vi, mn

Consequently, if § > ¢ > 0, § and ¢ are independent, put §; =8 — & > 0, we have

A
, NxN:|— E — _L)|=6

fi=1 Nk
1 Xkl 4
c{mmeNxN:—Nk<ml<n:|==-Ll>¢et|>—tel.
mn Ykl M
This shows that (xy ;) ~* ()" kD) O

Corollary 3.1 Let T C P(N x N) be a non-trivial ideal. If (xi1), (yi.1) € €% and (x;) ~FS"
k1)- Then (x) ~T00" (3 ).


http://www.journalofinequalitiesandapplications.com/content/2013/1/543

Hazarika and Kumar Journal of Inequalities and Applications 2013, 2013:543 Page 8 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/543

Theorem 3.2 Let T C P(N x N) be a non-trivial ideal. Let 6 = {(k,,1;)} be a double lacu-
nary sequence. Then

(@) (o) ~TND" (g) = (o) ~T0 ().

(b) Z(Np)t is a proper subset of T(S;)~.

() Let (we1), (k) € €2 and (wes) ~TS" (i), then (u) ~T00" (y).

() Z(So)E N e2, = T(N;)E M 22,

Proof (a) Let e > 0 and (x4 ) ~TWp* (¥k,1)- Then we can write

> ¥Ry
(ks TR (belys 1V
|5t -Lize
>e {(k,l) €Jrs: el —L‘ > 8}
Yk
1 X 1 X
= - ﬁ_L Z_{(k:l)ejr,s: ﬁ_L ZS}
& 7,8 (kD) elrs Yk, 7,8 yk,l
Thus, for any § > 0,
X
T {(krl) €]r,s: Z _L’ = 5} >4
hr,s Vi,
implies that
1
h_ w -L > &d.
" D! TR
Therefore, we have
1 Xl
{(r,s) eNxN: — {(k,l) €Jrs: | — —L‘ zs} 28}
hr,s Vi,
1 Xkl
C{(r,s)eNxN:— —'—L‘ze&}.
S (ol VM
Since (xx) ~I0gY (¥x,1), so that
{(r,s)eNxN — @—L 286}61,
7,8 (kD)elrs Yk,
which implies that
1 Xl
{(r,s) eNxN:— {(k,l) €Jrs: | — —L’ ze} 28} eT.
hr,s Yk,

This shows that (xy ;) ~7 (&) k)
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(b) Suppose that Z(N;)! C Z(S;)F. Let (xr;) and (yx;) be two sequences defined as fol-

lows:

kl, ifk <k <k_+ [Vl la<l<lq+[Vhl,rns=12,3,...;

Xkl =
0, otherwise,
and
yrki=1 forallk,/eN.

It is clear that (xy ;) ¢ Zgo, and for ¢ > 0,

\Y hrs hrs
— {(k,l)e],,s: @_1‘ st < u and [V hs] —0 asr,s—o0o. (3.1)
hV,S Vi, 7,8 7,8
This implies that
1 Xk,
{(r,s) eNxN:— {(k,l) €Jrs: | — —1‘ Z&‘} 28}
hr,s Vi,

C {(r,s)eNxN: [\ih_m] 28}.

By virtue of last part of (3.1), the set on the right side is a finite set, and so it belongs to Z.

Consequently, we have

1
8 NxN:—
{(rs)e X .

7,

{(k’ l) e]r,s :

Xkl
— — 1‘ > 8}
Ykl

zS}eI.

Therefore, (xx ;) ~IS)! ,1)-
On the other hand, we shall show that (xy ;) ~TNG)! (yx,1) is not satisfied. Suppose that
(k1) LN (yk)- Then for every § > 0, we have

1
{(r,l)eNxN:— Ml _q 28}61. (3.2)
" (el Tt
Now,
1 1 Vs (V] =1 1
limh— @—1‘:]/1—([ ’]([2 5] )>_)5 asr,s — o0.
s TS (oD ens Vi, s

It follows for the particular choice § = i that

1
(r,s) e Nx N: —
{ h Vil 4

s (k,D)€]r,s

[VArs) (/] = 1))

h 7,

v

={(r,s)eNxN:< %}

= {(m,n),(m+1,n+1),(m+2,n+2),...}
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for some m,n € N which belongs to F as Z is admissible. This contradicts (3.2) for the
choice § = i. Therefore, (xx ) TN Yr)-

(c) Suppose that (xx) ISt (1) and (xx1), (Vi) € €% . We assume that |% -Ll<M
and for all k,/ € N. Given ¢ > 0, we get

1 X 1 X 1 x
e et X e 2 [
" (el T " (e 1R S (oelys 1o
|%_L‘38 I%—Lka
M X,
= — {(k:l)ejr,s: ﬂ_L ZS} +&.
hr,s yk,l
If we put
1 X1
A(8)={(F,S)€NXN:h— —’—L‘zs}
™S (e Rl
and
1 €
B(Sl):{(V,S)GNXN:—{(k,l)ejmz w—L‘ZE} Z_l};
hys Ykl M

where g1 =8 —¢ > 0, (8 and ¢ are independent), then we have A(¢) C B(¢;), and so A(e) € Z.
This shows that (xx ;) ~IWG) k1)
(d) It follows from (a), (b) and (c). O

Theorem 3.3 Let 7 C P(N x N) be an admissible ideal. Suppose that for given § > 0 and
every & > 0 such that

1
{(m,n)eNxN:— {0§/<§m—1;0§l§n—1: @—L‘Zs} <6}€.7:,
mn Vil
then (xi,1) ~*S)" ().
Proof Let § > 0 be given. For every ¢ > 0, choose m;, n; such that
— {05k§m—1;0§l§n—1: @—L zs}
mn Vi
for all m > my,n > ny. (3.3)

<=,
2

It is sufficient to show that there exists m15, 1, such that for m > m,, n > n,,

e

Let mqy = max{m, my}; ng = max{ny, ny}. The relation (3.3) will be true for m > mq, n > ny.

e

mn

Xk,
R

)
<= (3.4)
Vil 2

{OSkSm—l;OEZSn—I:

If 50, to chosen fixed, then we get

Xk,
S

Y,

HOsksso—l;OSISto—lz =M.

Page 10 of 15
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Now, for m > sg, 1 > ty, we have

—{05k5m—1;0515n—1: L Zs}
mn Ykl
X
5—{0§k§so— ;0<[<ty-1: ﬁ—L‘>e}
mn Yk,
1 X,
+ — {sosksm—l;toslsn—lz o 25}
mn Ykl
M 1 8
§—+—{30§k§m—1;t0§l§n—1 ﬂ—L‘>s} <—+-.
mn  mn Vil mn 2
Thus, for sufficiently large 7,
1 M b
so<k<m-Litg<l<n-1: ——L >et| < — +=<4.
mn Vil mn 2
This established the result. O

Theorem 3.4 Let T C P(N x N) be a non-trivial ideal. Let 6 = (k,,l ) be a double lacunary
sequence with liminf, ; g, > 1. Then (xy ;) ~ISt r,1) = () ~ (yk 0.

Proof Suppose that liminf, g, > 1, then there exists an « > 0 such that ¢,s > 1 + « for

sufficiently large r, s. Then we have

Nys . ‘
ki, " 1+«

If (xx ) ~TSH (yx,), then for every ¢ > 0 and for sufficiently large r, s, we have

1
k<ksl<lI: ——L >¢
krls { Yk, ‘ }
1
> {(k,l)efr,s: L ze}
krls Vi,
o Xkl
Nels:|—-L
Z1+0l hrs {(k ) ] Vi, ‘>8}

Therefore, for any § > 0, we have

1
{(r,s)eNxN:— {(k DeJns: ——L >s} 28}
hys Yk,
ol
(r,s) e NxN: — 3k <ksl<lI: ——L >¢ el.
kl Vi, 1+Ol
This completes the proof. g

Theorem 3.5 Let 7 = Zg, = {A C N x N: A is a finite set} be a non-trivial ideal, and let
6 = (ky, 1;) be a double lacunary sequence with lim sup, ; gr,s < 00. Then (xi;) ~TSp) ) =

L
(exr) ~FE (v ).
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Proof 1f limsup, ; g, < 0o. Then there exists a K > 0 such that g, ; < K for all ,5 > 1. Let
(k1) ~IS) (¥k,1)- Then there exists B> 0 and ¢ > 0, we put

M. - 1
s = hr,s

{(k,l) € Jrs:

Tl —L‘ zs”.
Yk,

Since (xx;) ~TSph (¥,1)- Then for every ¢ > 0 and § > 0, we have

g

1
{(r,s)eNxN.h—

rs

{(k’ l) e]r,s :

Xkl
Ykl

Mrs
:{(r,s)eNxN:h—’z(S}eI,

7,

and, therefore, it is a finite set. We choose integers r, sy € N such that

r,S

7 <8 forallr>rgy,s>sg. (3.5)

Let M = max{M,:1 <r <ry1<s<sp} and m, n be two integers with satisfying k,_; <

m <k, l,_1 <n <, then we have

X,
— {kfm;lfn: ﬁ—L‘ ze}
mn Yk,
X
< {kfk,;lsls: LI § 38}
kr—lls—l Vi,
1
= (Mg + Moz oo+ My + My aggn t00 + M}
kr—lls—l
M 1 Mr‘ +1,50+1 Mrs
= ""050+—{h i 1(07’ ot By —
kr1ls-1 kr-1ls-1 rorhor hr0+l,so+l i kr,s

- M 1 M, s i I}
~19So + ——— | su +o0
a kr—lls—l 0% kr—ll -1 r>r0,£so hr,s rortsort i
< M < roSo + 8 (41018 — kr() lso )
kr—lls—l kr—lls—l
< M 8 < 8K
=< <1080 +0 " (grs = +roSo + .
kr—lls—l e kr—l s—1
This completes the proof of the theorem. O

Definition 3.13 Let p € (0,00). Two non-negative double sequences (x;) and (yx;) are
said to be strongly asymptotically lacunary p-equivalent of multiple L if

Xkl
o

Yk,

P—-lim — =0

7,8
S (kDeTrs

DP

denoted by (x;) ~™a 7 (yx,;) and simply strongly asymptotically lacunary p-equivalent if
L=1.
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Definition 3.14 Let p € (0,00). Two non-negative double sequences (xx;) and (yx;) are
said to be asymptotically lacunary p-statistically equivalent of multiple L if for every ¢ > 0,

p
-l
L

St
denoted by (xx;) ~ % (yx,;) and simply asymptotically lacunary p-statistical equivalent if
L=1

Xk,
— L
Ykt

P-li ! 0
—lim — =
h

s s

[(k) l) e]r,s :

Theorem 3.6 Let 0 = (k,, ;) be a double lacunary sequence. Then

_ st
@ (o)~ () = ()~ O
(b) [N} is a proper subset of‘S’é

() Let (xi1), yxp) € €2, and (Kign) % (yi,1), then (xrp) ~! i k)
(@ SENE = NIEN

The proof of the above theorem is similar to Theorem 3.2 for I = I,.

Definition 3.15 Let p € (0, 00). We say that two non-negative double sequences (xy ;) and
(yx,1) are strongly asymptotically T-lacunary p-equivalent of multiple L if for every ¢ > 0,

Xk,
2

1
{(r,s)eNxN:—
h Vil

"8 (kD) er,s

> 8} el
denoted by (xy;) ~*™s 7 (yx,1) and simply strongly asymptotically Z-lacunary p-equivalent
ifL=1.

Definition 3.16 Let p € (0, 00). We say that two non-negative double sequences (xy;) and
(yx,1) are asymptotically T-lacunary p-statistically equivalent of multiple L if for every

8} el

_\L
denoted by (x ;) ~H %) (yx,;) and simply asymptotically Z-lacunary p-statistical equiva-
lentif L =1.

>0, foreveryd >0

1
{(r,s)eNxN.h—

7,

{(k, l)€Jrs:

X,
o= -
Vi1

Theorem 3.7 Let T C P(N x N) be a non-trivial ideal, and let 8 = (k,, 1) be a double la-
cunary sequence. Then

I(N; - I(S; L
(@) (exr) ~ ) k) = (xx1) ~ o) )
(b (NH )L is a proper subset of Z( Se )L

)
(©) Let (e ) € €2 and ()~ (), then () ~ V)" (3.
(d) Z(S5)F N €2, = T(Ng - N £2,.

Proof The proof of the theorem follows from the proofs of the Theorems 3.2 and 3.6. O

For 7 = T4, = {A C N x N: A is finite}, this theorem reduces to Theorem 3.6.
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