RESEARCH

Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

An extension of Jensen's discrete inequality to partially convex functions

Vasile Cirtoaje^{*}

*Correspondence: vcirtoaje@upg-ploiesti.ro Department of Automatic Control and Computers, University of Ploiesti, Ploiesti, 100680, Romania

Abstract

This paper deals with a new extension of Jensen's discrete inequality to a partially convex function f, which is defined on a real interval I, convex on a subinterval $[a,b] \subset I$, decreasing for $u \leq c$ and increasing for $u \geq c$, where $c \in [a,b]$. Several relevant applications are given to show the effectiveness of the proposed partially convex function theorem.

MSC: 26D07; 26D10; 41A44

Keywords: Jensen's discrete inequality; partially convex function; increasing/decreasing function

1 Introduction

Let $\mathbf{x} = \{x_1, x_2, ..., x_n\}$ be a sequence of real numbers belonging to a given real interval \mathbb{I} , and let $\mathbf{p} = \{p_1, p_2, ..., p_n\}$ be a sequence of given positive weights associated to \mathbf{x} and satisfying $p_1 + p_2 + \cdots + p_n = 1$. If f is a convex function on \mathbb{I} , then

$$\sum_{i=1}^{n} p_i f(x_i) \ge f\left(\sum_{i=1}^{n} p_i x_i\right)$$

is the classical Jensen discrete inequality (see [1, 2]).

In [3], we extended the weighted Jensen discrete inequality to a half convex function f, defined on a real interval \mathbb{I} and convex for $u \leq s$ or $u \geq s$, where $s \in \mathbb{I}$.

WHCF-Theorem Let f be a function defined on a real interval \mathbb{I} and convex for $u \leq s$ or $u \geq s$, where $s \in \mathbb{I}$, and let $p_1, p_2, ..., p_n$ be positive real numbers such that

 $p = \min\{p_1, p_2, \dots, p_n\}, \quad p_1 + p_2 + \dots + p_n = 1.$

The inequality

 $p_1f(x_1) + p_2f(x_2) + \dots + p_nf(x_n) \ge f(s)$

holds for all $x_1, x_2, \ldots, x_n \in \mathbb{I}$ satisfying $p_1x_1 + p_2x_2 + \cdots + p_nx_n = s$ if and only if

 $pf(x) + (1-p)f(y) \ge f(s)$

for all $x, y \in \mathbb{I}$ such that px + (1 - p)y = s.

Description Springer

© 2013 Cirtoaje; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For the particular case $p_1 = p_2 = \cdots = p_n = 1/n$, from the weighted half convex function theorem, we get the half convex function theorem (see [4, 5]).

HCF-Theorem *Let* f *be a function defined on a real interval* \mathbb{I} *and convex for* $u \leq s$ *or* $u \geq s$, where $s \in \mathbb{I}$. The inequality

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s)$$

holds for all $x_1, x_2, \ldots, x_n \in \mathbb{I}$ satisfying $x_1 + x_2 + \cdots + x_n = ns$ if and only if

$$f(x) + (n-1)f(y) \ge nf(s)$$

for all $x, y \in \mathbb{I}$ which satisfy x + (n-1)y = ns.

Applying HCF-Theorem and WHCF-Theorem to the function f defined by $f(u) = g(e^u)$ and replacing s by $\ln r$, x by $\ln x$, y by $\ln y$, and each x_i by $\ln a_i$ for i = 1, 2, ..., n, we get the following corollaries, respectively.

HCF-Corollary Let g be a function defined on a positive interval \mathbb{I} such that the function f defined by $f(u) = g(e^u)$ is convex for $e^u \le r$ or $e^u \ge r$, where $r \in \mathbb{I}$. The inequality

 $g(a_1) + g(a_2) + \dots + g(a_n) \ge ng(r)$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1 a_2 \cdots a_n = r^n$ if and only if

 $g(a) + (n-1)g(b) \ge ng(r)$

for all $a, b \in \mathbb{I}$ which satisfy $ab^{n-1} = r^n$.

WHCF-Corollary Let g be a function defined on a positive interval \mathbb{I} such that the function f defined by $f(u) = g(e^u)$ is convex for $e^u \le r$ or $e^u \ge r$, where $r \in \mathbb{I}$, and let p_1, p_2, \ldots, p_n be positive real numbers such that

 $p = \min\{p_1, p_2, \dots, p_n\}, \quad p_1 + p_2 + \dots + p_n = 1.$

The inequality

 $p_1g(a_1) + p_2g(a_2) + \cdots + p_ng(a_n) \ge g(r)$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1^{p_1} a_2^{p_2} \cdots a_n^{p_n} = r$ if and only if

 $pg(a) + (1-p)g(b) \ge g(r)$

for all $a, b \in \mathbb{I}$ such that $a^p b^{1-p} = r$.

In this paper, we will use HCF-Theorem and WHCF-Theorem to extend Jensen's inequality to partially convex functions, which are defined on a real interval I and convex only on a subinterval $[a, b] \subset I$. **Remark 1.1** Clearly, HCF-Theorem is a particular case of WHCF-Theorem. However, we posted here the both theorems because HCF-Theorem is much more useful to prove many inequalities of extended Jensen type.

Remark 1.2 Actually, in HCF-Theorem and WHCF-Theorem, it suffices to consider that

 $x \ge s \ge y$

when *f* is convex for $u \leq s$, and

 $x \le s \le y$

when *f* is convex for $u \ge s$ (see [3]). Also, in HCF-Corollary and WHCF-Corollary, it suffices to consider that

 $a \ge r \ge b$

when *f* is convex for $e^u \leq r$, and

 $a \le r \le b$

when *f* is convex for $e^u \ge r$.

2 Main results

The main results of the paper are given by the following two theorems: partially convex function theorem (PCF-Theorem) and weighted partially convex function theorem (WPCF-Theorem).

PCF-Theorem Let f be a function defined on a real interval \mathbb{I} , decreasing for $u \le s_0$ and increasing for $u \ge s_0$, where $s_0 \in \mathbb{I}$. In addition, assume that f is convex on $[s_0, s]$ or $[s, s_0]$, where $s \in \mathbb{I}$. The inequality

 $f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s)$

holds for all $x_1, x_2, \ldots, x_n \in \mathbb{I}$ satisfying $x_1 + x_2 + \cdots + x_n = ns$ if and only if

 $f(x) + (n-1)f(y) \ge nf(s)$

for all $x, y \in \mathbb{I}$ which satisfy x + (n-1)y = ns.

WPCF-Theorem Let f be a function defined on a real interval \mathbb{I} , decreasing for $u \le s_0$ and increasing for $u \ge s_0$, where $s_0 \in \mathbb{I}$, and let $p_1, p_2, ..., p_n$ be positive real numbers such that

 $p = \min\{p_1, p_2, \dots, p_n\}, \quad p_1 + p_2 + \dots + p_n = 1.$

In addition, assume that f is convex on $[s_0, s]$ or $[s, s_0]$, where $s \in \mathbb{I}$. The inequality

 $p_1 f(x_1) + p_2 f(x_2) + \dots + p_n f(x_n) \ge f(s)$

holds for all $x_1, x_2, \ldots, x_n \in \mathbb{I}$ satisfying $p_1x_1 + p_2x_2 + \cdots + p_nx_n = s$ if and only if

$$pf(x) + (1-p)f(y) \ge f(s)$$

for all $x, y \in \mathbb{I}$ such that px + (1 - p)y = s.

Applying PCF-Theorem and WPCF-Theorem to the function f defined by $f(u) = g(e^u)$ and replacing s_0 by $\ln r_0$, s by $\ln r$, x by $\ln x$, y by $\ln y$, and each x_i by $\ln a_i$ for i = 1, 2, ..., n, we get the following corollaries, respectively.

PCF-Corollary Let g be a function defined on a positive interval \mathbb{I} , decreasing for $t \le r_0$ and increasing for $t \ge r_0$, where $r_0 \in \mathbb{I}$. In addition, assume that the function f defined by $f(u) = g(e^u)$ is convex for $r_0 \le e^u \le r$ or $r \le e^u \le r_0$, where $r \in \mathbb{I}$. The inequality

 $g(a_1) + g(a_2) + \cdots + g(a_n) \ge ng(r)$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1 a_2 \cdots a_n = r^n$ if and only if

 $g(a) + (n-1)g(b) \ge ng(r)$

for all $a, b \in \mathbb{I}$ which satisfy $ab^{n-1} = r^n$.

WPCF-Corollary Let g be a function defined on a positive interval \mathbb{I} , decreasing for $t \le r_0$ and increasing for $t \ge r_0$, where $r_0 \in \mathbb{I}$, and let $p_1, p_2, ..., p_n$ be positive real numbers such that

 $p = \min\{p_1, p_2, \dots, p_n\}, p_1 + p_2 + \dots + p_n = 1.$

In addition, assume that the function f defined by $f(u) = g(e^u)$ is convex for $r_0 \le e^u \le r$ or $r \le e^u \le r_0$, where $r \in \mathbb{I}$. The inequality

 $p_1g(a_1) + p_2g(a_2) + \cdots + p_ng(a_n) \ge g(r)$

holds for all $a_1, a_2, \ldots, a_n \in \mathbb{I}$ satisfying $a_1^{p_1} a_2^{p_2} \cdots a_n^{p_n} = r$ if and only if

 $pg(a) + (1-p)g(b) \ge g(r)$

for all $a, b \in \mathbb{I}$ such that $a^p b^{1-p} = r$.

In order to prove WPCF-Theorem, we need the following lemmas.

Lemma 2.1 Let f be a function defined on a real interval \mathbb{I} , decreasing for $u \le s_0$ and increasing for $u \ge s_0$, where $s_0 \in \mathbb{I}$, and let $p_1, p_2, ..., p_n$ be positive real numbers such that

 $p_1 + p_2 + \cdots + p_n = 1.$

For $s \in \mathbb{I}$ *,* $s \ge s_0$ *, if the inequality*

$$p_1f(x_1) + p_2f(x_2) + \cdots + p_nf(x_n) \ge f(s)$$

holds for all $x_1, x_2, \ldots, x_n \in \mathbb{I}$ *such that*

 $x_1, x_2, \ldots, x_n \ge s_0, \quad p_1 x_1 + p_2 x_2 + \cdots + p_n x_n = s,$

then it holds for all $x_1, x_2, \ldots, x_n \in \mathbb{I}$ such that

 $p_1x_1+p_2x_2+\cdots+p_nx_n=s.$

Lemma 2.2 Let f be a function defined on a real interval \mathbb{I} , decreasing for $u \le s_0$ and increasing for $u \ge s_0$, where $s_0 \in \mathbb{I}$, and let $p_1, p_2, ..., p_n$ be positive real numbers such that

 $p_1 + p_2 + \cdots + p_n = 1.$

For $s \in \mathbb{I}$ *,* $s \leq s_0$ *, if the inequality*

 $p_1f(x_1) + p_2f(x_2) + \dots + p_nf(x_n) \ge f(s)$

holds for all $x_1, x_2, \ldots, x_n \in \mathbb{I}$ *such that*

 $x_1, x_2, \ldots, x_n \leq s_0, \quad p_1 x_1 + p_2 x_2 + \cdots + p_n x_n = s,$

then it holds for all $x_1, x_2, \ldots, x_n \in \mathbb{I}$ such that

$$p_1x_1+p_2x_2+\cdots+p_nx_n=s.$$

Notice that in the case $s \ge s_0$, WPCF-Theorem follows immediately from Lemma 2.1 and WHCF-Theorem applied to the interval

 $\mathbb{I}_0 = \{ u \in \mathbb{I} \mid u \ge s_0 \},\$

because *f* is convex for $u \in \mathbb{I}_0$, $u \leq s$. Also, in the case $s \leq s_0$, WPCF-Theorem follows immediately from Lemma 2.2 and WHCF-Theorem applied to the interval

$$\mathbb{I}_0 = \{ u \in \mathbb{I} \mid u \le s_0 \},\$$

because *f* is convex for $u \in \mathbb{I}_0$, $u \ge s$.

Remark 2.3 According to Remark 1.2, it suffices to consider in PCF-Theorem and WPCF-Theorem that

 $x \ge s \ge y$

when f is convex on $[s_0, s]$, and

 $x \le s \le y$

when f is convex on $[s, s_0]$. Also, it suffices to consider in PCF-Corollary and WPCF-Corollary that

 $a \ge r \ge b$

when *f* is convex for $r_0 \leq e^u \leq r$, and

$$a \le r \le b$$

when *f* is convex for $r \leq e^{u} \leq r_0$.

Remark 2.4 Let us denote

$$g(u) = \frac{f(u) - f(s)}{u - s}, \qquad h(x, y) = \frac{g(x) - g(y)}{x - y}.$$

In many applications, it is useful to replace the hypothesis

$$pf(x) + (1-p)f(y) \ge f(s)$$

in WHCF-Theorem and WPCF-Theorem by the equivalent condition:

$$h(x, y) \ge 0 \quad \forall x, y \in \mathbb{I}, \quad px + (1-p)y = s.$$

This equivalence is true since

$$pf(x) + (1-p)f(y) - f(s) = p[f(x) - f(s)] + (1-p)[f(y) - f(s)]$$
$$= p(x-s)g(x) + (1-p)(y-s)g(y)$$
$$= p(1-p)(x-y)[g(x) - g(y)]$$
$$= p(1-p)(x-y)^2h(x,y).$$

In the particular case $p_1 = p_2 = \cdots = p_n = 1/n$, this condition becomes

$$h(x,y) \ge 0 \ \forall x,y \in \mathbb{I}, \quad x + (n-1)y = ns.$$

Remark 2.5 The required inequalities in WHCF-Theorem and WPCF-Theorem turn into equalities for $x_1 = x_2 = \cdots = x_n = s$. In addition, on the assumption that

$$p=\min\{p_1,p_2,\ldots,p_n\},\$$

the equality also holds for $x_1 = x$ and $x_2 = \cdots = x_n = y$ if there exist $x, y \in \mathbb{I}$, $x \neq y$, such that

$$px + (1-p)y = s$$
, $pf(x) + (1-p)f(y) = f(s)$.

3 Proof of lemmas

Proof of Lemma 2.1 For i = 1, 2, ..., n, define the numbers $y_i \in \mathbb{I}$ as

$$y_i = \begin{cases} s_0, & x_i \leq s_0, \\ x_i, & x_i > s_0. \end{cases}$$

Since $y_i \ge x_i$ for i = 1, 2, ..., n, we have

$$p_1y_1 + p_2y_2 + \cdots + p_ny_n \ge p_1x_1 + p_2x_2 + \cdots + p_nx_n = s.$$

In addition, since $f(y_i) \le f(x_i)$ for $x_i \le s_0$ and $f(y_i) = f(x_i)$ for $x_i > s_0$, we have $f(y_i) \le f(x_i)$ for i = 1, 2, ..., n, and hence

$$p_1f(y_1) + p_2f(y_2) + \cdots + p_nf(y_n) \le p_1f(x_1) + p_2f(x_2) + \cdots + p_nf(x_n).$$

Thus, it suffices to show that

$$p_1f(y_1) + p_2f(y_2) + \dots + p_nf(y_n) \ge f(s)$$

for all $y_1, y_2, \ldots, y_n \ge s_0$ such that $p_1y_1 + p_2y_2 + \cdots + p_ny_n \ge s$. By hypothesis, this inequality is true for $y_1, y_2, \ldots, y_n \ge s_0$ and $p_1y_1 + p_2y_2 + \cdots + p_ny_n = s$. Since f is increasing for $u \in \mathbb{I}$, $u \ge s_0$, the more we have $p_1f(y_1) + p_2f(y_2) + \cdots + p_nf(y_n) \ge f(s)$ for $y_1, y_2, \ldots, y_n \ge s_0$ and $p_1y_1 + p_2y_2 + \cdots + p_ny_n \ge s$.

Proof of Lemma 2.2 For i = 1, 2, ..., n, define the numbers $y_i \in \mathbb{I}$ as follows:

$$y_i = \begin{cases} x_i, & x_i \leq s_0, \\ s_0, & x_i > s_0. \end{cases}$$

We have $y_i \le s_0$, $y_i \le x_i$ and $f(y_i) \le f(x_i)$ for i = 1, 2, ..., n. Therefore,

$$p_1y_1 + p_2y_2 + \dots + p_ny_n \le p_1x_1 + p_2x_2 + \dots + p_nx_n = s$$

and

$$p_1f(y_1) + p_2f(y_2) + \dots + p_nf(y_n) \le p_1f(x_1) + p_2f(x_2) + \dots + p_nf(x_n).$$

Thus, it suffices to show that

$$p_1 f(y_1) + p_2 f(y_2) + \dots + p_n f(y_n) \ge f(s)$$

for all $y_1, y_2, \ldots, y_n \le s_0$ such that $p_1y_1 + p_2y_2 + \cdots + p_ny_n \le s$. By hypothesis, this inequality is true for $y_1, y_2, \ldots, y_n \le s_0$ and $p_1y_1 + p_2y_2 + \cdots + p_ny_n = s$. Since f is decreasing for $u \in \mathbb{I}$, $u \le s_0$, we have also $p_1f(y_1) + p_2f(y_2) + \cdots + p_nf(y_n) \ge f(s)$ for $y_1, y_2, \ldots, y_n \le s_0$ and $p_1y_1 + p_2y_2 + \cdots + p_ny_n \le s$.

4 Applications

Application 4.1 Let $x_1, x_2, \ldots, x_n \ge \frac{-n}{n-2}$ $(n \ge 3)$ such that

$$x_1 + x_2 + \cdots + x_n = n.$$

If
$$k \ge \frac{n(3n-4)}{(n-2)^2}$$
, then
 $\frac{1-x_1}{k+x_1^2} + \frac{1-x_2}{k+x_2^2} + \dots + \frac{1-x_n}{k+x_n^2} \ge 0$,

with equality for $x_1 = x_2 = \cdots = x_n = 1$, and also for $x_1 = \frac{-n}{n-2}$ and $x_2 = \cdots = x_n = \frac{n}{n-2}$ (or any cyclic permutation).

Proof Rewrite the desired inequality as

$$f(x_1) + f(x_2) + \cdots + f(x_n) \ge nf(s),$$

where

$$s = 1,$$

 $f(u) = \frac{1-u}{k+u^2}, \quad u \in \mathbb{I} = \left[\frac{-n}{n-2}, \frac{n(2n-3)}{n-2}\right]$

We have

$$f'(u) = \frac{u^2 - 2u - k}{(u^2 + k)^2},$$
$$f''(u) = \frac{2f_1(u)}{(u^2 + k)^3},$$

where

$$f_1(u) = -u^3 + 3u^2 + 3ku - k = (k+1)(3u-1) - (u-1)^3.$$

There are two cases to consider. Case 1: $\sqrt{k+1} \ge \frac{2(n-1)^2}{n-2}$. For $u \in \mathbb{I}$, $u \ge 1$, we have

$$f_1(u) > (k+1)(u-1) - (u-1)^3 = (u-1)[k+1 - (u-1)^2] \ge 0,$$

since

$$u-1 \le \frac{n(2n-3)}{n-2} - 1 = \frac{2(n-1)^2}{n-2} \le \sqrt{k+1}.$$

Therefore, *f* is convex for $u \in I$, $u \ge 1$. By HCF-Theorem, we only need to show that f(x) + $(n-1)f(y) \ge nf(1)$ for all $x, y \in \mathbb{I}$ which satisfy x + (n-1)y = n. According to Remark 2.4, this is true if $h(x, y) \ge 0$ for $x, y \in \mathbb{I}$ and x + (n - 1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \qquad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{-1}{u^2 + k}$$

and

$$h(x,y) = \frac{x+y}{(x^2+k)(y^2+k)} = \frac{n+(n-2)x}{(n-1)(x^2+k)(y^2+k)} \ge 0.$$

Case 2: $\frac{2(n-1)}{n-2} \le \sqrt{k+1} < \frac{2(n-1)^2}{n-2}$. Since

$$1 - \sqrt{1+k} \le \frac{-n}{n-2}$$

and

$$1 + \sqrt{1+k} < 1 + \frac{2(n-1)^2}{n-2} = \frac{n(2n-3)}{n-2},$$

from the expression of f' it follows that f is decreasing on $[\frac{-n}{n-2}, s_0]$ and increasing on $[s_0, \frac{n(2n-3)}{n-2}]$, where

$$s_0 = 1 + \sqrt{k+1} > 1.$$

On the other hand, for $u \in [1, s_0]$, we have

$$f_1(u) > (k+1)(u-1) - (u-1)^3 = (u-1)[k+1 - (u-1)^2] \ge 0,$$

since

$$u - 1 \le s_0 - 1 = \sqrt{k + 1}.$$

Thus, *f* is convex on $[1, s_0]$. By PCF-Theorem, we only need to show that $f(x) + (n-1)f(y) \ge nf(1)$ for all $x, y \in \mathbb{I}$ such that x + (n-1)y = n. We have proved this before (at Case 1). \Box

Application 4.2 If $x_1, x_2, ..., x_n$ $(n \ge 3)$ are real numbers such that

$$x_1 + x_2 + \cdots + x_n = n,$$

then [6]

$$\sum_{i=1}^{n} \frac{n(n+1) - 2x_i}{n^2 + (n-2)x_i^2} \le n,$$

with equality for $x_1 = x_2 = \cdots = x_n = 1$, and also for $x_1 = n$ and $x_2 = \cdots = x_n = 0$ (or any cyclic permutation).

Proof The desired inequality is true for $x_1 > \frac{n(n+1)}{2}$ since

$$\frac{n(n+1)-2x_1}{n^2+(n-2)x_1^2}<0$$

and

$$\frac{n(n+1)-2x_i}{n^2+(n-2)x_i^2} < \frac{n}{n-1}, \quad i=2,3,\ldots,n.$$

Consider further that $x_1, x_2, ..., x_n \le \frac{n(n+1)}{2}$ and rewrite the desired inequality as

$$f(x_1) + f(x_2) + \cdots + f(x_n) \ge nf(s),$$

where

$$s = 1,$$

$$f(u) = \frac{2u - n(n+1)}{(n-2)u^2 + n^2}, \quad u \in \mathbb{I} = \left[\frac{n(3-n^2)}{2}, \frac{n(n+1)}{2}\right].$$

We have

$$\frac{f'(u)}{2(n-2)} = \frac{n^2 + n(n+1)u - u^2}{[(n-2)u^2 + n^2]^2}$$

and

$$\frac{f''(u)}{2(n-2)} = \frac{f_1(u)}{[(n-2)u^2 + n^2]^3},$$

where

$$f_1(u) = 2(n-2)u^3 - 3n(n+1)(n-2)u^2 - 2n^2(2n-3)u + n^3(n+1).$$

From the expression of f', it follows that f is decreasing on $[\frac{n(3-n^2)}{2}, s_0]$ and increasing on $[s_0, \frac{n(n+1)}{2}]$, where

$$s_0 = \frac{n}{2} (n + 1 - \sqrt{n^2 + 2n + 5}) \in (-1, 0).$$

On the other hand, for $-1 \le u \le 1$, we have

$$\begin{split} f_1(u) &> -2(n-2) - 3n(n+1)(n-2) - 2n^2(2n-3) + n^3(n+1) \\ &= n^2(n-3)^2 + 4(n+1) > 0, \end{split}$$

and hence f''(u) > 0. Since $[s_0, s] \subset [-1, 1]$, f is convex on $[s_0, s]$. By PCF-Theorem, we only need to show that $f(x) + (n-1)f(y) \ge nf(1)$ for all $x, y \in \mathbb{I}$ which satisfy x + (n-1)y = n. According to Remark 2.4, this is true if $h(x, y) \ge 0$ for $x, y \in \mathbb{I}$ and x + (n-1)y = n, where

$$h(x,y) = \frac{g(x) - g(y)}{x - y}, \qquad g(u) = \frac{f(u) - f(1)}{u - 1}.$$

Indeed, we have

$$g(u) = \frac{(n-2)u + n}{(n-2)u^2 + n^2}$$

and

$$\frac{h(x,y)}{n-2} = \frac{n^2 - n(x+y) - (n-2)xy}{[(n-2)x^2 + n^2][(n-2)y^2 + n^2]}$$
$$= \frac{(n-1)(n-2)y^2}{[(n-2)x^2 + n^2][(n-2)y^2 + n^2]} \ge 0.$$

Application 4.3 Let $x_1, x_2, ..., x_n$ $(n \ge 2)$ be positive real numbers such that

$$x_1+x_2+\cdots+x_n\geq n.$$

If k > 1*, then* [6]

$$\frac{x_1}{x_1^k + x_2 + \dots + x_n} + \frac{x_2}{x_1 + x_2^k + \dots + x_n} + \dots + \frac{x_n}{x_1 + x_2 + \dots + x_n^k} \le 1,$$

with equality for $x_1 = x_2 = \cdots = x_n = 1$.

Proof Using the substitutions

$$s=\frac{x_1+x_2+\cdots+x_n}{n},$$

and

$$y_1 = \frac{x_1}{s}, \qquad y_2 = \frac{x_2}{s}, \qquad \dots, \qquad y_n = \frac{x_n}{s},$$

the desired inequality becomes

$$\frac{y_1}{s^{k-1}y_1^k + y_2 + \dots + y_n} + \dots + \frac{y_n}{y_1 + y_2 + \dots + s^{k-1}y_n^k} \le 1,$$

where $s \ge 1$ and $y_1 + y_2 + \cdots + y_n = n$. Clearly, if this inequality holds for s = 1, then it holds for any $s \ge 1$. Therefore, we need only to consider the case s = 1, when $x_1 + x_2 + \cdots + x_n = n$, and the desired inequality is equivalent to

$$\frac{x_1}{x_1^k - x_1 + n} + \frac{x_2}{x_2^k - x_2 + n} + \dots + \frac{x_n}{x_n^k - x_n + n} \le 1.$$

There are two cases to consider: $1 < k \le n + 1$ and k > n + 1.

Case 1: $1 < k \le n + 1$. By Bernoulli's inequality, we have

$$x_1^k \ge 1 + k(x_1 - 1),$$

and hence

$$x_1^k - x_1 + n \ge n - k + 1 + (k - 1)x_1 \ge 0.$$

Consequently, it suffices to prove that

$$\sum_{i=1}^{n} \frac{x_i}{n-k+1+(k-1)x_i} \le 1.$$

For k = n + 1, this inequality is an equality. Otherwise, for 1 < k < n + 1, we rewrite the inequality as

$$\sum_{i=1}^{n} \frac{1}{n-k+1+(k-1)x_i} \ge 1,$$

which follows from the AM-HM inequality as follows:

$$\sum_{i=1}^{n} \frac{1}{n-k+1+(k-1)x_i} \ge \frac{n^2}{\sum_{i=1}^{n} [n-k+1+(k-1)x_i]} = 1.$$

Case 2: k > n + 1. Write the desired inequality as

$$f(x_1) + f(x_2) + \cdots + f(x_n) \ge nf(s),$$

where

$$s = 1,$$

$$f(u) = \frac{-u}{u^k - u + n}, \quad u \in \mathbb{I} = (0, n).$$

We have

$$f'(u) = \frac{(k-1)u^k - n}{(u^k - u + n)^2}$$

and

$$f''(u) = \frac{f_1(u)}{(u^k - u + n)^3},$$

where

$$f_1(u) = k(k-1)u^{k-1}(u^k - u + n) - 2(ku^{k-1} - 1)[(k-1)u^k - n].$$

From the expression of f', it follows that f is decreasing on $(0, s_0]$ and increasing on $[s_0, n)$, where

$$s_0 = \left(\frac{n}{k-1}\right)^{1/k} < 1.$$

On the other hand, for $u \in [s_0, s]$, we have

$$(k-1)u^k - n \ge (k-1)s_0^k - n = 0,$$

and hence

$$f_{1}(u) \geq k(k-1)u^{k-1}(u^{k}-u+n) - 2ku^{k-1}[(k-1)u^{k}-n]$$

= $ku^{k-1}[-(k-1)(u^{k}+u) + n(k+1)]$
 $\geq ku^{k-1}[-2(k-1) + 2(k+1)] = 4ku^{k-1} > 0.$

Thus, f''(u) > 0, and hence f is convex on $[s_0, s]$. By PCF-Theorem and Remark 2.3, we need to show that $f(x) + (n-1)f(y) \ge nf(1)$ for all positive x, y which satisfy $x \ge 1 \ge y > 0$ and x + (n-1)y = n. Consider the nontrivial case where x > 1 > y > 0 and write the inequality $f(x) + (n-1)f(y) \ge nf(1)$ as follows:

$$\frac{x}{x^{k} - x - n} + \frac{(n - 1)y}{y^{k} - y + n} \le 1,$$
$$x^{k} - x + n \ge \frac{x(y^{k} - y + n)}{y^{k} - ny + n},$$
$$x^{k} - x \ge \frac{(n - 1)y(y - y^{k})}{y^{k} - ny + n}.$$

Since y < 1 and $y^k - ny + n > y^k - y + 1 > 0$, it suffices to show that

$$x^k - x \ge \frac{(n-1)(y-y^k)}{y^k - y + 1}$$
,

which is equivalent to

$$h(x) \ge \frac{y - y^k}{(1 - y)(y^k - y + 1)},$$

where

$$h(x)=\frac{x^k-x}{x-1}.$$

By the weighted AM-GM inequality, we have

$$h'(x) = \frac{(k-1)x^k + 1 - kx^{k-1}}{(x-1)^2} > 0,$$

and hence *h* is strictly increasing. Since $x - 1 = (n - 1)(1 - y) \ge 1 - y$, we get

$$h(x) \ge h(2-y) = \frac{(2-y)^k - 2 + y}{1-y}.$$

Thus, it suffices to show that

$$(2-y)^k - 2 + y \ge \frac{y-y^k}{y^k - y + 1}.$$

Putting 1 - y = t, 0 < t < 1, we write this inequality as

$$(2-y)^{k} - 1 + y \ge \frac{1}{y^{k} - y + 1},$$

$$(1+t)^{k} - t \ge \frac{1}{(1-t)^{k} + t},$$

$$(1-t^{2})^{k} + t(1+t)^{k} \ge 1 + t^{2} + t(1-t)^{k}.$$

By Bernoulli's inequality,

$$\left(1-t^2\right)^k + t(1+t)^k > 1-kt^2 + t(1+kt) = 1+t.$$

So, we only need to show that $t(1 - t) \ge t(1 - t)^k$, which is clearly true.

Application 4.4 Let $x_1, x_2, ..., x_n$ $(n \ge 2)$ be positive real numbers such that

$$x_1 + x_2 + \cdots + x_n = n.$$

If $0 < k \le \frac{n}{n-1}$ *, then* [6]

$$x_1^{k/x_1} + x_2^{k/x_2} + \dots + x_n^{k/x_n} \le n$$

with equality for $x_1 = x_2 = \cdots = x_n = 1$.

Proof According to the power mean inequality, we have

$$\left(\frac{x_1^{p/x_1} + x_2^{p/x_2} + \dots + x_n^{p/x_n}}{n}\right)^{1/p} \ge \left(\frac{x_1^{q/x_1} + x_2^{q/x_2} + \dots + x_n^{q/x_n}}{n}\right)^{1/q}$$

for all $p \ge q > 0$. Thus, it suffices to prove the desired inequality for

$$k = \frac{n}{n-1}, \quad 1 < k \le 2.$$

Rewrite the desired inequality as

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge nf(s),$$

where

$$s = 1,$$

 $f(u) = -u^{k/u}, \quad u \in \mathbb{I} = (0, n).$

We have

$$f'(u) = ku^{\frac{k}{u}-2}(\ln u - 1),$$

$$f''(u) = ku^{\frac{k}{u}-4} [u + (1 - \ln u)(2u - k + k \ln u)].$$

From the expression of f', it follows that f is decreasing on $(0, s_0]$ and increasing on $[s_0, n)$, where

$$s_0 = e$$
.

In addition, we claim that *f* is convex on [*s*, *s*₀]. Indeed, since $1 - \ln u \ge 0$ and

$$2u - k + k \ln u \ge 2 - k \ge 0,$$

we have f'' > 0 for $u \in [s, s_0]$. Therefore, by PCF-Theorem and Remark 2.3, we only need to show that

$$x^{k/x} + (n-1)y^{k/y} \le n$$

for $0 < x \le 1 \le y$ and x + (n-1)y = n. We have

$$\frac{k}{x} \ge k > 1.$$

Also, from

$$\frac{k}{y} = \frac{n}{(n-1)y} > \frac{n}{x+(n-1)y} = 1, \quad \frac{k}{y} \le \frac{2}{y} \le 2,$$

we get

$$0 < \frac{k}{y} - 1 \le 1.$$

Therefore, by Bernoulli's inequality, we have

$$\begin{aligned} x^{k/x} + (n-1)y^{k/y} &- n \\ &= \frac{1}{(\frac{1}{x})^{k/x}} + (n-1)y \cdot y^{k/y-1} - n \\ &\leq \frac{1}{1 + \frac{k}{x}(\frac{1}{x} - 1)} + (n-1)y \bigg[1 + \bigg(\frac{k}{y} - 1 \bigg) (y - 1) \bigg] - n \\ &= \frac{x^2}{x^2 - kx + k} - (k - 1)x^2 - (2 - k)x \\ &= \frac{-(x - 1)^2 [(k - 1)x + k(2 - k)]}{x^2 - kx + k} \le 0. \end{aligned}$$

Application 4.5 If a, b, c are positive real numbers such that abc = 1, then

$$\frac{1-a}{17+4a+6a^2} + \frac{1-b}{17+4b+6b^2} + \frac{1-c}{17+4c+6c^2} \ge 0,$$

with equality for a = b = c = 1 and also for 8a = b = c = 2 (or any cyclic permutation).

Proof Write the desired inequality as

$$g(a) + g(b) + g(c) \ge 3g(r),$$

where r = 1 and

$$g(t) = \frac{1-t}{1+pt+qt^2}, \quad t \in \mathbb{I} = (0,\infty),$$

where $p = \frac{4}{17}$, $q = \frac{6}{17}$. From

$$g'(t) = \frac{qt^2 - 2qt - p - 1}{(1 + pt + qt^2)^2},$$

it follows that *g* is decreasing on $(0, r_0]$ and increasing on $[r_0, \infty)$, where

$$r_0 = 1 + \sqrt{1 + \frac{p+1}{q}} > 1.$$

We have

$$f(u) = g(e^{u}) = \frac{1 - e^{u}}{1 + pe^{u} + qe^{2u}},$$
$$f''(u) = \frac{t \cdot h(t)}{(1 + pt + qt^{2})^{3}},$$

where

$$t = e^{u}, \quad h(t) = -q^{2}t^{4} + q(p+4q)t^{3} + 3q(p+2)t^{2} + (p-4q+p^{2})t - p - 1.$$

We will show that h(t) > 0 for $t \in [r, r_0]$, and hence f is convex for

$$e^{u} \in [r, r_0] = \left[1, 1 + \sqrt{1 + \frac{p+1}{q}}\right].$$

We have

$$\begin{split} h'(t) &= -4q^2t^3 + 3q(p+4q)t^2 + 6q(p+2)t + p - 4q + p^2, \\ h''(t) &= 6q \Big[-2qt^2 + (p+4q)t + p + 2 \Big]. \end{split}$$

Since

$$h''(t) = 6q \left[2 \left(-qt^2 + 2qt + p + 1 \right) + p(t-1) \right] \ge 12q \left(-qt^2 + 2qt + p + 1 \right) \ge 0,$$

h'(t) is increasing,

$$h'(t) \ge h'(1) = p^2 + 9pq + 8q^2 + p + 8q > 0,$$

h is increasing, and hence

$$\begin{split} h(t) &\geq h(1) = p^2 + 4pq + 3q^2 + 2q - 1 = (p + 2q)^2 - (q - 1)^2 \\ &= (p + q + 1)(p + 3q - 1) > 0. \end{split}$$

By PCF-Corollary, we only need to prove that $g(a) + 2g(b) \ge 3g(1)$ for $ab^2 = 1$; that is,

$$\frac{1-a}{1+pa+qa^2} + \frac{2(1-b)}{1+pb+qb^2} \ge 0,$$

$$\frac{b^2(b^2-1)}{b^4+pb^2+q} + \frac{2(1-b)}{1+pb+qb^2} \ge 0,$$

$$pA + qB \ge C,$$

where

$$A = b^{2}(b-1)^{2}(b+2),$$

$$B = (b-1)^{2} (b^{4} + 2b^{3} + 2b^{2} + 2b + 2),$$

$$C = b^{2}(b-1)^{2}(2b+1).$$

Indeed, we have

$$17(pA + qB - C) = 3(b-1)^2(b-2)^2(2b^2 + 2b + 1) \ge 0.$$

Application 4.6 If *a*, *b*, *c* are positive real numbers such that abc = 1, *then* [6]

$$\frac{7-6a}{2+a^2} + \frac{7-6b}{2+b^2} + \frac{7-6c}{2+c^2} \ge 1,$$

with equality for a = b = c = 1 and also for 8a = b = c = 2 (or any cyclic permutation).

Proof Write the desired inequality as

$$g(a) + g(b) + g(c) \ge 3g(r),$$

where r = 1 and

$$g(t) = \frac{7-6t}{2+t^2}, \quad t \in \mathbb{I} = (0,\infty).$$

From

$$g'(t) = \frac{2(3t+2)(t-3)}{(2+t^2)^2},$$

it follows that g is decreasing on $(0, r_0]$ and increasing on $[r_0, \infty)$, where

$$r_0 = 3.$$

We have

$$f(u) = g(e^{u}) = \frac{7 - 6e^{u}}{2 + e^{2u}},$$

$$f''(u) = \frac{2t \cdot h(t)}{(2 + t^{2})^{3}},$$

where

$$t = e^{u}$$
, $h(t) = -3t^{4} + 14t^{3} + 36t^{2} - 28t - 12$.

We will show that h(t) > 0 for $t \in [r, r_0]$, and hence f is convex for

$$e^{u} \in [r, r_0] = [1, 3].$$

We have

$$h(t) = 3(t^{2} - 1)(9 - t^{2}) + 14t^{3} + 6t^{2} - 28t + 15$$

= $3(t^{2} - 1)(9 - t^{2}) + 14t^{2}(t - 1) + 14(t - 1)^{2} + 6t^{2} + 1 > 0.$

By PCF-Corollary, we only need to prove that $g(a) + 2g(b) \ge 3g(1)$ for $ab^2 = 1$; that is,

$$\begin{aligned} &\frac{7-6a}{2+a^2} + \frac{2(7-6b)}{2+b^2} \ge 1, \\ &\frac{b^2(7b^2-6)}{2b^4+1} + \frac{2(7-6b)}{2+b^2} \ge 1, \\ &(b-1)^2(b-2)^2\big(5b^2+6b+3\big) \ge 0. \end{aligned}$$

Since the last inequality is true, the proof is completed.

Application 4.7 Let a, b, c be positive real numbers such that abc = 1. If

$$k \in \left[\frac{-13}{3\sqrt{3}}, \frac{13}{3\sqrt{3}}\right],$$

then [6]

$$\frac{a+k}{a^2+1} + \frac{b+k}{b^2+1} + \frac{c+k}{c^2+1} \le \frac{3(1+k)}{2},$$

with equality for a = b = c = 1. If $k = \frac{13}{3\sqrt{3}}$, then the equality holds also for $a = 7 + 4\sqrt{3}$ and $b = c = 2 - \sqrt{3}$ (or any cyclic permutation). If $k = \frac{-13}{3\sqrt{3}}$, then the equality holds also for $a = 7 - 4\sqrt{3}$ and $b = c = 2 + \sqrt{3}$ (or any cyclic permutation).

Proof The desired inequality is equivalent to

$$\sum \frac{(a-1)^2}{a^2+1} \ge k \left(\sum \frac{2}{a^2+1} - 3 \right).$$

Thus, it suffices to prove this inequality for only $|k| = \frac{13}{3\sqrt{3}}$. On the other hand, replacing *a*, *b*, *c* by 1/a, 1/b, 1/c, the inequality becomes

$$\sum \frac{(a-1)^2}{a^2+1} \ge k \left(3 - \sum \frac{2}{a^2+1}\right).$$

Thus, we only need to prove the desired inequality for $k = \frac{13}{3\sqrt{3}}$. Write this inequality as

$$g(a) + g(b) + g(c) \ge 3g(r),$$

where r = 1 and

$$g(t)=\frac{-t-k}{t^2+1}, \quad t\in\mathbb{I}=(0,\infty).$$

From

$$g'(t) = \frac{t^2 + 2kt - 1}{(t^2 + 1)^2},$$

it follows that g is decreasing on $(0, r_0]$ and increasing on $[r_0, \infty)$, where

$$r_0 = \frac{\sqrt{3}}{9}.$$

We have

$$f(u) = g(e^{u}) = \frac{-e^{u} - k}{e^{2u} + 1},$$

$$f''(u) = \frac{t \cdot h(t)}{(t^{2} + 1)^{3}},$$

where

$$t = e^{u}$$
, $h(t) = -t^4 - 4kt^3 + 6t^2 + 4kt - 1$.

We will show that h(t) > 0 for $t \in [r_0, r]$, and hence f is convex for

$$e^{u} \in [r_0, r] = \left[\frac{\sqrt{3}}{9}, 1\right].$$

Indeed, since

$$4kt = \frac{52t}{3\sqrt{3}} = \frac{52}{27} > 1,$$

we have

$$h(t) = -t^4 + 6t^2 - 1 + 4kt(1 - t^2) \ge -t^4 + 6t^2 - 1 + (1 - t^2) = t^2(5 - t^2) > 0.$$

By PCF-Corollary, we only need to prove that $g(a) + 2g(b) \ge 3g(1)$ for $ab^2 = 1$; that is,

$$\begin{aligned} \frac{a+k}{a^2+1} + \frac{2(b+k)}{b^2+1} &\leq \frac{3(1+k)}{2}, \\ \frac{b^2(kb^2+1)}{b^4+1} + \frac{2(b+k)}{b^2+1} &\leq \frac{3(1+k)}{2}, \\ 3b^6 - 4b^5 + b^4 + b^2 - 4b + 3 - k(1-b^2)^3 &\geq 0, \\ (b-1)^2 [(3+k)b^4 + 2(1+k)b^3 + 2b^2 + 2(1-k)b + 3 - k] &\geq 0, \\ (b-1)^2 (b-2 + \sqrt{3})^2 [(27+13\sqrt{3})b^2 + 24(2+\sqrt{3})b + 33 + 17\sqrt{3}] &\geq 0. \end{aligned}$$

The last inequality is clearly true, and the proof is completed.

Application 4.8 If *a*, *b*, *c* are positive real numbers and $0 < k \le 2 + 2\sqrt{2}$, then [6]

$$\frac{a^3}{ka^2 + bc} + \frac{b^3}{kb^2 + ca} + \frac{c^3}{kc^2 + ab} \ge \frac{a + b + c}{k+1},$$

with equality for a = b = c = 1. If $k = 2 + 2\sqrt{2}$, then the equality holds also for $\frac{a}{\sqrt{2}} = b = c$ (or any cyclic permutation).

Proof For $k < 2 + 2\sqrt{2}$, the proof is similar to the one of the main case $k = 2 + 2\sqrt{2}$. For this reason, we consider further only the case where

$$k = 2 + 2\sqrt{2}.$$

Due to homogeneity, we may assume that abc = 1. On this hypothesis,

$$\sum \frac{a^3}{ka^2 + bc} - \frac{1}{k+1} \sum a = \sum \left(\frac{a^4}{ka^3 + 1} - \frac{a}{k+1}\right) = \frac{1}{k+1} \sum \frac{a^4 - a}{ka^3 + 1}.$$

Thus, we can write the inequality as

$$g(a) + g(b) + g(c) \ge 3g(r),$$

where r = 1 and

$$g(t) = \frac{t^4 - t}{kt^3 + 1}, \quad t \in \mathbb{I} = (0, \infty).$$

From

$$g'(t) = \frac{kt^6 + 2(k+2)t^3 - 1}{(kt^3 + 1)^2},$$

it follows that *g* is decreasing on $(0, r_0]$ and increasing on $[r_0, \infty)$, where

$$r_0 = \sqrt[3]{\frac{-k - 2 + \sqrt{(k+1)(k+4)}}{k}} \approx 0.4149.$$

We have

$$f(u) = g(e^{u}) = \frac{e^{4u} - e^{u}}{ke^{3u} + 1},$$

$$f''(u) = \frac{t \cdot h(t)}{(kt^{3} + 1)^{3}},$$

where

$$t = e^{u}$$
, $h(t) = k^{2}t^{9} - k(4k+1)t^{6} + (13k+16)t^{3} - 1$.

We have $h(t) \ge 0$ for $t \in [t_1, t_2]$, where $t_1 \approx 0.2345$ and $t_2 \approx 1.02$. Since

$$[r_0,r] \subset [t_1,t_2],$$

f is convex for $e^u \in [r_0, r]$. Then, by PCF-Corollary, it suffices to show that $g(a) + 2g(b) \ge 3g(1)$ for $ab^2 = 1$. This is true if the original inequality holds for b = c = 1. Thus, we need to show that

$$\frac{a^3}{ka^2+1} + \frac{2}{a+k} \ge \frac{a+2}{k+1},$$

which is equivalent to the obvious inequality

$$(a-1)^2(a-\sqrt{2})^2 \ge 0.$$

Application 4.9 If a_1 , a_2 , a_3 , a_4 , a_5 are positive real numbers such that

$$a_1a_2a_3a_4a_5 = 1$$
,

then [6]

$$\frac{1-a_1}{1+a_1^2} + \frac{1-a_2}{1+a_2^2} + \frac{1-a_3}{1+a_3^2} + \frac{1-a_4}{1+a_4^2} + \frac{1-a_5}{1+a_5^2} \ge 0,$$

with equality for $a_1 = a_2 = a_3 = a_4 = a_5 = 1$.

Proof Write the inequality as

$$g(a_1) + g(a_2) + g(a_3) + g(a_4) + g(a_5) \ge 3g(r),$$

where r = 1 and

$$g(t)=\frac{1-t}{1+t^2},\quad t\in\mathbb{I}=(0,\infty).$$

From

$$g'(t) = \frac{t^2 - 2t - 1}{(t^2 + 1)^2},$$

it follows that g is decreasing on $(0, r_0]$ and increasing on $[r_0, \infty)$, where

$$r_0 = 1 + \sqrt{2}$$
.

We have

$$f(u) = g(e^{u}) = \frac{1 - e^{u}}{1 + e^{2u}},$$

$$f''(u) = \frac{t \cdot h(t)}{(t^2 + 1)^3},$$

where

$$t = e^{u}$$
, $h(t) = -t^{4} + 4t^{3} + 6t^{2} - 4t - 1$.

We will show that h(t) > 0 for $t \in [r, r_0]$, and hence f is convex for

$$e^{u} \in [r, r_0] = [1, 1 + \sqrt{2}].$$

Indeed,

$$h(t) \ge -t^4 + 6t^2 - 1 = 8 - (3 - t^2)^2 \ge 4.$$

By PCF-Corollary, we only need to prove that $g(a) + 4g(b) \ge 5g(1)$ for $ab^4 = 1$; that is,

$$\begin{split} &\frac{1-a}{1+a^2}+\frac{4(1-b)}{1+b^2}\geq 0,\\ &\frac{b^4(b^4-1)}{1+b^8}+\frac{4(1-b)}{1+b^2}\geq 0,\\ &1+\frac{4(1-b)}{1+b^2}\geq \frac{1+b^4}{1+b^8}. \end{split}$$

Since

$$\frac{1+b^4}{1+b^8} \le \frac{2}{1+b^4} \le \frac{4}{\left(1+b^2\right)^2},$$

it suffices to show that

$$1 + \frac{4(1-b)}{1+b^2} \ge \frac{4}{\left(1+b^2\right)^2}.$$

This inequality is equivalent to $(1 - b)^4 \ge 0$, and the proof is completed.

Remark 4.1 The inequality

$$\frac{1-a_1}{1+a_1^2} + \frac{1-a_2}{1+a_2^2} + \frac{1-a_3}{1+a_3^2} + \frac{1-a_4}{1+a_4^2} + \frac{1-a_5}{1+a_5^2} + \frac{1-a_6}{1+a_6^2} \ge 0$$

is not true for any positive numbers a_1 , a_2 , a_3 , a_4 , a_5 , a_6 satisfying $a_1a_2a_3a_4a_5a_6 = 1$. Indeed, for $a_2 = a_3 = a_4 = a_5 = a_6 = 2$, the inequality becomes

$$\frac{-a_1(a_1+1)}{1+a_1^2} \ge 0,$$

which is false for

$$a_1 = \frac{1}{a_2 a_3 a_4 a_5 a_6} = \frac{1}{32}$$

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author is grateful to the referees for their useful comments.

Received: 16 October 2012 Accepted: 30 January 2013 Published: 18 February 2013

References

- 1. Jensen, JLWV: Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Math. **30**(1), 175-193 (1906)
- 2. Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)
- Cirtoaje, V, Baiesu, A: An extension of Jensen's discrete inequality to half convex functions. J. Inequal. Appl. 2011, 101 (2011)
- 4. Cirtoaje, V: A generalization of Jensen's inequality. Gaz. Mat., Ser. A 2, 124-138 (2005)
- 5. Cirtoaje, V: Algebraic Inequalities-Old and New Methods. GIL Publishing House, Zalau (2006)
- Art of Problem Solving. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=45516/115797/220970/ 242881/246265/453476/465869

doi:10.1186/1029-242X-2013-54

Cite this article as: Cirtoaje: An extension of Jensen's discrete inequality to partially convex functions. *Journal of Inequalities and Applications* 2013 2013:54.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com