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Abstract
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1 Introduction
A continuous function f = u + iv is a complex-valued harmonic function in a simply con-
nected complex domain D ⊂ C if both u and v are real harmonic in D. It was shown by
Clunie and Sheil-Small [] that such a harmonic function can be represented by f = h + g ,
where h and g are analytic inD. Also, a necessary and sufficient condition for f to be locally
univalent and sense-preserving in D is that |h′(z)| > |g ′(z)| (see also [–] and []).
Denote by SH the class of functions f that are harmonic univalent and sense-preserving

in the open unit disc U = {z ∈ C : |z| < }, for which f () = h() = f ′
z () –  = . Then for

f = h + g ∈ SH we may express the analytic functions h and g as

h(z) = z +
∞∑
n=

anzn, g(z) =
∞∑
n=

bnzn, |b| < . (.)

Clunie and Sheil-Small [] investigated the class SH as well as its geometric subclasses and
obtained some coefficient bounds.
Also, let SH denote the subclass of SH consisting of functions f = h + g such that the

functions h and g are of the form

h(z) = z –
∞∑
n=

|an|zn, g(z) =
∞∑
n=

|bn|zn, |b| < . (.)

Recently Kanas andWisniowska [] (see also Kanas and Srivastava []) studied the class of
k-uniformly convex analytic functions, denoted by k –UCV , k ≥ , so that φ ∈ k –UCV
if and only if

Re

{
 +

(z – ζ )φ′′(z)
φ′(z)

}
≥ 

(|ζ | ≤ k; z ∈ U
)
. (.)
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For θ ∈R, if we let ζ = –kzeiθ , then condition (.) can be written as

Re

{
 +

(
 + keiθ

)zφ′′(z)
φ′(z)

}
≥ . (.)

Kim et al. [] introduced and studied the classHCV (k,α) consisting of functions f = h+ g,
such that h and g are given by (.), and satisfying the condition

Re

{
 +

(
 + keiθ

)zh′′(z) + zg ′(z) + zg ′′(z)
zh′(z) – zg ′(z)

}
≥ α ( ≤ α < ; θ ∈R;k ≥ ). (.)

Also, the class of k –UST uniformly starlike functions is defined by using (.) as the class
of all functions ψ(z) = zφ′(z) such that φ ∈ k –UCV , then ψ(z) ∈ k –UST if and only if

Re

{(
 + keiθ

)zψ ′(z)
ψ(z)

– keiθ
}

≥ . (.)

Generalizing the class k –UST to include harmonic functions, we let HST(k,α) denote
the class of functions f = h + g , such that h and g are given by (.), which satisfies the
condition

Re

{(
 + keiθ

)zf ′(z)
z′f (z)

– keiθ
}

≥ α ( ≤ α < ; θ ∈R;k ≥ ). (.)

Replacing h + g for f in (.), we have

Re

{(
 + keiθ

)zh′(z) – zg ′(z)
h(z) + g(z)

– keiθ
}

≥ α (≤ α < ; θ ∈R;k ≥ ). (.)

The convolution of two functions of the form

f (z) = z +
∞∑
n=

anzn and F(z) = z +
∞∑
n=

Anzn

is defined as

(f ∗ F)(z) = z +
∞∑
n=

anAnzn, (.)

while the integral convolution is defined by

(f ♦F)(z) = z +
∞∑
n=

anAn

n
zn. (.)

From (.) and (.), we have

(f ♦F)(z) =
∫ z



(f ∗ F)(t)
t

dt.
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Nowwe consider the subclassHST(φ,ψ ,k,α) consisting of functions f = h+ g , such that
h and g are given by (.), and satisfying the condition

Re

{(
 + keiθ

) h(z) ∗ ϕ(z) – g(z) ∗ χ (z)
h(z)♦ϕ(z) + g(z)♦χ (z)

– keiθ
}

≥ α ( ≤ α < ;k ≥ ; θ real), (.)

where

ϕ(z) = z +
∞∑
n=

λnzn (λn ≥ ) and χ (z) = z +
∞∑
n=

μnzn (μn ≥ ). (.)

We further consider the subclass HST(φ,χ ,k,α) of HST(φ,χ ,k,α) for h and g given by
(.).
We note that
(i) HST(φ,χ , ,α) =HS(φ,χ ,α) (see Dixit et al. []);
(ii) HST( z

(–z) ,
z

(–z) , ,α) =GH (α) (see Rosy et al. []);

(iii) HST( z+z
(–z) ,

z+z
(–z) ,k,α) =HCV (k,α) (see Kim et al. []);

(iv) HST( z
(–z) ,

z
(–z) , ,α) = T∗

H (α) (see Jahangiri [], see also Joshi and Darus []);

(v) HST( z+z
(–z) ,

z+z
(–z) , ,α) = CH (α) (see Jahangiri [], see also Joshi and Darus []).

In this paper, we extend the results of the above classes to the classesHST(φ,χ ,k,α) and
HST(φ,χ ,k,α), we also obtain some basic properties for the class HST(φ,χ ,k,α).

2 Coefficient characterization and distortion theorem
Unless otherwise mentioned, we assume throughout this paper that ϕ(z) and χ (z) are
given by (.),  ≤ α < , k ≥  and θ is real. We begin with a sufficient condition for
functions in the class HST(φ,χ ,k,α).

Theorem  Let f = h + g be such that h and g are given by (.). Furthermore, let

∞∑
n=

λn

n

(
( + k)n – (k + α)

( – α)

)
|an| +

∞∑
n=

μn

n

(
( + k)n + (k + α)

( – α)

)
|bn| ≤ , (.)

where

n( – α)≤ λn
[
( + k)n – (k + α)

]
and n( – α)≤ μn

[
( + k)n + (k + α)

]
for n≥ .

Then f is sense-preserving, harmonic univalent in U and f ∈HST(φ,χ ,k,α).

Proof First we note that f is locally univalent and sense-preserving in U . This is because

∣∣h′(z)
∣∣ ≥  –

∞∑
n=

n|an|rn– >  –
∞∑
n=

n|an| ≥  –
∞∑
n=

λn

n

(
( + k)n – (k + α)

( – α)

)
|an|

≥
∞∑
n=

μn

n

(
( + k)n + (k + α)

( – α)

)
|bn| ≥

∞∑
n=

n|bn| ≥
∞∑
n=

n|bn|rk– >
∣∣g ′(z)

∣∣.

http://www.journalofinequalitiesandapplications.com/content/2013/1/537


El-Ashwah Journal of Inequalities and Applications 2013, 2013:537 Page 4 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/537

To show that f is univalent in U , suppose z, z ∈U so that z 
= z, then

∣∣∣∣ f (z) – f (z)
h(z) – h(z)

∣∣∣∣ ≥  –
∣∣∣∣ g(z) – g(z)
h(z) – h(z)

∣∣∣∣ =  –
∣∣∣∣

∑∞
n= bn(zn – zn)

(z – z) +
∑∞

n= an(zn – zn)

∣∣∣∣
≥  –

∑∞
n= n|bn|

 –
∑∞

n= n|an| >  –
∑∞

n=
μn
n ( (+k)n+(k+α)

(–α) )|bn|
 –

∑∞
n=

λn
n (

(+k)n–(k+α)
(–α) )|an|

≥ .

Now, we prove that f ∈ HST(φ,ψ ,k,α), by definition, we only need to show that if (.)
holds, then condition (.) is satisfied. From (.), it suffices to show that

Re

{
( + keiθ )(h(z) ∗ ϕ(z) – g(z) ∗ χ (z)) – (keiθ + α)(h(z)♦ϕ(z) + g(z)♦χ (z))

h(z)♦ϕ(z) + g(z)♦χ (z)

}

≥ . (.)

Substituting for h, g , ϕ and χ in (.) and dividing by (–α)z, we obtain Re A(z)
B(z) ≥ , where

A(z) =  +
∞∑
n=

λn

n
( + keiθ )n – (keiθ + α)

( – α)
anzn–

–
(
z
z

) ∞∑
n=

μn

n
( + keiθ )n + (keiθ + α)

( – α)
bnzn–

and

B(z) =  +
∞∑
n=

λn

n
anzn– +

(
z
z

) ∞∑
n=

μn

n
bnzn–.

Using the fact that Re(w) ≥  if and only if | + w| ≥ | – w| in U , it suffices to show that
|A(z) + B(z)| – |A(z) – B(z)| ≥ . Substituting for A(z) and B(z) gives

∣∣A(z) + B(z)
∣∣ – ∣∣A(z) – B(z)

∣∣
=

∣∣∣∣∣ +
∞∑
n=

λn

n
( + keiθ )n – (keiθ + α – )

( – α)
anzn–

–
(
z
z

) ∞∑
n=

μn

n
( + keiθ )n + (keiθ + α – )

( – α)
bnzn–

∣∣∣∣∣
–

∣∣∣∣∣
∞∑
n=

λn

n
( + keiθ )n – ( + keiθ )

( – α)
anzn–

–
(
z
z

) ∞∑
n=

μn

n
( + keiθ )n + ( + keiθ )

( – α)
bnzn–

∣∣∣∣∣
≥  –

∞∑
n=

λn

n
( + k)n – (k + α – )

( – α)
|an||z|n–

–
∞∑
n=

μn

n
( + k)n + (k + α – )

( – α)
|bn||z|n–
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–
∞∑
n=

λn

n
( + k)n – ( + k)

( – α)
|an+||z|n–

–
∞∑
n=

μn

n
( + k)n + ( + k)

( – α)
|bn||z|n–

≥ 

{
 –

∞∑
n=

λn

n
( + k)n – (k + α)

( – α)
|an| –

∞∑
n=

μn

n
( + k)n + (k + α)

( – α)
|bn|

}

≥  by (.).

The harmonic functions

f (z) = z +
∞∑
n=

n
λn

( – α)
( + k)n – (k + α)

xnzn

+
∞∑
n=

n
μn

( – α)
( + k)n + (k + α)

ynz
n, (.)

where
∑∞

n= |xn| + ∑∞
n= |yn| = , show that the coefficient bound given by (.) is sharp.

The functions of the form (.) are in the class HST(φ,χ ,k,α) because

∞∑
n=

[
λn

n
( + k)n – (k + α)

( – α)
|an| +

∞∑
n=

μn

n
( + k)n + (k + α)

( – α)
|bn|

]

=
∞∑
n=

|xn| +
∞∑
n=

|yn| = .

This completes the proof of Theorem . �

In the following theorem, it is shown that condition (.) is also necessary for functions
f = h + g , where h and g are given by (.).

Theorem  Let f = h + g be such that h and g are given by (.). Then f ∈ HST(φ,χ ,k,α)
if and only if

∞∑
n=

λn

n

(
( + k)n – (k + α)

( – α)

)
|an| +

∞∑
n=

μn

n

(
( + k)n + (k + α)

( – α)

)
|bn| ≤ . (.)

Proof Since HST(φ,χ ,k,α) ⊂ HST(φ,χ ,k,α), we only need to prove the ‘only if ’ part of
the theorem. To this end, we notice that the necessary and sufficient condition for f ∈
HST(φ,χ ,k,α) is that

Re

{(
 + keiθ

) h(z) ∗ ϕ(z) – g(z) ∗ χ (z)
h(z)♦ϕ(z) + g(z)♦χ (z)

– keiθ
}

≥ α.

This is equivalent to

Re

{
( + keiθ )(h(z) ∗ ϕ(z) – g(z) ∗ χ (z)) – (keiθ + α)(h(z)♦ϕ(z) + g(z)♦χ (z))

h(z)♦ϕ(z) + g(z)♦χ (z)

}
> ,
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which implies that

Re

{ ( – α)z –
∑∞

n=
λn
n [( + keiθ )n – (keiθ + α)]|an|zn

z –
∑∞

n=
λn
n |an|zn +∑∞

n=
μn
n |bn|zn

–
∑∞

n=
μn
n [( + keiθ )n + (keiθ + α)]|bn|zn

z –
∑∞

n=
λn
n |an|zn +∑∞

n=
μn
n |bn|zn

}

= Re

{ ( – α) –
∑∞

n=
λn
n [( + keiθ )n – (keiθ + α)]|an|zn–

 –
∑∞

n=
λn
n |an|zn– + ( zz )

∑∞
n=

μn
n |bn|zn–

–
( zz )

∑∞
n=

μn
n [( + keiθ )n + (keiθ + α)]|bn|zn–

 –
∑∞

n=
λn
n |an|zn + ( zz )

∑∞
n=

μn
n |bn|zn–

}
> , (.)

since Re(eiθ ) ≤ |eiθ | = , the required condition (.) is equivalent to

{  –
∑∞

n=
λn
n

(+k)n–(k+α)
(–α) |an|rn–

 –
∑∞

n=
λn
n |an|rn– +∑∞

n=
μn
n |bn|rn–

–
∑∞

n=
μn
n

(+k)n+(k+α)
(–α) |bn|rn–

 –
∑∞

n=
λn
n |an|rn– +∑∞

n=
μn
n |bn|rn–

}

≥ . (.)

If condition (.) does not hold, then the numerator in (.) is negative for z = r sufficiently
close to . Hence there exists z = r in (, ) for which the quotient in (.) is negative. This
contradicts the required condition for f ∈ HST(φ,χ ,k,α), and so the proof of Theorem 
is completed. �

Theorem  Let f ∈HST(φ,χ ,k,α). Then, for |z| = r < , |b| < –α
k+α+ and

Dn ≤ λn

n
, En ≤ μn

n
for n≥  and C =min{D,E}, (.)

we have

∣∣f (z)∣∣ ≤ (
 + |b|

)
r +

{
( – α)

C( + k – α)
–

k +  + α

C( + k – α)
|b|

}
r

and

∣∣f (z)∣∣ ≥ (
 – |b|

)
r –

{
( – α)

C( + k – α)
–

k +  + α

C( + k – α)
|b|

}
r.

The results are sharp.

Proof We prove the left-hand side inequality for |f |. The proof for the right-hand side
inequality can be done by using similar arguments.
Let f ∈HST(φ,χ ,k,α), then we have

∣∣f (z)∣∣ =
∣∣∣∣∣z –

∞∑
n=

|an|zn +
∞∑
n=

|bn|zn
∣∣∣∣∣

≥ r – |b|r –
∞∑
n=

(|an| + |bn|
)
r
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≥ r – |b|r

–
( – α)

C( + k – α)

∞∑
n=

C(( + k)n – (k + α))
( – α)

(|an| + |bn|
)
r

≥ r – |b|r

–
( – α)

C( + k – α)

∞∑
n=

{
C(( + k)n – (k + α))

( – α)
|an|

+
C(( + k)n + (k + α))

( – α)
|bn|

}
r

≥ (
 – |b|

)
r –

( – α)
C( + k – α)

{
 –

k +  + α

( – α)
|b|

}
r

≥ (
 – |b|

)
r –

{
( – α)

C( + k – α)
–

k +  + α

C( + k – α)
|b|

}
r.

The bounds given in Theorem  are respectively attained for the following functions:

f (z) = z + |b|z +
(

( – α)
C( + k – α)

–
k +  + α

C( + k – α)
|b|

)
z

and

f (z) =
(
 – |b|

)
z –

(
( – α)

C( + k – α)
–

k +  + α

C( + k – α)
|b|

)
z. �

The following covering result follows from the left side inequality in Theorem .

Corollary  Let f ∈ HST(φ,χ ,k,α), then for |b| < –α
k+α+ the set

{
w : |w| <  –

( – α)
C( + k – α)

–
(
 –

k +  + α

C( + k – α)

)
|b|

}

is included in f (U), where C is given by (.).

3 Extreme points
Our next theorem is on the extreme points of convex hulls of the class HST(φ,χ ,k,α),
denoted by clcoHST(φ,χ ,k,α).

Theorem Let f = h+g be such that h and g are given by (.).Then f ∈ clcoHST(φ,χ ,k,α)
if and only if f can be expressed as

f (z) =
∞∑
n=

[
Xnhn(z) + Yngn(z)

]
, (.)

where

h(z) = z,

hn(z) = z –
n( – α)

λn(( + k)n – (k + α))
zn (n≥ ),

http://www.journalofinequalitiesandapplications.com/content/2013/1/537


El-Ashwah Journal of Inequalities and Applications 2013, 2013:537 Page 8 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/537

gn(z) = z +
n( – α)

μn(( + k)n + (k + α))
zn (n≥ ),

Xn ≥ , Yn ≥ ,
∞∑
n=

[Xn + Yn] = .

In particular, the extreme points of the class HST(φ,χ ,k,α) are {hn} and {gn}, respectively.

Proof For functions f (z) of the form (.), we have

f (z) =
∞∑
n=

[Xn +Yn]z –
∞∑
n=

n( – α)
λn(( + k)n – (k + α))

Xnzn +
∞∑
n=

n( – α)
μn(( + k)n + (k + α))

Ynzn.

Then

∞∑
n=

λn(( + k)n – (k + α))
n( – α)

(
n( – α)

λn(( + k)n – (k + α))

)
Xn

+
∞∑
n=

μn(( + k)n + (k + α))
n( – α)

(
n( – α)

μn(( + k)n + (k + α))

)
Yn

=
∞∑
n=

Xn +
∞∑
n=

Yn =  –X ≤ ,

and so f (z) ∈ clcoHST(φ,χ ,k,α). Conversely, suppose that f (z) ∈ clcoHST(φ,χ ,k,α). Set

Xn =
λn(( + k)n – (k + α))

n( – α)
|an| (n≥ )

and

Yn =
μn(( + k)n + (k + α))

n( – α)
|bn| (n≥ ),

then note that by Theorem , ≤ Xn ≤  (n≥ ) and ≤ Yn ≤  (n≥ ).
Consequently, we obtain

f (z) =
∞∑
n=

[
Xnhn(z) + Yngn(z)

]
.

Using Theorem , it is easily seen that the class HST(φ,χ ,k,α) is convex and closed and
so clcoHST(φ,χ ,k,α) =HST(φ,χ ,k,α). �

4 Convolution result
For harmonic functions of the form

f (z) = z –
∞∑
n=

|an|zn +
∞∑
n=

|bn|zn (.)

and

G(z) = z –
∞∑
n=

Anzn +
∞∑
n=

Bnzn (An,Bn ≥ ), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/537
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we define the convolution of two harmonic functions f and G as

(f ∗G)(z) = f (z) ∗G(z) = z –
∞∑
n=

anAnzn +
∞∑
n=

bnBnzn.

Using this definition, we show that the class HST(φ,χ ,k,α) is closed under convolution.

Theorem  For  ≤ α < , let f ∈ HST(φ,χ ,k,α) and G ∈ HST(φ,χ ,k,α). Then f (z) ∗
G(z) ∈ HST(φ,χ ,k,α).

Proof Let the functions f (z) defined by (.) be in the class HST(φ,χ ,k,α), and let the
functions G(z) defined by (.) be in the class HST(φ,χ ,k,α). Obviously, the coefficients
of f and G must satisfy a condition similar to inequality (.). So, for the coefficients of
f (z) ∗G(z), we can write

∞∑
n=

λn

n
( + k)n – (k + α)

( – α)
|an|An +

∞∑
n=

μn

n
( + k)n + (k + α)

( – α)
|bn|Bn

≤
∞∑
n=

[
λn

n
( + k)n – (k + α)

( – α)
|an| +

∞∑
n=

μn

n
( + k)n + (k + α)

( – α)
|bn|

]
,

the right-hand side of this inequality is bounded by  because f ∈ HST(φ,χ ,k,α). Then
f (z) ∗G(z) ∈ HST(φ,χ ,k,α). �

Finally, we show that HST(φ,χ ,k,α) is closed under convex combinations of its mem-
bers.

Theorem  The class HST(φ,χ ,k,α) is closed under convex linear combination.

Proof For i = , , , . . . , let fi ∈HST(φ,χ ,k,α), where the functions fi are given by

fi(z) = z –
∞∑
n=

|an,i|zn +
∞∑
n=

|bn,i|zn.

For
∑∞

i= ti = ;  ≤ ti ≤ , the convex linear combination of fi may be written as

∞∑
i=

tifi(z) = z –
∞∑
n=

( ∞∑
i=

ti|an,i|
)
zn +

∞∑
n=

( ∞∑
i=

ti|bn,i|
)
zn,

then by (.) we have

∞∑
n=

λn

n
( + k)n – (k + α)

( – α)

∞∑
i=

ti|an,i| +
∞∑
n=

μn

n
( + k)n + (k + α)

( – α)

∞∑
i=

ti|bn,i|

=
∞∑
i=

ti

{ ∞∑
n=

[
λn

n
( + k)n – (k + α)

( – α)
|an,i| +

∞∑
n=

μn

n
( + k)n + (k + α)

( – α)
|bn,i|

]}

≤
∞∑
i=

ti = .
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This condition is required by (.) and so
∑∞

i= tifi(z) ∈HST(φ,χ ,k,α). This completes the
proof of Theorem . �

Remarks
(i) Putting k =  in our results, we obtain the results obtained by Dixit et al. [];
(ii) Putting ϕ(z) = χ (z) = z

(–z) and k =  in our results, we obtain the results obtained
by Rosy et al. [];

(iii) Putting ϕ(z) = χ (z) = z+z
(–z) in our results, we obtain the results obtained by Kim et

al. [];
(iv) Putting ϕ(z) = χ (z) = z

(–z) and k =  in our results, we obtain the results obtained
by Jahangiri [];

(v) Putting ϕ(z) = χ (z) = z+z
(–z) and k =  in our results, we obtain the results obtained

by Jahangiri [].
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