RESEARCH

Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

Subclass of univalent harmonic functions defined by dual convolution

Rabha M El-Ashwah*

*Correspondence: r_elashwah@yahoo.com Department of Mathematics, Faculty of Science, Damietta University, New Damietta, 34517, Egypt

Abstract

In the present paper, we study a subclass of univalent harmonic functions defined by convolution and integral convolution. We obtain the basic properties such as coefficient characterization and distortion theorem, extreme points and convolution condition.

MSC: 30C45; 30C50

Keywords: harmonic function; univalent; sense-preserving; integral convolution

1 Introduction

A continuous function f = u + iv is a complex-valued harmonic function in a simply connected complex domain $D \subset \mathbb{C}$ if both u and v are real harmonic in D. It was shown by Clunie and Sheil-Small [1] that such a harmonic function can be represented by $f = h + \overline{g}$, where h and g are analytic in D. Also, a necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that |h'(z)| > |g'(z)| (see also [2–4] and [5]).

Denote by S_H the class of functions f that are harmonic univalent and sense-preserving in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$, for which $f(0) = h(0) = f'_z(0) - 1 = 0$. Then for $f = h + \overline{g} \in S_H$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \qquad g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad |b_1| < 1.$$
(1.1)

Clunie and Sheil-Small [1] investigated the class S_H as well as its geometric subclasses and obtained some coefficient bounds.

Also, let $S_{\overline{H}}$ denote the subclass of S_H consisting of functions $f = h + \overline{g}$ such that the functions h and g are of the form

$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n, \qquad g(z) = \sum_{n=1}^{\infty} |b_n| z^n, \quad |b_1| < 1.$$
(1.2)

Recently Kanas and Wisniowska [6] (see also Kanas and Srivastava [7]) studied the class of k-uniformly convex analytic functions, denoted by k - UCV, $k \ge 0$, so that $\phi \in k - UCV$ if and only if

$$\operatorname{Re}\left\{1+\frac{(z-\zeta)\phi''(z)}{\phi'(z)}\right\} \ge 0 \quad \left(|\zeta| \le k; z \in U\right).$$

$$(1.3)$$

©2013 El-Ashwah; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For $\theta \in \mathbb{R}$, if we let $\zeta = -kze^{i\theta}$, then condition (1.3) can be written as

$$\operatorname{Re}\left\{1+\left(1+ke^{i\theta}\right)\frac{z\phi''(z)}{\phi'(z)}\right\}\geq 0.$$
(1.4)

Kim *et al.* [8] introduced and studied the class $HCV(k, \alpha)$ consisting of functions $f = h + \overline{g}$, such that *h* and *g* are given by (1.1), and satisfying the condition

$$\operatorname{Re}\left\{1+\left(1+ke^{i\theta}\right)\frac{z^{2}h^{\prime\prime}(z)+\overline{2zg^{\prime}(z)+z^{2}g^{\prime\prime}(z)}}{zh^{\prime}(z)-\overline{zg^{\prime}(z)}}\right\}\geq\alpha\quad(0\leq\alpha<1;\theta\in\mathbb{R};k\geq0).$$
(1.5)

Also, the class of k - UST uniformly starlike functions is defined by using (1.4) as the class of all functions $\psi(z) = z\phi'(z)$ such that $\phi \in k - UCV$, then $\psi(z) \in k - UST$ if and only if

$$\operatorname{Re}\left\{\left(1+ke^{i\theta}\right)\frac{z\psi'(z)}{\psi(z)}-ke^{i\theta}\right\}\geq 0.$$
(1.6)

Generalizing the class k - UST to include harmonic functions, we let $HST(k, \alpha)$ denote the class of functions $f = h + \overline{g}$, such that h and g are given by (1.1), which satisfies the condition

$$\operatorname{Re}\left\{\left(1+ke^{i\theta}\right)\frac{zf'(z)}{z'f(z)}-ke^{i\theta}\right\}\geq\alpha\quad(0\leq\alpha<1;\theta\in\mathbb{R};k\geq0).$$
(1.7)

Replacing $h + \overline{g}$ for f in (1.7), we have

$$\operatorname{Re}\left\{\left(1+ke^{i\theta}\right)\frac{zh'(z)-\overline{zg'(z)}}{h(z)+\overline{g(z)}}-ke^{i\theta}\right\} \ge \alpha \quad (0 \le \alpha < 1; \theta \in \mathbb{R}; k \ge 0).$$

$$(1.8)$$

The convolution of two functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 and $F(z) = z + \sum_{n=2}^{\infty} A_n z^n$

is defined as

$$(f * F)(z) = z + \sum_{n=2}^{\infty} a_n A_n z^n,$$
(1.9)

while the integral convolution is defined by

$$(f \diamond F)(z) = z + \sum_{n=2}^{\infty} \frac{a_n A_n}{n} z^n.$$

$$(1.10)$$

From (1.9) and (1.10), we have

$$(f \diamondsuit F)(z) = \int_0^z \frac{(f * F)(t)}{t} dt.$$

Now we consider the subclass $HST(\phi, \psi, k, \alpha)$ consisting of functions $f = h + \overline{g}$, such that h and g are given by (1.1), and satisfying the condition

$$\operatorname{Re}\left\{\left(1+ke^{i\theta}\right)\frac{h(z)*\varphi(z)-\overline{g(z)*\chi(z)}}{h(z)\diamond\varphi(z)+\overline{g(z)}\diamond\chi(z)}-ke^{i\theta}\right\}\geq\alpha\quad(0\leq\alpha<1;k\geq0;\theta\text{ real}),\qquad(1.11)$$

where

$$\varphi(z) = z + \sum_{n=2}^{\infty} \lambda_n z^n \quad (\lambda_n \ge 0) \quad \text{and} \quad \chi(z) = z + \sum_{n=2}^{\infty} \mu_n z^n \quad (\mu_n \ge 0). \tag{1.12}$$

We further consider the subclass $\overline{HST}(\phi, \chi, k, \alpha)$ of $HST(\phi, \chi, k, \alpha)$ for *h* and *g* given by (1.2).

We note that

(i) $\overline{HST}(\phi, \chi, 0, \alpha) = \overline{HS}(\phi, \chi, \alpha)$ (see Dixit *et al.* [9]); (ii) $\overline{HST}(\frac{z}{(1-z)^2}, \frac{z}{(1-z)^2}, 1, \alpha) = G_{\overline{H}}(\alpha)$ (see Rosy *et al.* [10]); (iii) $\overline{HST}(\frac{z+z^2}{(1-z)^3}, \frac{z+z^2}{(1-z)^3}, k, \alpha) = \overline{H}CV(k, \alpha)$ (see Kim *et al.* [8]); (iv) $\overline{HST}(\frac{z+z^2}{(1-z)^2}, \frac{z}{(1-z)^2}, 0, \alpha) = T_H^*(\alpha)$ (see Jahangiri [3], see also Joshi and Darus [11]); (v) $\overline{HST}(\frac{z+z^2}{(1-z)^3}, \frac{z+z^2}{(1-z)^3}, 0, \alpha) = C_H(\alpha)$ (see Jahangiri [3], see also Joshi and Darus [11]). In this paper, we extend the results of the above classes to the classes $HST(\phi, \chi, k, \alpha)$ and

 $\overline{HST}(\phi, \chi, k, \alpha)$, we also obtain some basic properties for the class $\overline{HST}(\phi, \chi, k, \alpha)$.

2 Coefficient characterization and distortion theorem

Unless otherwise mentioned, we assume throughout this paper that $\varphi(z)$ and $\chi(z)$ are given by (1.12), $0 \le \alpha < 1$, $k \ge 0$ and θ is real. We begin with a sufficient condition for functions in the class $HST(\phi, \chi, k, \alpha)$.

Theorem 1 Let $f = h + \overline{g}$ be such that h and g are given by (1.1). Furthermore, let

$$\sum_{n=2}^{\infty} \frac{\lambda_n}{n} \left(\frac{(1+k)n - (k+\alpha)}{(1-\alpha)} \right) |a_n| + \sum_{n=1}^{\infty} \frac{\mu_n}{n} \left(\frac{(1+k)n + (k+\alpha)}{(1-\alpha)} \right) |b_n| \le 1,$$
(2.1)

where

$$n^{2}(1-\alpha) \leq \lambda_{n} \left[(1+k)n - (k+\alpha) \right] \quad and \quad n^{2}(1-\alpha) \leq \mu_{n} \left[(1+k)n + (k+\alpha) \right]$$

for $n \geq 2$.

Then f is sense-preserving, harmonic univalent in U and $f \in HST(\phi, \chi, k, \alpha)$.

Proof First we note that *f* is locally univalent and sense-preserving in *U*. This is because

$$\begin{aligned} \left| h'(z) \right| &\ge 1 - \sum_{n=2}^{\infty} n |a_n| r^{n-1} > 1 - \sum_{n=2}^{\infty} n |a_n| \ge 1 - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} \left(\frac{(1+k)n - (k+\alpha)}{(1-\alpha)} \right) |a_n| \\ &\ge \sum_{n=1}^{\infty} \frac{\mu_n}{n} \left(\frac{(1+k)n + (k+\alpha)}{(1-\alpha)} \right) |b_n| \ge \sum_{n=1}^{\infty} n |b_n| \ge \sum_{n=1}^{\infty} n |b_n| r^{k-1} > \left| g'(z) \right|. \end{aligned}$$

To show that *f* is univalent in *U*, suppose $z_1, z_2 \in U$ so that $z_1 \neq z_2$, then

$$\begin{aligned} \left| \frac{f(z_1) - f(z_2)}{h(z_1) - h(z_2)} \right| &\geq 1 - \left| \frac{g(z_1) - g(z_2)}{h(z_1) - h(z_2)} \right| = 1 - \left| \frac{\sum_{n=1}^{\infty} b_n (z_1^n - z_2^n)}{(z_1 - z_2) + \sum_{n=2}^{\infty} a_n (z_1^n - z_2^n)} \right| \\ &\geq 1 - \frac{\sum_{n=1}^{\infty} n |b_n|}{1 - \sum_{n=2}^{\infty} n |a_n|} > 1 - \frac{\sum_{n=1}^{\infty} \frac{\mu_n}{n} (\frac{(1+k)n + (k+\alpha)}{(1-\alpha)}) |b_n|}{1 - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} (\frac{(1+k)n - (k+\alpha)}{(1-\alpha)}) |a_n|} \ge 0. \end{aligned}$$

Now, we prove that $f \in HST(\phi, \psi, k, \alpha)$, by definition, we only need to show that if (2.1) holds, then condition (1.11) is satisfied. From (1.11), it suffices to show that

$$\operatorname{Re}\left\{\frac{(1+ke^{i\theta})(h(z)*\varphi(z)-\overline{g(z)*\chi(z)})-(ke^{i\theta}+\alpha)(h(z)\diamond\varphi(z)+\overline{g(z)}\diamond\chi(z))}{h(z)\diamond\varphi(z)+\overline{g(z)}\diamond\chi(z)}\right\}$$
$$\geq 0. \tag{2.2}$$

Substituting for h, g, φ and χ in (2.2) and dividing by $(1 - \alpha)z$, we obtain Re $\frac{A(z)}{B(z)} \ge 0$, where

$$A(z) = 1 + \sum_{n=2}^{\infty} \frac{\lambda_n}{n} \frac{(1 + ke^{i\theta})n - (ke^{i\theta} + \alpha)}{(1 - \alpha)} a_n z^{n-1}$$
$$- \left(\frac{\overline{z}}{z}\right) \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1 + ke^{i\theta})n + (ke^{i\theta} + \alpha)}{(1 - \alpha)} b_n \overline{z}^{n-1}$$

and

$$B(z) = 1 + \sum_{n=2}^{\infty} \frac{\lambda_n}{n} a_n z^{n-1} + \left(\frac{\overline{z}}{z}\right) \sum_{n=1}^{\infty} \frac{\mu_n}{n} b_n \overline{z}^{n-1}.$$

Using the fact that $\operatorname{Re}(w) \ge 0$ if and only if $|1 + w| \ge |1 - w|$ in *U*, it suffices to show that $|A(z) + B(z)| - |A(z) - B(z)| \ge 0$. Substituting for A(z) and B(z) gives

$$\begin{split} |A(z) + B(z)| &- |A(z) - B(z)| \\ &= \left| 2 + \sum_{n=2}^{\infty} \frac{\lambda_n}{n} \frac{(1 + ke^{i\theta})n - (ke^{i\theta} + 2\alpha - 1)}{(1 - \alpha)} a_n z^{n-1} \right. \\ &- \left(\frac{\overline{z}}{z} \right) \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1 + ke^{i\theta})n + (ke^{i\theta} + 2\alpha - 1)}{(1 - \alpha)} b_n \overline{z}^{n-1} \right| \\ &- \left| \sum_{n=2}^{\infty} \frac{\lambda_n}{n} \frac{(1 + ke^{i\theta})n - (1 + ke^{i\theta})}{(1 - \alpha)} a_n z^{n-1} \right. \\ &- \left(\frac{\overline{z}}{z} \right) \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1 + ke^{i\theta})n + (1 + ke^{i\theta})}{(1 - \alpha)} b_n \overline{z}^{n-1} \right| \\ &\geq 2 - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} \frac{(1 + k)n - (k + 2\alpha - 1)}{(1 - \alpha)} |a_n| |z|^{n-1} \\ &- \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1 + k)n + (k + 2\alpha - 1)}{(1 - \alpha)} |b_n| |z|^{n-1} \end{split}$$

$$-\sum_{n=2}^{\infty} \frac{\lambda_n}{n} \frac{(1+k)n - (1+k)}{(1-\alpha)} |a_{n+1}| |z|^{n-1}$$
$$-\sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1+k)n + (1+k)}{(1-\alpha)} |b_n| |z|^{n-1}$$
$$\ge 2 \left\{ 1 - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} \frac{(1+k)n - (k+\alpha)}{(1-\alpha)} |a_n| - \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1+k)n + (k+\alpha)}{(1-\alpha)} |b_n| \right\}$$
$$\ge 0 \quad \text{by (2.1).}$$

The harmonic functions

$$f(z) = z + \sum_{n=2}^{\infty} \frac{n}{\lambda_n} \frac{(1-\alpha)}{(1+k)n - (k+\alpha)} x_n z^n + \sum_{n=1}^{\infty} \frac{n}{\mu_n} \frac{(1-\alpha)}{(1+k)n + (k+\alpha)} \overline{y}_n \overline{z}^n,$$
(2.3)

where $\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1$, show that the coefficient bound given by (2.1) is sharp. The functions of the form (2.3) are in the class $HST(\phi, \chi, k, \alpha)$ because

$$\sum_{n=2}^{\infty} \left[\frac{\lambda_n}{n} \frac{(1+k)n - (k+\alpha)}{(1-\alpha)} |a_n| + \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1+k)n + (k+\alpha)}{(1-\alpha)} |b_n| \right]$$
$$= \sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1.$$

This completes the proof of Theorem 1.

In the following theorem, it is shown that condition (2.1) is also necessary for functions $f = h + \overline{g}$, where *h* and *g* are given by (1.2).

Theorem 2 Let $f = h + \overline{g}$ be such that h and g are given by (1.2). Then $f \in \overline{HST}(\phi, \chi, k, \alpha)$ if and only if

$$\sum_{n=2}^{\infty} \frac{\lambda_n}{n} \left(\frac{(1+k)n - (k+\alpha)}{(1-\alpha)} \right) |a_n| + \sum_{n=1}^{\infty} \frac{\mu_n}{n} \left(\frac{(1+k)n + (k+\alpha)}{(1-\alpha)} \right) |b_n| \le 1.$$
(2.4)

Proof Since $\overline{HST}(\phi, \chi, k, \alpha) \subset HST(\phi, \chi, k, \alpha)$, we only need to prove the 'only if' part of the theorem. To this end, we notice that the necessary and sufficient condition for $f \in \overline{HST}(\phi, \chi, k, \alpha)$ is that

$$\operatorname{Re}\left\{\left(1+ke^{i\theta}\right)\frac{h(z)*\varphi(z)-\overline{g(z)*\chi(z)}}{h(z)\diamond\varphi(z)+\overline{g(z)}\diamond\chi(z)}-ke^{i\theta}\right\}\geq\alpha.$$

This is equivalent to

$$\operatorname{Re}\left\{\frac{(1+ke^{i\theta})(h(z)*\varphi(z)-\overline{g(z)*\chi(z)})-(ke^{i\theta}+\alpha)(h(z)\diamondsuit\varphi(z)+\overline{g(z)\diamondsuit\chi(z)})}{h(z)\diamondsuit\varphi(z)+\overline{g(z)\diamondsuit\chi(z)}}\right\}>0,$$

which implies that

$$\operatorname{Re}\left\{\frac{(1-\alpha)z - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} [(1+ke^{i\theta})n - (ke^{i\theta} + \alpha)] |a_n| z^n}{z - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} |a_n| z^n + \sum_{n=1}^{\infty} \frac{\mu_n}{n} |b_n| \overline{z}^n} - \frac{\sum_{n=1}^{\infty} \frac{\mu_n}{n} [(1+ke^{i\theta})n + (ke^{i\theta} + \alpha)] |b_n| \overline{z}^n}{z - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} |a_n| z^n + \sum_{n=1}^{\infty} \frac{\mu_n}{n} |b_n| \overline{z}^n}\right\}$$
$$= \operatorname{Re}\left\{\frac{(1-\alpha) - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} [(1+ke^{i\theta})n - (ke^{i\theta} + \alpha)] |a_n| z^{n-1}}{1 - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} |a_n| z^{n-1} + (\frac{\overline{z}}{z}) \sum_{n=1}^{\infty} \frac{\mu_n}{n} |b_n| \overline{z}^{n-1}} - \frac{(\frac{\overline{z}}{z}) \sum_{n=1}^{\infty} \frac{\mu_n}{n} [(1+ke^{i\theta})n + (ke^{i\theta} + \alpha)] |b_n| \overline{z}^{n-1}}{1 - \sum_{n=2}^{\infty} \frac{\lambda_n}{n} |a_n| z^n + (\frac{\overline{z}}{z}) \sum_{n=1}^{\infty} \frac{\mu_n}{n} |b_n| \overline{z}^{n-1}}\right\} > 0,$$
(2.5)

since $\operatorname{Re}(e^{i\theta}) \leq |e^{i\theta}| = 1$, the required condition (2.5) is equivalent to

$$\left\{\frac{1-\sum_{n=2}^{\infty}\frac{\lambda_{n}}{n}\frac{(1+k)n-(k+\alpha)}{(1-\alpha)}|a_{n}|r^{n-1}}{1-\sum_{n=2}^{\infty}\frac{\lambda_{n}}{n}|a_{n}|r^{n-1}+\sum_{n=1}^{\infty}\frac{\mu_{n}}{n}|b_{n}|r^{n-1}}-\frac{\sum_{n=1}^{\infty}\frac{\mu_{n}}{n}\frac{(1+k)n+(k+\alpha)}{(1-\alpha)}|b_{n}|r^{n-1}}{1-\sum_{n=2}^{\infty}\frac{\lambda_{n}}{n}|a_{n}|r^{n-1}+\sum_{n=1}^{\infty}\frac{\mu_{n}}{n}|b_{n}|r^{n-1}}\right\}$$
$$\geq 0.$$
(2.6)

If condition (2.4) does not hold, then the numerator in (2.6) is negative for z = r sufficiently close to 1. Hence there exists $z_0 = r_0$ in (0, 1) for which the quotient in (2.6) is negative. This contradicts the required condition for $f \in \overline{HST}(\phi, \chi, k, \alpha)$, and so the proof of Theorem 2 is completed.

Theorem 3 Let $f \in \overline{HST}(\phi, \chi, k, \alpha)$. Then, for |z| = r < 1, $|b_1| < \frac{1-\alpha}{2k+\alpha+1}$ and

$$D_n \le \frac{\lambda_n}{n}, \qquad E_n \le \frac{\mu_n}{n} \quad for \ n \ge 2 \quad and \quad C = \min\{D_2, E_2\},$$

$$(2.7)$$

we have

$$|f(z)| \le (1+|b_1|)r + \left\{\frac{(1-\alpha)}{C(2+k-\alpha)} - \frac{2k+1+\alpha}{C(2+k-\alpha)}|b_1|\right\}r^2$$

and

$$f(z) \Big| \ge (1 - |b_1|)r - \left\{ \frac{(1 - \alpha)}{C(2 + k - \alpha)} - \frac{2k + 1 + \alpha}{C(2 + k - \alpha)}|b_1| \right\} r^2.$$

The results are sharp.

Proof We prove the left-hand side inequality for |f|. The proof for the right-hand side inequality can be done by using similar arguments.

Let $f \in \overline{HST}(\phi, \chi, k, \alpha)$, then we have

$$\left|f(z)\right| = \left|z - \sum_{n=2}^{\infty} |a_n| z^n + \sum_{n=1}^{\infty} |b_n| \overline{z}^n\right|$$
$$\geq r - |b_1| r - \sum_{n=2}^{\infty} (|a_n| + |b_n|) r^2$$

$$\geq r - |b_1|r - \frac{(1-\alpha)}{C(2+k-\alpha)} \sum_{n=2}^{\infty} \frac{C((1+k)n - (k+\alpha))}{(1-\alpha)} (|a_n| + |b_n|)r^2 \geq r - |b_1|r - \frac{(1-\alpha)}{C(2+k-\alpha)} \sum_{n=2}^{\infty} \left\{ \frac{C((1+k)n - (k+\alpha))}{(1-\alpha)} |a_n| + \frac{C((1+k)n + (k+\alpha))}{(1-\alpha)} |b_n| \right\} r^2 \geq (1-|b_1|)r - \frac{(1-\alpha)}{C(2+k-\alpha)} \left\{ 1 - \frac{2k+1+\alpha}{(1-\alpha)} |b_1| \right\} r^2 \geq (1-|b_1|)r - \left\{ \frac{(1-\alpha)}{C(2+k-\alpha)} - \frac{2k+1+\alpha}{C(2+k-\alpha)} |b_1| \right\} r^2.$$

The bounds given in Theorem 3 are respectively attained for the following functions:

$$f(z) = z + |b_1|\overline{z} + \left(\frac{(1-\alpha)}{C(2+k-\alpha)} - \frac{2k+1+\alpha}{C(2+k-\alpha)}|b_1|\right)\overline{z}^2$$

and

$$f(z) = \left(1 - |b_1|\right)z - \left(\frac{(1-\alpha)}{C(2+k-\alpha)} - \frac{2k+1+\alpha}{C(2+k-\alpha)}|b_1|\right)z^2.$$

The following covering result follows from the left side inequality in Theorem 3.

Corollary 1 Let $f \in \overline{HST}(\phi, \chi, k, \alpha)$, then for $|b_1| < \frac{1-\alpha}{2k+\alpha+1}$ the set

$$\left\{w: |w|<1-\frac{(1-\alpha)}{C(2+k-\alpha)}-\left(1-\frac{2k+1+\alpha}{C(2+k-\alpha)}\right)|b_1|\right\}$$

is included in f(U), where C is given by (2.7).

3 Extreme points

Our next theorem is on the extreme points of convex hulls of the class $\overline{HST}(\phi, \chi, k, \alpha)$, denoted by $clco\overline{HST}(\phi, \chi, k, \alpha)$.

Theorem 4 Let $f = h + \overline{g}$ be such that h and g are given by (1.2). Then $f \in clco\overline{HST}(\phi, \chi, k, \alpha)$ if and only if f can be expressed as

$$f(z) = \sum_{n=1}^{\infty} [X_n h_n(z) + Y_n g_n(z)],$$
(3.1)

where

$$h_1(z) = z,$$

$$h_n(z) = z - \frac{n(1-\alpha)}{\lambda_n((1+k)n - (k+\alpha))} z^n \quad (n \ge 2),$$

$$g_n(z) = z + \frac{n(1-\alpha)}{\mu_n((1+k)n + (k+\alpha))}\overline{z}^n \quad (n \ge 1),$$

$$X_n \ge 0, \qquad Y_n \ge 0, \qquad \sum_{n=1}^{\infty} [X_n + Y_n] = 1.$$

In particular, the extreme points of the class $\overline{HST}(\phi, \chi, k, \alpha)$ are $\{h_n\}$ and $\{g_n\}$, respectively.

Proof For functions f(z) of the form (3.1), we have

$$f(z) = \sum_{n=1}^{\infty} [X_n + Y_n] z - \sum_{n=2}^{\infty} \frac{n(1-\alpha)}{\lambda_n((1+k)n - (k+\alpha))} X_n z^n + \sum_{n=1}^{\infty} \frac{n(1-\alpha)}{\mu_n((1+k)n + (k+\alpha))} Y_n \overline{z}^n.$$

Then

$$\sum_{n=2}^{\infty} \frac{\lambda_n((1+k)n - (k+\alpha))}{n(1-\alpha)} \left(\frac{n(1-\alpha)}{\lambda_n((1+k)n - (k+\alpha))}\right) X_n + \sum_{n=1}^{\infty} \frac{\mu_n((1+k)n + (k+\alpha))}{n(1-\alpha)} \left(\frac{n(1-\alpha)}{\mu_n((1+k)n + (k+\alpha))}\right) Y_n$$
$$= \sum_{n=2}^{\infty} X_n + \sum_{n=1}^{\infty} Y_n = 1 - X_1 \le 1,$$

and so $f(z) \in clco\overline{HST}(\phi, \chi, k, \alpha)$. Conversely, suppose that $f(z) \in clco\overline{HST}(\phi, \chi, k, \alpha)$. Set

$$X_n = \frac{\lambda_n((1+k)n - (k+\alpha))}{n(1-\alpha)}|a_n| \quad (n \ge 2)$$

and

$$Y_n = \frac{\mu_n((1+k)n + (k+\alpha))}{n(1-\alpha)} |b_n| \quad (n \ge 1),$$

then note that by Theorem 2, $0 \le X_n \le 1$ ($n \ge 2$) and $0 \le Y_n \le 1$ ($n \ge 1$).

Consequently, we obtain

$$f(z) = \sum_{n=1}^{\infty} [X_n h_n(z) + Y_n g_n(z)].$$

Using Theorem 2, it is easily seen that the class $\overline{HST}(\phi, \chi, k, \alpha)$ is convex and closed and so $clco\overline{HST}(\phi, \chi, k, \alpha) = \overline{HST}(\phi, \chi, k, \alpha)$.

4 Convolution result

For harmonic functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n + \sum_{n=1}^{\infty} |b_n| \overline{z}^n$$
(4.1)

and

$$G(z) = z - \sum_{n=2}^{\infty} A_n z^n + \sum_{n=1}^{\infty} B_n \overline{z}^n \quad (A_n, B_n \ge 0),$$
(4.2)

we define the convolution of two harmonic functions f and G as

$$(f * G)(z) = f(z) * G(z) = z - \sum_{n=2}^{\infty} a_n A_n z^n + \sum_{n=1}^{\infty} b_n B_n \overline{z}^n.$$

Using this definition, we show that the class $\overline{HST}(\phi, \chi, k, \alpha)$ is closed under convolution.

Theorem 5 For $0 \le \alpha < 1$, let $f \in \overline{HST}(\phi, \chi, k, \alpha)$ and $G \in \overline{HST}(\phi, \chi, k, \alpha)$. Then $f(z) * G(z) \in \overline{HST}(\phi, \chi, k, \alpha)$.

Proof Let the functions f(z) defined by (4.1) be in the class $\overline{HST}(\phi, \chi, k, \alpha)$, and let the functions G(z) defined by (4.2) be in the class $\overline{HST}(\phi, \chi, k, \alpha)$. Obviously, the coefficients of f and G must satisfy a condition similar to inequality (2.4). So, for the coefficients of f(z) * G(z), we can write

$$\sum_{n=2}^{\infty} \frac{\lambda_n}{n} \frac{(1+k)n - (k+\alpha)}{(1-\alpha)} |a_n| A_n + \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1+k)n + (k+\alpha)}{(1-\alpha)} |b_n| B_n$$
$$\leq \sum_{n=2}^{\infty} \left[\frac{\lambda_n}{n} \frac{(1+k)n - (k+\alpha)}{(1-\alpha)} |a_n| + \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1+k)n + (k+\alpha)}{(1-\alpha)} |b_n| \right],$$

the right-hand side of this inequality is bounded by 1 because $f \in \overline{HST}(\phi, \chi, k, \alpha)$. Then $f(z) * G(z) \in \overline{HST}(\phi, \chi, k, \alpha)$.

Finally, we show that $\overline{HST}(\phi, \chi, k, \alpha)$ is closed under convex combinations of its members.

Theorem 6 The class $\overline{HST}(\phi, \chi, k, \alpha)$ is closed under convex linear combination.

Proof For $i = 1, 2, 3, ..., let f_i \in \overline{HST}(\phi, \chi, k, \alpha)$, where the functions f_i are given by

$$f_i(z) = z - \sum_{n=2}^{\infty} |a_{n,i}| z^n + \sum_{n=1}^{\infty} |b_{n,i}| \overline{z}^n.$$

For $\sum_{i=1}^{\infty} t_i = 1$; $0 \le t_i \le 1$, the convex linear combination of f_i may be written as

$$\sum_{i=1}^{\infty} t_i f_i(z) = z - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i |a_{n,i}| \right) z^n + \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i |b_{n,i}| \right) \overline{z}^n,$$

then by (2.4) we have

$$\sum_{n=2}^{\infty} \frac{\lambda_n}{n} \frac{(1+k)n - (k+\alpha)}{(1-\alpha)} \sum_{i=1}^{\infty} t_i |a_{n,i}| + \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1+k)n + (k+\alpha)}{(1-\alpha)} \sum_{i=1}^{\infty} t_i |b_{n,i}|$$
$$= \sum_{i=1}^{\infty} t_i \left\{ \sum_{n=2}^{\infty} \left[\frac{\lambda_n}{n} \frac{(1+k)n - (k+\alpha)}{(1-\alpha)} |a_{n,i}| + \sum_{n=1}^{\infty} \frac{\mu_n}{n} \frac{(1+k)n + (k+\alpha)}{(1-\alpha)} |b_{n,i}| \right] \right\}$$
$$\leq \sum_{i=1}^{\infty} t_i = 1.$$

This condition is required by (2.4) and so $\sum_{i=1}^{\infty} t_i f_i(z) \in \overline{HST}(\phi, \chi, k, \alpha)$. This completes the proof of Theorem 6.

Remarks

- (i) Putting *k* = 0 in our results, we obtain the results obtained by Dixit *et al.* [9];
- (ii) Putting $\varphi(z) = \chi(z) = \frac{z}{(1-z)^2}$ and k = 1 in our results, we obtain the results obtained by Rosy *et al.* [10];
- (iii) Putting $\varphi(z) = \chi(z) = \frac{z+z^2}{(1-z)^3}$ in our results, we obtain the results obtained by Kim *et al.* [8];
- (iv) Putting $\varphi(z) = \chi(z) = \frac{z}{(1-z)^2}$ and k = 0 in our results, we obtain the results obtained by Jahangiri [3];
- (v) Putting $\varphi(z) = \chi(z) = \frac{z+z^2}{(1-z)^3}$ and k = 0 in our results, we obtain the results obtained by Jahangiri [2].

Competing interests

The author declares that they have no competing interests.

Acknowledgements

The author would like to express her sincere gratitude to Springer Open Accounts Team for their kind help.

Received: 6 December 2012 Accepted: 14 October 2013 Published: 12 Nov 2013

References

- 1. Clunie, J, Sheil-Small, T: Harmonic univalent functions. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 9, 3-25 (1984)
- Jahangiri, JM: Coefficient bounds and univalent criteria for harmonic functions with negative coefficients. Ann. Univ. Marie-Curie Sklodowska Sect. A 52, 57-66 (1998)
- 3. Jahangiri, JM: Harmonic functions starlike in the unit disc. J. Math. Anal. Appl. 235, 470-477 (1999)
- 4. Silverman, H: Harmonic univalent function with negative coefficients. J. Math. Anal. Appl. 220, 283-289 (1998)
- 5. Silverman, H, Silvia, EM: Subclasses of harmonic univalent functions. N.Z. J. Math. 28, 275-284 (1999)
- 6. Kanas, S, Wisniowska, A: Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105, 327-336 (1999)
- 7. Kanas, S, Srivastava, HM: Linear operators associated with *k*-uniformly convex functions. Integral Transforms Spec. Funct. **9**(2), 121-132 (2000)
- 8. Kim, YC, Jahangiri, JM, Choi, JH: Certain convex harmonic functions. Int. J. Math. Math. Sci. 29(8), 459-465 (2002)
- Dixit, KK, Pathak, AL, Porwal, S, Agarwal, R: On a subclass of harmonic univalent functions defied by convolution and integral convolution. Int. J. Pure Appl. Math. 69(3), 255-264 (2011)
- Rosy, T, Stephen, BA, Subramanian, KG, Jahangiri, JM: Goodman-Ronning-type harmonic univalent functions. Kyungpook Math. J. 41, 45-54 (2001)
- 11. Joshi, SB, Darus, M: Unified treatment for harmonic univalent functions. Tamsui Oxford Univ. J. Math. Sci. 24(3), 225-232 (2008)

10.1186/1029-242X-2013-537

Cite this article as: El-Ashwah: Subclass of univalent harmonic functions defined by dual convolution. *Journal of Inequalities and Applications* 2013, 2013:537

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com