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Abstract
In the paper, the authors present monotonicity results of a function involving the
inverse hyperbolic sine. From these, the authors derive some inequalities for
bounding the inverse hyperbolic sine.
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Introduction andmain results
In [, Theorem .], the following inequalities were established: for  ≤ x ≤ r and r > ,
the double inequality

(a + )x
a +

√
 + x

≤ arcsinhx≤ (b + )x
b +

√
 + x

()

holds true if and only if a≤  and

b ≥
√
 + r arcsinh r – r
r – arcsinh r

. ()

The aim of this paper is to elementarily generalize inequality () to monotonicity results
and to deduce more inequalities.
Our results may be stated as the following theorems.

Theorem  For θ ∈R, let

fθ (x) =
θ +

√
 + x

x
arcsinhx, x > . ()

. When θ ≤ , the function fθ (x) is strictly increasing;
. When θ > , the function fθ (x) has a unique minimum.

As straightforward consequences of Theorem , the following inequalities are inferred.

Theorem  Let  ≤ x≤ r and r > .
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. For – < θ ≤ , the double inequality

( + θ )x
θ +

√
 + x

< arcsinhx≤ (θ +
√
 + r) arcsinh r

r
x

θ +
√
 + x

()

holds true on (, r], where the scalars  + θ and

(θ +
√
 + r) arcsinh r

r

in () are best possible.
. For θ > , the double inequality

( – /θ)x
θ +

√
 + x

≤ arcsinhx

≤max

{
 + θ ,

(θ +
√
 + r) arcsinh r

r

}
x

θ +
√
 + x

()

holds true on (, r].

Remarks
Before proving our theorems, we give several remarks on them.

Remark  Replacing arcsinhx by x in () and () yields

sinhx
x

<

⎧⎨
⎩

θ+coshx
+θ

, – < θ ≤ ,
θ+coshx
(–/θ) , θ > 

()

and

sinhx
x

>

⎧⎨
⎩

r(θ+coshx)
(θ+

√
+r) arcsinh r

, – < θ ≤ ,
r(θ+coshx)

max{r(+θ ),(θ+
√
+r) arcsinh r} , θ > 

()

for x ∈ (, arcsinh r). These can be regarded as Oppenheim-type inequalities for the hyper-
bolic sine and cosine functions. For information onOppenheim’s double inequality for the
sine and cosine functions, please refer to [], [, Sections . and .] and closely related
references therein.

Remark  It is clear that the left-hand side inequality in () recovers the left-hand side
inequality in (), while the right-hand side inequalities in () and () do not include each
other.

Remark  Let

hx(θ ) =
 – /θ

θ +
√
 + x
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for θ >  and x > . Then

h′
x(θ ) =


√
x +  + θ – θ

θ(θ +
√
x + )

.

Therefore, the function hx(θ ) attains its maximum


√√

x +  – x{[ 
√
(
√
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√
(
√
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[ 
√
(
√
 + x – x) + ][ 

√
(
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(
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√√

 + x – x
.

Combining this with the fact that the function

θ �→  + θ

θ +
√
 + x

is increasing and the function

θ �→ θ +
√
 + r

θ +
√
 + x

is decreasing, we establish from Theorem  the following best and sharp double inequal-
ities:

x
 +
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 + x

< arcsinhx ≤ [( +
√
 + r)(arcsinh r)/r]x
 +

√
 + x

()

and

x 
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√
(
√
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√
(
√
 + x – x)}

[ 
√
(
√
 + x – x) + ][ 

√
(
√
 + x – x) +

√
x +  
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x +  – x + ]

< arcsinhx <
(
√
r +  – )(arcsinh r)x

(
√
r +  arcsinh r – r) + (r – arcsinh r)

√
x + 

()

for  < x < r.
The famous software Mathematica . shows that double inequality () is better

than ().

Remark  By a similar approach to that presented in the next section, we can procure
similar monotonicity results and inequalities for the inverse hyperbolic cosine and other
inverse trigonometric functions. For more information on this topic, please refer to [,
–] and closely related references therein.

Remark  We note that Shafer-type inequalities from [] were applied recently in []
for obtaining upper and lower bounds on the Gaussian Q-function.
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Proofs of theorems
Now we are in a position to elementarily prove our theorems.

Proof of Theorem  Direct differentiation yields

f ′
θ (x) =


x

(
θ +

√
x + 

)[
x(θ/

√
x +  + )

θ + /
√
x + 

– arcsinhx
]

� 
x

(
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√
x + 

)
hθ (x)

and

h′
θ (x) =

x( – θ + θ
√
x + )√

x + (θ
√
x +  + )

� xqx(θ )√
x + (θ
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.

The function qx(θ ) has two zeros

θ(x) =
√
 + x –

√
 + x



and

θ(x) =
√
 + x +

√
 + x


.

They are strictly increasing and have the bounds – ≤ θ(x) <  and θ(x) ≥  on (,∞).
As a result, under the condition θ /∈ (–, ),
. when θ ≤ –, the function qx(θ ) and the derivative h′

θ (x) are negative, and so the
function hθ (x) is strictly decreasing on (,∞);

. when  ≤ θ ≤ , the function qx(θ ) and the derivative h′
θ (x) are positive, and so the

function hθ (x) is strictly increasing on (,∞);
. when θ > , the function qx(θ ) and the derivative h′

θ (x) have the unique zero
x =

√
θ–θ+

θ
which is the unique minimum point of hθ (x).

Furthermore, since limx→∞ hθ (x) =∞ for θ ≥  and limx→+ hθ (x) = , it follows that
. when θ ≤ –, the function hθ (x) is negative, and so the derivative f ′

θ (x) is positive,
that is, the function fθ (x) is strictly increasing on (,∞);

. when  ≤ θ ≤ , the function hθ (x) is positive, and so the derivative f ′
θ (x) is also

positive, accordingly, the function fθ (x) is strictly increasing on (,∞);
. when θ > , the function hθ (x) and the derivative f ′

θ (x) have a unique zero as a
solution of the equation

x
√
x +  – ln(x +

√
x + )√

x +  ln(x +
√
x + ) – x

= θ ,

which is the unique minimum point of the function fθ (x) on (,∞).
On the other hand, when θ ∈ (–, ), we have

[
xf ′

θ (x)
]′ =

x[
√
x +  + (arcsinhx)/x – θ ]

(x + )/
> 
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which means that the function xf ′
θ (x) is strictly increasing on (,∞). From the limit

limx→+[xf ′
θ (x)] = , it is derived that the function xf ′

θ (x) is positive. Hence the function
fθ (x) is strictly increasing on (,∞). The proof of Theorem  is complete. �

Proof of Theorem  Since limx→+ fθ (x) =  + θ , by Theorem , it is easy to see that  + θ <
fθ (x)≤ fθ (r) on (, r] for – < θ ≤ . Inequality () is thus proved.
For θ > , the minimum point x ∈ (,∞) satisfies

arcsinhx =
x(θ/

√
x +  + )

θ + /
√
x + 

.

Therefore, the minimum of the function fθ (x) on (,∞) equals

(θ +
√
 + x) arcsinhx

x
=
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√
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 + x)
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√
 + x)
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√
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=
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√
 + x)

θ

√
x +  + 

≥ 
(
 –


θ

)
.

From this, it is obtained that


(
 –


θ

)
≤ fθ (x) ≤max

{
lim
x→+

fθ (x), fθ (r)
}

for x ∈ (, r], which implies inequality (). The proof of Theorem  is thus completed.
�

Remark  This paper is a slightly revised version of the preprint [].
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