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Abstract
In this paper, we investigate and analyze the nonconvex variational inequalities
introduced by Noor in (Optim. Lett. 3:411-418, 2009) and (Comput. Math. Model.
21:97-108, 2010) and prove that the algorithms and results in the above mentioned
papers are not valid. To overcome the problems in the above cited papers, we
introduce and consider a new class of variational inequalities, named regularized
nonconvex variational inequalities, instead of the class of nonconvex variational
inequalities introduced in the above mentioned papers. We also consider a class of
nonconvex Wiener-Hopf equations and establish the equivalence between the
regularized nonconvex variational inequalities and the fixed point problems as well as
the nonconvex Wiener-Hopf equations. By using the obtained equivalence
formulations, we prove the existence of a unique solution for the regularized
nonconvex variational inequalities and propose some projection iterative schemes for
solving the regularized nonconvex variational inequalities. We also study the
convergence analysis of the suggested iterative schemes under some certain
conditions.
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1 Introduction
Variational inequality theory, introduced by Stampacchia [], has become a rich source
of inspiration and motivation for the study of a large number of problems arising in eco-
nomics, finance, transportation, network and structural analysis, elasticity and optimiza-
tion. Many research papers have been written lately, both on the theory and applications
of this field. Important connections with main areas of pure and applied sciences have
been made; see, for example, [–] and the references cited therein. The development of
variational inequality theory can be viewed as the simultaneous pursuit of two different
lines of research. On the one hand, it reveals the fundamental facts on the qualitative as-
pects of the solution to important classes of problems; on the other hand, it also enables
us to develop highly efficient and powerful new numerical methods to solve, for example,
obstacle, unilateral, free, moving and complex equilibrium problems. One of the most in-
teresting and important problems in variational inequality theory is the development of an
efficient numerical method. There is a substantial number of numerical methods includ-
ing projection method and its variant forms, Wiener-Hopf (normal) equations, auxiliary
principle, and descent framework for solving variational inequalities and complementar-
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ity problems. For the applications, physical formulations, numerical methods and other
aspects of variational inequalities, see [–] and the references therein.
The projection method and its variant forms represent an important tool for finding

an approximate solution of various types of variational and quasi-variational inequalities,
the origin of which can be traced back to Lions and Stampacchia []. The projection-
type methods were developed in s and s. The main idea in this technique is to
establish the equivalence between the variational inequalities and the fixed point problems
using the concept of projection. This alternative formulation enables us to suggest some
iterative methods for computing an approximate solution.
It is worth mentioning that most of the results regarding the existence and iterative ap-

proximation of solutions to variational inequality problems have been investigated and
considered so far to the case where the underlying set is a convex set. Recently, the concept
of convex set has been generalized in many directions, which has potential and important
applications in various fields. It is well known that the uniformly prox-regular sets are non-
convex and include the convex sets as special cases. This class of uniformly prox-regular
sets has played an important part in many nonconvex applications such as optimization,
dynamic systems and differential inclusions. For more details, see, for example, [, , ,
, , , ].
Very recently, Noor [, ] has introduced and considered a new class of variational

inequalities, the so-called nonconvex variational inequalities (NVI) on the uniformly prox-
regular sets. He has also introduced a class of Wiener-Hopf equations in []. The author
has asserted that NVI (.) from [, ] is equivalent to the fixed point problem (.) from
[, ] as well as theWiener-Hopf equation (.) from []. Then, he used the fixed point
formulation (.) from [, ] and the equivalence formulations (.) and (.) from [],
and suggested some iterative schemes for solving NVI (.) from [, ]. He also studied
the convergence analysis of the suggested iterative methods under certain conditions.
In this paper, we establish that the equivalence formulation (.), used by Noor in [,

], is not correct. That is, Lemma . in [, ], which is the main tool to suggest the al-
gorithms and to prove the strong convergence of the sequences generated by the proposed
iterative algorithms in [, ], is incorrect. Consequently, the algorithms and results in
[, ] are not valid. To overcome these problems in [, ], we introduce and consider
a new class of variational inequalities, termed the regularized nonconvex variational in-
equalities (RNVI), instead of the class of NVI (.) from [, ]. We also consider a class
of nonconvex Wiener-Hopf equations (NWHE) and establish the equivalence between
RNVI and the fixed point problems as well as NWHE. By using the obtained equivalence
formulations, we prove the existence of a unique solution for RNVI and propose some
projection iterative schemes for solving RNVI. We also study the convergence analysis of
the suggested iterative schemes under some certain conditions.

2 Preliminaries and basic results
Throughout this article, we letH be a real Hilbert space which is equipped with an inner
product 〈·, ·〉 and the corresponding norm ‖ · ‖ and K be a nonempty and closed subset
ofH.We denote by dK (·) or d(·,K ) the usual distance function to the subsetK , i.e., dK (u) =
infv∈K ‖u–v‖. Let us recall the followingwell-known definitions and some auxiliary results
of nonlinear convex analysis and nonsmooth analysis [–, ].
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Definition . Let u ∈H be a point not lying in K . A point v ∈ K is called a closest point
or a projection of u onto K if dK (u) = ‖u – v‖. The set of all such closest points is denoted
by PK (u), i.e.,

PK (u) :=
{
v ∈ K : dK (u) = ‖u – v‖}.

Definition . The proximal normal cone of K at a point u ∈ K is given by

NP
K (u) :=

{
ξ ∈H : u ∈ PK (u + αξ ) for some α > 

}
.

Clarke et al. [], in Proposition .., give characterization of NP
K (u) as follows.

Lemma . Let K be a nonempty closed subset in H. Then ξ ∈ NP
K (u) if and only if there

exists a constant α = α(ξ ,u) >  such that the following proximal normal inequality holds:

〈ξ , v – u〉 ≤ α‖v – u‖ for all v ∈ K .

Definition . Let X be a real Banach space and f : X → R be Lipschitz with constant
τ near a given point x ∈ X; that is, for some ε > , we have |f (y) – f (z)| ≤ τ‖y – z‖ for all
y, z ∈ B(x; ε), where B(x; ε) denotes the open ball of radius ε >  and centered at x. The
generalized directional derivative of f at x in the direction v, denoted as f ◦(x; v), is defined
as follows:

f ◦(x; v) = lim sup
y→x,t↓

f (y + tv) – f (y)
t

,

where y is a vector in X and t is a positive scalar.

The generalized directional derivative defined earlier can be used to develop a notion of
tangency that does not require K to be smooth or convex.

Definition . The tangent cone TK (x) to K at a point x in K is defined as follows:

TK (x) :=
{
v ∈H : d◦

K (x; v) = 
}
.

Having defined a tangent cone, the likely candidate for the normal cone is the one ob-
tained from TK (x) by polarity. Accordingly, we define the normal cone ofK at x by polarity
with TK (x) as follows:

NK (x) :=
{
ξ : 〈ξ , v〉 ≤ ,∀v ∈ TK (x)

}
.

In , Clarke et al. [] introduced and studied a new class of nonconvex sets, called
proximally smooth sets; subsequently, Poliquin et al. in [] investigated the aforemen-
tioned sets under the name of uniformly prox-regular sets. These have been successfully
used in many nonconvex applications in areas such as optimization, economic models,
dynamical systems, differential inclusions, etc. For such applications, see [–, ]. This
class seems particularly well suited to overcome the difficulties which arise due to the non-
convexity assumptions on K . We take the following characterization proved in [] as a
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definition of this class. We point out that the original definition was given in terms of the
differentiability of the distance function, see [].

Definition . For any r ∈ (, +∞], a subset Kr ofH is called normalized uniformly prox-
regular (or uniformly r-prox-regular []) if every nonzero proximal normal to Kr can be
realized by an r-ball. This means that for all x̄ ∈ Kr and all  �= ξ ∈NP

Kr (x̄),

〈
ξ

‖ξ‖ ,x – x̄
〉
≤ 

r
‖x – x̄‖, ∀x ∈ Kr .

Obviously, the class of normalized uniformly prox-regular sets is sufficiently large to
include the class of convex sets, p-convex sets,C, submanifolds (possibly with boundary)
of H, the images under a C, diffeomorphism of convex sets and many other nonconvex
sets, see [, ].

Lemma. [] A closed set K ⊆H is convex if and only if it is proximally smooth of radius
r for every r > .

If r = +∞, then in view of Definition . and Lemma ., the uniform r-prox-regularity
of Kr is equivalent to the convexity of Kr , which makes this class of great importance. For
the case of r = +∞, we set Kr = K .
The following proposition summarizes some important consequences of the uniform

prox-regularity needed in the sequel. The proof of this result can be found in [, ].

Proposition . Let r >  and Kr be a nonempty closed and uniformly r-prox-regular sub-
set ofH. Set U(r) = {u ∈H : dKr (u) < r}. Then the following statements hold:
(a) For all x ∈U(r), PKr (x) �= ∅;
(b) For all r′ ∈ (, r), PKr is Lipschitz continuous with constant r

r–r′ on
U(r′) = {u ∈H : dKr (u) < r′}.

In order tomake clear the concept of r-prox-regular sets, we state the following concrete
example: The union of two disjoint intervals [a,b] and [c,d] is r-prox-regular with r = c–b

 ,
see [, , ]. The finite union of disjoint intervals is also r-prox-regular and r depends
on the distances between the intervals.

3 Remarks on nonconvex variational inequalities
Let Kr be a uniformly r-prox-regular subset of H. For a given nonlinear single-valued
operator T : H → H, Noor [, ] introduced and considered the problem of finding
u ∈ Kr such that

〈Tu, v – u〉 ≥ , ∀v ∈ Kr . ()

Meanwhile, by using Lemma ., he asserted that problem () is equivalent to that of find-
ing u ∈ Kr such that

 ∈ Tu +NP
Kr (u), ()

where NP
Kr (s) denotes the P-normal cone to Kr at s in the sense of nonconvex analysis.

However, this claim is not true in general.
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Remark . Every solution of problem () is a solution of problem (), but the converse
is not necessarily true.

Proof Let u∗ ∈ Kr be a solution of problem (). Then we have

〈
Tu∗, v – u∗〉 ≥ , ∀v ∈ Kr . ()

Inequality () implies that for all α > ,

〈
Tu∗, v – u∗〉 + α

∥∥v – u∗∥∥ ≥ , ∀v ∈ Kr . ()

By using () and Lemma ., it follows that

–Tu∗ ∈ NP
Kr

(
u∗),

which leads to

 ∈ Tu∗ +NP
Kr

(
u∗). ()

The converse of the above statement does not hold in general. Indeed, suppose that in-
clusion () holds for some u∗ ∈ Kr . Then, Lemma . implies that inequality () holds for
some α > . However, by using inequality (), we cannot deduce inequality (). �

The following example illustrates that problem () does not imply problem ().

Example . Let H = R and Kr = [,β] ∪ [γ , δ] be the union of two disjoint intervals
[,β] and [γ , δ], where  < β < γ < δ. Then Kr is an r-prox-regular set with r = γ–β

 . Define
T :H →H by

Tx = θekx for all x ∈H,

where k ∈ R and θ <  are arbitrary but fixed. Take u∗ = β and let α ≥ – θekβ
γ–β

be arbitrary
and fixed. Then, we have

〈
Tu∗, v – u∗〉 + α

∥∥v – u∗∥∥ = θekβ (v – β) + α(v – β)

= (v – β)
(
α(v – β) + θekβ

)
, ∀v ∈ Kr . ()

If v ∈ [,β], then –β ≤ v – β ≤  and

–αβ + θekβ ≤ α(v – β) + θekβ ≤ θekβ .

For v ∈ [γ , δ], we have γ – β ≤ v – β ≤ δ – β and

α(γ – β) + θekβ ≤ α(v – β) + θekβ ≤ α(δ – β) + θekβ .

The above facts guarantee that

(v – β)
(
α(v – β) + θekβ

) ≥ , ∀v ∈ Kr . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/531
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Now, () and () imply that

〈
Tu∗, v – u∗〉 + α

∥∥v – u∗∥∥ ≥ , ∀v ∈ Kr .

However, it is obvious that θekβ (v – β) <  for all v ∈ [γ , δ], that is,

〈
Tu∗, v – u∗〉 <  for all v ∈ [γ , δ].

Hence, the inequality

〈
Tu∗, v – u∗〉 ≥ 

cannot hold for all v ∈ Kr .

In Section  of [, ], the author claimed that problem () is equivalent to a fixed point
problem.

Lemma . ([, ], Lemma .) u ∈ Kr is a solution of nonconvex variational inequality
(), if and only if u ∈ Kr satisfies the relation

u = PKr [u – ρTu], ()

where ρ >  is a constant and PKr is the projection ofH onto the uniformly r-prox-regular
set Kr .

Remark . By a careful reading, we found that there are two fatal errors in the proof
of Lemma .. Firstly, in view of Proposition ., it should be pointed out that for any
r′ ∈ (, r), the projection of points in U(r′) = {u ∈ H : dKr (u) < r′} onto the set Kr exists
and is unique, that is, for any x ∈U(r′), the set PKr (x) is nonempty and singleton. Equation
() and Proposition . imply that the point u – ρT(u) should belong to U(r′) for some
r′ ∈ (, r). Unfortunately, it is not necessarily true. Indeed, equation () is not necessarily
well defined. If u ∈ Kr and ρ < r′

+‖Tu‖ , for some r′ ∈ (, r), then we have

dKr (u – ρTu) = inf
v∈Kr

‖u – ρTu – v‖

≤ ‖u – ρTu – u‖
= ρ‖Tu‖

<
r′‖Tu‖
 + ‖Tu‖ < r′.

Therefore, u–ρTu ∈U(r′), that is, the set PKr (u–ρTu) is nonempty and singleton. Hence,
in the statement of Lemma ., the constant ρ should be satisfied ρ < r′

+‖Tu‖ for some r′ ∈
(, r). Secondly, we note that the author [, ] used the nonconvex variational inclusion
() as an equivalence formulation of the nonconvex variational inequality (). However,
in view of Remark . and Example ., the two problems () and () are not necessarily
equivalent.
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Let the operator T be the same as in problem (). Related to problem (), Noor []
considered the problem of finding z ∈H such that

TPKr z + ρ–QKrz = , ()

where ρ >  is a constant, QKr = I –PKr and I is the identity operator. Problem () is called
the nonconvex Winer-Hopf equation (NWHE).
Noor [] claimed that problem () is equivalent to problem ().

Lemma. ([], Lemma .) The nonconvex variational inequality () has a solution u ∈
Kr if and only if the nonconvex Wiener-Hopf equation () has a solution z ∈H, satisfying

u = PKrz, z = u – ρTu, ()

where ρ >  is a constant.

By a careful reading, we discovered that Lemma . is the main tool to establish the
statement of Lemma .. As it is shown, the statement of Lemma . is not necessarily
true. Consequently, the statement of Lemma . is not necessarily true.
Since Lemmas . and . are the main tools to suggest algorithms and to obtain the

results in [] and [], in view of the above remarks, the results in [, ] and the papers
where the same technique and method are used, are not valid.

4 Projectionmethods and convergence analysis
Instead of the nonconvex variational inequality (), in this section, for a given nonlinear
operator T :H →H, we consider the problem of finding u ∈ Kr such that

〈Tu, v – u〉 + ‖Tu‖
r

‖v – u‖ ≥ , ∀v ∈ Kr . ()

Problem () is called the regularized nonconvex variational inequality (RNVI). We prove
the equivalence between RNVI () and problem () as well as fixed point problem ().
If r =∞, that is, Kr = K , the convex set inH, then problem () collapses to the problem

of finding u ∈ K such that

〈Tu, v – u〉 ≥ , ∀v ∈ K . ()

An inequality of type () is called the variational inequality, which was introduced and
studied by Stampacchia [] in .
In the next proposition, the equivalence between nonconvex variational inclusion ()

and regularized nonconvex variational inequality () is established.

Proposition . If Kr is a uniformly prox-regular set, then problem () is equivalent to
problem ().

Proof Let u ∈ Kr be a solution of problem (). If Tu = , because the vector zero always
belongs to any normal cone, we have  ∈ Tu+NP

Kr (u). If Tu �= , then for all v ∈ Kr , one has

〈–Tu, v – u〉 ≤ ‖Tu‖
r

‖v – u‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/531
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Now, Lemma . implies that –Tu ∈ NP
Kr (u), and so

 ∈ Tu +NP
Kr (u).

Conversely, if u ∈ Kr is a solution of problem (), thenDefinition . guarantees that u ∈ Kr

is a solution of problem (). �

Problem () is called the nonconvex variational inclusion associated with RNVI ().
Now, by using the projection operator technique, we establish the equivalence between
problem () and fixed point problem ().

Lemma . Let T be the same as in problem (). Then u ∈ Kr is a solution of problem ()
if and only if u satisfies equation (), provided that ρ < r′

+‖Tu‖ for some r′ ∈ (, r).

Proof Let u ∈ Kr be a solution of problem (). Since ρ < r′
+‖Tu‖ , it follows that equation

() is well defined. Then, by using Proposition ., we have

 ∈ Tu +NP
Kr (u) ⇐⇒ u – ρTu ∈ u + ρNP

Kr (u)

⇐⇒ u – ρTu ∈ (
I + ρNP

Kr

)
(u)

⇐⇒ u = PKr [u – ρTu],

where I is the identity operator and we have used the well-known fact that PKr = (I +
ρNP

Kr )
–. �

Definition . An operator T :H →H is said to be:
(a) monotone if and only if

〈Tu – Tv,u – v〉 ≥ , ∀u, v ∈H;

(b) κ-strongly monotone if and only if there exists a constant κ >  such that

〈Tu – Tv,u – v〉 ≥ κ‖u – v‖, ∀u, v ∈H;

(c) γ -Lipschitz continuous if and only if there exists a constant γ >  such that

‖Tu – Tv‖ ≤ γ ‖u – v‖, ∀u, v ∈H.

In the next theorem, the existence and uniqueness of a solution for problem () are
discussed.

Theorem . Let the operator T be the same as in problem () such that T is α-strongly
monotone and β-Lipschitz continuous. If there exists a constant ρ >  satisfying the follow-
ing conditions:

ρ <
r′

 + ‖Tu‖ for some r′ ∈ (, r) and for all u ∈H ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/531
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and
∣∣∣∣ρ –

α

β

∣∣∣∣ <
√

δα – β(δ – )
δβ , δα > β

√
δ – , ()

where δ = r
r–r′ , then problem () admits a unique solution.

Proof Define F : Kr → Kr by

F(u) = PKr [u – ρTu], ∀u ∈ Kr . ()

By using condition (), we can easily check that the mapping F is well defined. We es-
tablish that F is a contraction mapping. For this end, let u, v ∈ Kr be given. From () and
Proposition ., it follows that

∥∥F(u) – F(v)
∥∥ =

∥∥PKr [u – ρTu] – PKr [v – ρTv]
∥∥

≤ δ
∥∥u – v – ρ(Tu – Tv)

∥∥, ()

where δ = r
r–r′ . Since the operator T is α-strongly monotone and β-Lipschitz continuous,

we get

∥∥u – v – ρ(Tu – Tv)
∥∥ = ‖u – v‖ – ρ〈Tu – Tv,u – v〉 + ρ‖Tu – Tv‖

≤ (
 – ρα + ρβ)‖u – v‖,

which leads to

∥∥u – v – ρ(Tu – Tv)
∥∥ ≤ √

 – ρα + ρβ‖u – v‖. ()

Applying () and (), we have

∥∥F(u) – F(v)
∥∥ ≤ θ‖u – v‖, ()

where

θ = δ
√
 – ρα + ρβ. ()

Condition () implies that θ < . From inequality (), we infer that F is a contraction
mapping. According to the Banach fixed point theorem, there exists a unique point u∗ ∈
Kr such that F(u∗) = u∗. It follows from () that u∗ = PKr [u∗ – ρTu∗]. Now, Lemma .
guarantees that u∗ ∈ Kr is a solution of problem (). This completes the proof. �

Noor [] proposed the Mann iteration process for solving problem () as follows.

Algorithm. ([], Algorithm.) For a given u ∈H, find an approximate solution un+
by the iterative scheme

un+ = ( – αn)un + αnPKr [un – ρTun], n = , , , . . . ,

where αn ∈ [, ] for all n≥ .
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Noor [] suggested the following two-step and three-step iterative methods for solving
problem ().

Algorithm . ([], Algorithm .) For a given u ∈ Kr , find an approximate solution
un+ by the iterative schemes

yn = ( – βn)un + βnPKr [un – ρTun],

un+ = ( – αn)un + αnPKr [yn – ρTyn], n = , , , . . . ,

where αn,βn ∈ [, ], for all n≥ .

Algorithm . ([], Algorithm .) For a given u ∈ H, find an approximate solution
un+ by the iterative schemes

yn = ( – γn)un + γnPKr [un – ρTun],

wn = ( – βn)un + βnPKr [yn – ρTyn],

un+ = ( – αn)un + αnPKr [wn – ρTwn], n = , , , . . . ,

where αn,βn,γn ∈ [, ], for all n≥ .

Remark . It should be pointed out that in the context of Algorithms . and . from
[], there are minor mistakes. In fact, in iterative processes (.) and (.) from Algo-
rithm . in [], xn must be replaced by un, as we have done in Algorithm ..Meanwhile,
in the context of Algorithm . from [], un ∈Hmust be replaced by u ∈H, as we have
done in Algorithm ..

By a careful reading, we found that Algorithms .-. do not work. Indeed, in a way
similar to the argument of Remark ., the points un – ρTun, yn – ρTyn and wn – ρTwn

(n≥ ) do not belong necessarily to U(r′).
By utilizing Lemma., we suggest and analyze the following explicit projection iterative

methods for solving problem ().

Algorithm . Let T be the same as in problem () and suppose further that ρ >  is a
constant satisfying condition (). For an arbitrarily chosen initial point u ∈ Kr , compute
the iterative sequence {un} in Kr in the following way:

un+ = PKr [un – ρTun], n = , , , . . . . ()

Algorithm . Let T be the same as in problem (), and let ρ >  be a constant satis-
fying condition (). For an arbitrarily chosen initial point u ∈ Kr , compute the iterative
sequence {un} in Kr in the following way:

yn = PKr [un – ρTun],

un+ = PKr [yn – ρTyn], n = , , , . . . .
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Algorithm . Let T be the same as in problem (), and let ρ >  be a constant satis-
fying condition (). For an arbitrarily chosen initial point u ∈ Kr , compute the iterative
sequence {un} in Kr in the following way:

yn = PKr [un – ρTun],

wn = PKr [yn – ρTyn],

un+ = PKr [wn – ρTwn], n = , , , . . . .

We now study the convergence analysis of Algorithm. and this is themainmotivation
of our next result.

Theorem . Let the operator T be the same as in Theorem ., and let all the conditions
of Theorem . hold.Then the iterative sequence {un} generated by Algorithm . converges
strongly to the unique solution of problem ().

Proof Theorem . guarantees the existence of a unique solution u ∈ Kr for problem ().
Hence, Lemma . implies that u = PKr [u– ρTu]. Then, by using () and Proposition .,
we have

‖un+ – u‖ = ∥∥PKr [un – ρTun] – PKr [u – ρTu]
∥∥

≤ δ
∥∥un – u – ρ(Tun – Tu)

∥∥
≤ θ‖un – u‖ ≤ θ‖un– – u‖ ≤ · · · ≤ θn+‖u – u‖, ()

where θ is the same as in (). Since θ < , it follows that the right-hand side of the above
inequality tends to zero as n→ ∞, whence we deduce that un → u as n→ ∞. This com-
pletes the proof. �

In a similar way to the proof of Theorem ., one can prove the strong convergence of
the iterative sequence {un} generated by Algorithms . and ..

5 Wiener-Hopf equations technique
In this section, by utilizing Lemma . and the projection method, the equivalence be-
tween NWHE () and RNVI () is established. By using the obtained equivalence formu-
lation, some iterative algorithms for solving RNVI () are suggested and analyzed. The
convergence analysis of the proposed iterative algorithms under some certain conditions
is studied.
Let the operator T be the same as in problem (). Related to problem (), we consider

the problem of finding z ∈ H satisfying ().
If r =∞, then problem () is equivalent to finding z ∈H such that

TPKz + ρ–QKz = , ()

where QK = I – PK . Equation () is the original Wiener-Hopf equation mainly due to Shi
[].
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Remark . It was shown that the Wiener-Hopf equations had played an important and
significant role in developing several numerical techniques for solving variational inequal-
ities and related optimizations problems (see, for example, [, , ] and the references
therein).

In the next lemma, the equivalence between RNVI () and NWHE () is proved.

Lemma . Let T be the same as in problem (). Then u ∈ Kr is a solution of RNVI ()
if and only if NWHE () has a solution z ∈ H satisfying (), provided that ρ < r′

+‖Tu‖ for
some r′ ∈ (, r).

Proof Let u ∈ Kr be a solution of problem (). Since ρ < r′
+‖Tu‖ for some r′ ∈ (, r), it

follows from Lemma . that

u = PKr [u – ρTu]. ()

Taking z = u – ρTu in (), we have

u = PKrz. ()

By using () and the fact that z = u – ρTu, we have

z = PKrz – ρTPKrz.

Obviously, the above equation is equivalent to

TPKr z + ρ–QKrz = ,

where QKr = I – PKr , that is, z ∈H is a solution of NWHE ().
Conversely, if z ∈H is a solution of NWHE (), satisfying

u = PKrz, z = u – ρTu,

then Lemma . implies that u ∈ Kr is a solution of RNVI (). This completes the proof.
�

Noor [] used the equivalence formulation between the two problems () and () and
suggested the following iterative methods for solving problem ().

Algorithm . ([], Algorithm .) For a given z ∈ H, compute zn+ by the iterative
schemes

un = PKrzn, ()

zn+ = ( – αn)zn + αn(un – ρTun), n = , , , . . . , ()

where  ≤ αn ≤ , for all n≥  and
∑∞

n= αn =∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/531


Balooee and Kim Journal of Inequalities and Applications 2013, 2013:531 Page 13 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/531

Algorithm . ([], Algorithm .) For a given z ∈ H, compute zn+ by the iterative
schemes

un = PKrzn,

zn+ = ( – αn)zn + αn
(
un – Tun +

(
 – ρ–)QKrzn

)
, n = , , , . . . ,

where  ≤ αn ≤ , for all n≥  and
∑∞

n= αn =∞.

Algorithm . ([], Algorithm .) For a given z ∈ H, compute zn+ by the iterative
scheme

zn+ = ( – αn)zn + αn
(
I – ρ–T–)QKrzn, n = , , , . . . ,

where  ≤ αn ≤ , for all n≥  and
∑∞

n= αn =∞.

Remark . As it is pointed out, the two problems () and () are not necessarily equiva-
lent. Hence, the equivalence between problems () and () cannot be used for suggesting
Algorithms .-. to approximate the solution of problem (). Even without considering
the mentioned fact, we note that Algorithms .-. do not work. Indeed, in a way similar
to the argument of Remark ., iterative scheme () is well defined provided that for each
n ≥ , the point zn belongs to U(r′) for some r′ ∈ (, r). Accordingly, z must be taken in
U(r′) for some r′ ∈ (, r). However, for a given z ∈ U(r′), iterative scheme () does not
guarantee that zn ∈U(r′) for each n > , because U(r′) is not necessarily convex.

The following example illustrates that for any given uniformly r-prox-regular set Kr in
H and r′ ∈ (, r), the set U(r′) inH is not necessarily convex.

Example . Let H and Kr be the same as in Example .. As has been mentioned in
Example ., Kr is an r-prox-regular set with r = γ–β

 . Let r′ ∈ (, r) be arbitrary but fixed.
Then we have

U
(
r′
)
=

{
u ∈H : dKr (u) < r′

}
=

(
–r′,β + r′

) ∪ (
γ – r′, δ + r′

)
,

which is clearly nonconvex.

By using NWHE () and Lemma ., we get a fixed point formulation to construct a new
projection iterative algorithm for solving RNVI ().
By using () and (), we have

TPKr z + ρ–QKrz =  ⇐⇒ QKrz = –ρTPKrz

⇐⇒ z = PKrz – ρTPKrz

⇐⇒ z = u – ρTu.

This fixed point formulation enables us to construct the following iterative algorithm
for solving RNVI ().
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Algorithm . Let the operator T be the same as in RNVI () and assume further that
ρ >  is a constant satisfying condition () for some r′ ∈ (, r). For a given z ∈ U(r′),
compute the iterative sequence {zn} in U(r′) in the following way:

⎧⎨
⎩
un = PKrzn,

zn+ = un – ρTun, n = , , , . . . .
()

We now apply Lemma . and study the convergence analysis of Algorithm ..

Theorem . Let the operator T be the same as in Theorem . and suppose that all the
conditions of Theorem. hold.Assume further that ρ >  is a constant satisfying conditions
() and (). Then there exists z ∈ H such that z is a solution of problem () and the
sequence {zn} generated by Algorithm . converges strongly to z.

Proof Theorem . guarantees that RNVI () admits a unique solution u ∈ Kr . Hence
Lemma . implies the existence of a unique point z ∈ U(r′) satisfying (). By using (),
() and the assumptions, we have

‖zn+ – z‖ ≤ ∥∥un – u – ρ(Tun – Tu)
∥∥

≤ √
 – ρα + ρβ‖un – u‖. ()

From () and () and Proposition ., it follows that

‖un – u‖ = ‖PKrzn – PKr z‖ ≤ δ‖zn – z‖, ()

where δ is the same as in (). Substituting () in (), we have

‖zn+ – z‖ ≤ θ‖zn – z‖, ()

where θ is the same as in (). Applying (), we deduce that

‖zn+ – z‖ ≤ θ‖zn – z‖ ≤ θ‖zn– – z‖ ≤ · · · ≤ θn+‖z – z‖.

Condition () implies that θ < . Since θ ∈ (, ), it follows that the right-hand side of the
above inequality tends to zero as n→ ∞, which implies that the sequence {zn} generated
by Algorithm . converges strongly to z. This completes the proof. �

6 Concluding remarks
In this paper, we have investigated and analyzed the nonconvex variational inequality (.)
from [, ] and the Wiener-Hopf equation (.) from []. We have proved that the
problem (.) from [, ] is not equivalent to the fixed point problem (.) from [, ]
and theWiener-Hopf equation (.) from []. That is, Lemma . in [, ] is incorrect.
Lemma . in [, ] is the main key to suggest the Mann iteration processes in [, ]
and to establish the strong convergence of the iterative sequences generated by the pro-
posed algorithms in [, ]. Since Lemma . in [, ] is not valid, the algorithms and
results in [, ] are also not valid. Indeed, we have pointed out that unlike the claim of
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the author in [, ], the existence and uniqueness of a solution for nonconvex variational
inequality () ((.) in [, ]) up to now have not been established and still remain an
open problem. We have also pointed out that the Mann iteration processes proposed by
the author in [, ] for solving problem () do not work. To overcome these problems
in [, ], we have introduced and considered the regularized nonconvex variational in-
equality (RNVI) () and the nonconvexWiener-Hopf equation (NWHE) (). By using the
projection operator technique, we have verified the equivalence between RNVI () and
the fixed point problem () as well as NWHE (). By using the obtained equivalences, we
have proved the existence of a unique solution for RNVI () and suggested and analyzed
some explicit projection iterativemethods for solving RNVI (). The convergence analysis
of the proposed iterative schemes under some suitable conditions has also been studied.
But the two following questions have not been replied and still remain open problems:
() Can the existence of a solution for nonconvex variational inequality () be proved?
() Can the Mann iteration process for solving nonconvex variational inequality () be

presented?
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