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1 Introduction and preliminaries
Let K be a nonempty subset of a Hilbert space H and T : K — K be a mapping.
The mapping T is called Lipschitzian if there exists L > 0 such that

ITx - Tyl <Llx-yl, VayeK.

If L =1, then T is called nonexpansive and if 0 < L <1, then T is called contractive.

The mapping 7 : K — K is said to be pseudocontractive (see, for example, [1, 2]) if
2
1T = TyI* < lle—yI* + [ = T)x = (U= Ty, Vayek,
and it is said to be strongly pseudocontractive if there exists k € (0,1) such that

1T — Ty|* < llx—ylI* + k|| (I = T)x = (1 - T)y]",

Vx,y € K.

Let F(T) := {x € H : Tx = x}, and the mapping T : K — K is called hemicontractive if
F(T) # ¥ and

|7 — | < e —2*||” + Il - T=?, Vx € K,x* € F(T).

It is easy to see that the class of pseudocontractive mappings with fixed points is a subclass
of the class of hemicontractions. For the importance of fixed points of pseudocontractions,
the reader may consult [1].

In 1974, Ishikawa [3] proved the following result.
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Theorem 1.1 Let K be a compact convex subset of a Hilbert space H, and let T : K — K
be a Lipschitzian pseudocontractive mapping. For arbitrary x, € K, let {x,} be a sequence
defined iteratively by

Xn+l = (1 - O5;/1)35;1 +a, Tym

Yn= 1= B)xy + BuTxy, n=>1,

where {a,} and {B,} are sequences satisfying
B 0<a,<B. =<1
(i) limy— 0 By = 0;
(iii) Zzil o,fB, = 00.
Then the sequence {x,} converges strongly to a fixed point of T .

Another iteration scheme has been studied extensively in connection with fixed points
of pseudocontractive mappings.

In 2007, Agarwal et al. [4] introduced the new iterative scheme as in the following.

The sequence {x,} defined by, for arbitrary x; € K,

Xntl = (1 - an)Txn + oy Tym

Yn= 1= B)xy + BuTx,, n=>1,

where {o,} and {8, } are sequences in [0, 1], is known as the Agarwal et al. iterative scheme.
In this paper, we establish the strong convergence for the Agarwal et al. iterative scheme
associated with Lipschitzian hemicontractive mappings in Hilbert spaces.

2 Main results
We need the following lemma.

Lemma 2.1 [5] Forallx,y € H and X € [0,1], we have
2
@ =2)x+ 2| = @ =) lel® + Allyl* = A0 = 2) e =y
Now we prove our main results.

Theorem 2.2 Let K be a compact convex subset of a real Hilbert space H, and let T : K —
K be a Lipschitzian hemicontractive mapping satisfying

loe— Tyl <1 Tx-Tyll, VxyeKk. (©)

Let {a,} and {B,} be sequences in [0,1] satisfying
(i) lim, oo Bn =0;
(i) Y 2 0By = 00;
(iv) lim,_ oo, =1.
For arbitrary x, € K, let {x,} be a sequence iteratively defined by

X1 = (1 —0ty) T, + pTyy,

Yn = (1 - ,Bn)xn +BuTxy, n>1.

Then the sequence {x,} converges strongly to the fixed point x* of T.
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Proof From Schauder’s fixed point theorem, F(T') is nonempty since K is a convex com-
pact set and T is continuous, let x* € F(T).
By using condition (C), we have

lle = Txll < llx = Tyll + I Tx - Tyl

<2[|Tx - Tyll. (2.2)
Using the fact that T is hemicontractive, we obtain
| Ten = ||* < [o0n =% |* + 120 — Tl (2.3)
and
| T3 =2 |* < ||y = 2| + llyn = Tyl (2.4)
With the help of (2.1), (2.3) and Lemma 2.1, we obtain

lym =2 |* = | (L= B + BTt — 5|
=@ = Ba) (xn — %) + Bu(Tx, — x¥)
= (L= Bo) |0 =% | + B 2w — x*|)?
= Ba(L = B)ll%n = Tu)?
< (=B n = |* + B[00 = 2% + 120 = Tal?)
= Bul = Bu) 1% — T ?

= [Jom = %)+ B2 — Tl (2.5)

I

and

1y = Tall? = | (= Bt + BuTn — Ty
= ”(1 = B (% = Tyu) + Bu(Txy, — Tyn)||2
= (1= B % = Tyull® + Bull T — Tyll®

- /5,,(1 - lsn)”xn - Txn”2~ (2.6)
Substituting (2.5) and (2.6) in (2.4), we obtain

10— > < [0 —*|* + (1 = B2 — Tll?

+ Bl T = Tyl = Bu(l = 28,) 1% — Txull>. (2.7)
Also, with the help of conditions (2.2) and (2.7), we have

o

= || (1 —0,) Ty + 00, Ty — X* ||2
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= @ = @) (Tt — &%) + Ty - 27) |
= (L= o) | T — & |* + 0| Ty — 27|
— 0ty (1= )| T — Ty
< (1= at) (|| =2 |* + 120 = T 12) + (200 — 2|
+ (U= Bl = Tyull® + Bull Tow — Tyu)*
= Bu(1=2B,) %, — T, %)
= ot =) + (U= ) 36 = Tl + 0t Bl Tt — Tyl
= @ Bu(1=2B,) 10 — Tt * + @u (1 = B) %0 — Tyl
<t =27 + (40~ @) + 0B + (L= B)) | Tt — Trall®
= @B (1= 28,) s — Teul|®

2
= ”xn —x ” + 00, Tx, — Tyn||2 = ouBu(1=2B,) %, — Txn”2x (2.8)

because by (iv), there exists 79 € N such that for all n > n,

1 Lo-t (2.9)
— a y .
"T0+3
where 0 > 1, which implies that
41 -ay) + @, By + o, (1= B,) < 0a,. (2.10)
Hence (2.8) yields
w12
—
2
= ”xn - ” + 90{,,L2||x,, _yn||2 —auBu(1 =28, %, - Txn||2
= [ =% |* + 00t B2L2 130 — Ttal® = 0Bl = 2B,) 1 — T
2
= [|on = ™| " = uBu (1= (2 + OL*) By) 1% — Tl (2.11)
Now, by (ii), since lim,,_, oo B8, = 0, there exists 1y € N such that for all #n > ny,
fu< - (212)
"= 2(2+06L2) ‘

With the help of (iii) and (2.12), (2.11) yields
|2 x| 2 1 2
n+l = = n— — ZWUnPull¥n — nll >
v =" = it ' = Sl ~ T

which implies that

2

’

1
Ean/gn”xn - Txn||2 =< ”xn -x* ”2 - Hxn+1 _x*
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so that
1 « 9 2 2
5 2l = Tyl* < o = 2" = oom 7|
j=N

The rest of the argument follows exactly as in the proof of theorem of [3]. This completes
the proof. O

Theorem 2.3 Let K be a compact convex subset of a real Hilbert space H; let T : K — K
be a Lipschitzian hemicontractive mapping satisfying condition (C). Let {a,} and {B,} be
sequence in [0,1] satisfying conditions (ii)-(iv).

Let Px : H — K be the projection operator of H onto K. Let {x,} be a sequence defined
iteratively by

Xn+l = PK((1 - an)Txn + anT_yn)’
Yn =Pr((1 - B)xn + BuTxy), n=>1.

Then the sequence{x,} converges strongly to a fixed point of T .

Proof The operator Py is nonexpansive (see, e.g., [2]). K is a Chebyshev subset of H so
that Pk is a single-valued mapping. Hence, we have

2
>k
a1 =]

”PK((l —a,)Tx, +a, Ty,,) — Pyx* ”2

IA

|| (1 - o) Ty + , Ty, — x* ||2

I

” a- an)(x,, —x*) + a,,,(Ty,, —x*)

%0 = %> = @Bl = (2 + OL%) B,) 1% — Tl

IA

The set K = K U T(K) is compact and so the sequence {||x, — Tx,]||} is bounded. The rest
of the argument follows exactly as in the proof of Theorem 2.2. This completes the proof.
O

Example 2.4 The choice for the control parameters is a,, = ;'3 and B, = %

Remark 2.5 (1) We remove the condition «, < 8, as introduced in [3].
(2) The condition (C) is not new and it is due to [6].
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