RESEARCH Open Access

Implicit iteration scheme for two phi-hemicontractive operators in arbitrary Banach spaces

Guiwen Lv1*, Arif Rafiq2 and Zhiqun Xue1

*Correspondence: lvguiwenyy@126.com ¹Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China Full list of author information is

available at the end of the article

Abstract

The purpose of this paper is to characterize conditions for the convergence of the implicit Ishikawa iterative scheme with errors in the sense of Agarwal *et al.* (J. Math. Anal. Appl. 272:435-447, 2002) to a common fixed point of two ϕ -hemicontractive mappings in a nonempty convex subset of an arbitrary Banach space.

MSC: Primary 47H09; 47J25

Keywords: implicit iterative scheme; ϕ -hemicontractive mappings; Banach spaces

1 Introduction and preliminaries

Let K be a nonempty subset of an arbitrary Banach space E and E^* be its dual space. The symbols T and F(T) stand for the self-map of K and the set of fixed points of T. We denote by J the normalized duality mapping from E to 2^{E^*} defined by

$$J(x) = \{ f^* \in E^* : \langle x, f^* \rangle = ||x||^2 = ||f^*||^2 \}.$$

Definition 1.1 [1–4] (i) T is said to be strongly pseudocontractive if there exists a constant t > 1 such that for each $x, y \in K$, there exists $j(x - y) \in J(x - y)$ satisfying

$$\langle Tx - Ty, j(x - y) \rangle \le \frac{1}{t} ||x - y||^2.$$

(ii) T is said to be strictly hemicontractive if $F(T) \neq \emptyset$ and if there exists a constant t > 1 such that for each $x \in K$ and $q \in F(T)$, there exists $j(x - q) \in J(x - q)$ satisfying

$$\langle Tx - Tq, j(x-q) \rangle \leq \frac{1}{t} ||x-q||^2.$$

(iii) T is said to be ϕ -strongly pseudocontractive if there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty)$ with $\phi(0)=0$ such that for each $x,y\in K$, there exists $j(x-y)\in J(x-y)$ satisfying

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2 - \phi(||x - y||).$$

(iv) T is said to be ϕ -hemicontractive if $F(T) \neq \emptyset$ and if there exists a strictly increasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(0) = 0$ such that for each $x \in K$ and $q \in F(T)$, there

exists $j(x-q) \in J(x-q)$ satisfying

$$\langle Tx - Tq, j(x - q) \rangle \le ||x - q||^2 - \phi(||x - q||).$$

Clearly, each strictly hemicontractive operator is ϕ -hemicontractive.

Chidume [1] established that the Mann iteration sequence converges strongly to the unique fixed point of T in the case that T is a Lipschitz strongly pseudo-contractive mapping from a bounded, closed, convex subset of L_p (or l_p) into itself. Afterwards, several authors have generalized this result of Chidume in various directions [4–12].

In 2001, Xu and Ori [13] introduced the following implicit iteration process for a finite family of nonexpansive mappings $\{T_i : i \in I\}$ (here $I = \{1, 2, ..., N\}$), with $\{\alpha_n\}$ a real sequence in (0,1), and an initial point $x_0 \in K$:

$$x_{1} = (1 - \alpha_{1})x_{0} + \alpha_{1}T_{1}x_{1},$$

$$x_{2} = (1 - \alpha_{2})x_{1} + \alpha_{2}T_{2}x_{2},$$

$$\vdots$$

$$x_{N} = (1 - \alpha_{N})x_{N-1} + \alpha_{N}T_{N}x_{N},$$

$$x_{N+1} = (1 - \alpha_{N+1})x_{N} + \alpha_{N+1}T_{N+1}x_{N+1},$$

$$\vdots$$

which can be written in the following compact form:

$$x_n = (1 - \alpha_n)x_{n-1} + \alpha_n T_n x_n \quad \text{for all } n \ge 1,$$
 (XO)

where $T_n = T_{n(\text{mod}N)}$ (here the mod N function takes values in I). Xu and Ori [13] proved that the process converges weakly to a common fixed point of a finite family in a Hilbert space. They remarked further that it is yet unclear what assumptions on the mappings and the parameters $\{\alpha_n\}$ are sufficient to guarantee the strong convergence of the sequence $\{x_n\}$.

In [14], Osilike proved the following results.

Theorem 1.2 [14, Theorem 2] Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $\{T_i : i \in I\}$ be N strictly pseudocontractive self-mappings of K with $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{\alpha_n\}_{n=1}^\infty$ be a real sequence satisfying the conditions:

(i)
$$0 < \alpha_n < 1$$
,

(ii)
$$\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty,$$

(iii)
$$\sum_{n=1}^{\infty} (1 - \alpha_n)^2 < \infty.$$

For arbitrary $x_0 \in K$, define the sequence $\{x_n\}$ by the implicit iteration process (XO). Then $\{x_n\}$ converges strongly to a common fixed point of the mappings $\{T_i : i \in I\}$ if and only if $\lim_{n\to\infty}\inf d(x_n,F)=0$.

It is well known that $\alpha_n = 1 - \frac{1}{n^{\frac{1}{2}}}$, $\sum (1 - \alpha_n)^2 = \infty$. Hence the results of Osilike [14] need to be improved.

The purpose of this paper is to characterize conditions for the convergence of the implicit Ishikawa iterative scheme with errors in the sense of Agarwal *et al.* [15] to a common fixed point of two ϕ -hemicontractive mappings in a nonempty convex subset of an arbitrary Banach space. Our studying results improve and generalize most results in recent literature [4, 5, 7–9, 12].

2 Main results

The following results are now well known.

Lemma 2.1 [16] For all $x, y \in E$ and $j(x + y) \in J(x + y)$,

$$||x + y||^2 \le ||x||^2 + \langle y, j(x + y) \rangle.$$

Lemma 2.2 [17] Let $\{\theta_n\}$ be a sequence of nonnegative real numbers, and let $\{\lambda_n\}$ be a real sequence satisfying

$$0 \le \lambda_n \le 1$$
, $\sum_{n=0}^{\infty} \lambda_n = \infty$.

Suppose that there exists a strictly increasing function $\phi:[0,\infty)\to[0,\infty)$ with $\phi(0)=0$. If there exists a positive integer n_0 such that

$$\theta_{n+1}^2 \le \theta_n^2 - \lambda_n \phi(\theta_{n+1}) + \sigma_n + \gamma_n$$

for all $n \ge n_0$, with $\sigma_n \ge 0$, $\forall n \in \mathbb{N}$, $\sigma_n = 0(\lambda_n)$ and $\sum_{n=0}^{\infty} \gamma_n < \infty$, then $\lim_{n \to \infty} \theta_n = 0$.

Now we prove our main results.

Theorem 2.3 Let K be a nonempty convex subset of an arbitrary Banach space E, and let $T,S:K\to K$ be two uniformly continuous with $F(T)\cap F(S)\neq\emptyset$ and ϕ -hemicontractive mappings. Suppose that $\{u_n\}_{n=1}^\infty$ and $\{v_n\}_{n=1}^\infty$ are bounded sequences in K and $\{a_n\}_{n=1}^\infty$, $\{b_n\}_{n=1}^\infty$, $\{c_n\}_{n=1}^\infty$, $\{b'_n\}_{n=1}^\infty$ and $\{c'_n\}_{n=1}^\infty$ are sequences in [0,1] satisfying conditions

- (i) $a_n + b_n + c_n = a'_n + b'_n + c'_n = 1$,
- (ii) $\lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n = \lim_{n\to\infty} b'_n = 0$,
- (iii) $\sum_{n=1}^{\infty} c'_n < \infty$, and
- (iv) $\sum_{n=1}^{\infty} b'_n = \infty$.

For any $x_0 \in K$, define the sequence $\{x_n\}_{n=1}^{\infty}$ inductively as follows:

$$y_n = a_n x_{n-1} + b_n S x_n + c_n u_n,$$

$$x_n = a'_n x_{n-1} + b'_n T y_n + c'_n v_n, \quad n \ge 1.$$
(2.1)

Then the following conditions are equivalent:

- (a) $\{x_n\}_{n=1}^{\infty}$ converges strongly to the common fixed point q of T and S,
- (b) $\lim_{n\to\infty} Ty_n = q$,
- (c) $\{Ty_n\}_{n=1}^{\infty}$ is bounded.

Proof Since T and S are ϕ -hemicontractive, then the common fixed point of $F(T) \cap F(S)$ is unique. Suppose that p and q are all common fixed points of T and S, then

$$||p-q||^2 = \langle p-q, j(p-q) \rangle = \langle Tp-Tq, j(p-q) \rangle \le ||p-q||^2 - \phi(||p-q||) < ||p-q||^2,$$

which is a contradiction. So, we denote the unique fixed point q.

Suppose that $\lim_{n\to\infty} x_n = q$. Then (ii) and the uniform continuity of T and S yield that

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} [a_n x_{n-1} + b_n S x_n + c_n u_n] = q,$$

which implies that $\lim_{n\to\infty} Ty_n = q$. Therefore $\{Ty_n\}_{n=1}^{\infty}$ is bounded.

Put

$$M_1 = \|x_0 - q\| + \sup_{n \ge 1} \|Ty_n - q\| + \sup_{n \ge 1} \|u_n - q\| + \sup_{n \ge 1} \|v_n - q\|.$$

Obviously, $M_1 < \infty$. It is clear that $||x_0 - p|| \le M_1$. Let $||x_{n-1} - p|| \le M_1$. Next we prove that $||x_n - p|| \le M_1$.

Consider

$$\begin{aligned} \|x_{n} - q\| &= \|a'_{n}x_{n-1} + b'_{n}Ty_{n} + c'_{n}v_{n} - q\| \\ &= \|a'_{n}(x_{n-1} - q) + b'_{n}(Ty_{n} - q) + c'_{n}(v_{n} - q)\| \\ &\leq (1 - b'_{n})\|x_{n-1} - q\| + b'_{n}\|Ty_{n} - q\| + c'_{n}\|v_{n} - q\| \\ &\leq (1 - b'_{n})M_{1} + b'_{n}\|Ty_{n} - q\| + c'_{n}\|v_{n} - q\| \\ &= (1 - b'_{n})\Big[\|x_{0} - q\| + \sup_{n \geq 1}\|Ty_{n} - q\| + \sup_{n \geq 1}\|u_{n} - q\| + \sup_{n \geq 1}\|v_{n} - q\|\Big] \\ &+ b'_{n}\|Ty_{n} - q\| + c'_{n}\|v_{n} - q\| \\ &\leq \|x_{0} - q\| + \Big((1 - b'_{n})\sup_{n \geq 1}\|Ty_{n} - q\| + b'_{n}\|Ty_{n} - q\|\Big) \\ &+ \sup_{n \geq 1}\|u_{n} - q\| + \Big((1 - b'_{n})\sup_{n \geq 1}\|Ty_{n} - q\| + b'_{n}\sup_{n \geq 1}\|Ty_{n} - q\|\Big) \\ &\leq \|x_{0} - q\| + \Big((1 - b'_{n})\sup_{n \geq 1}\|Ty_{n} - q\| + b'_{n}\sup_{n \geq 1}\|Ty_{n} - q\|\Big) \\ &+ \sup_{n \geq 1}\|u_{n} - q\| + \Big((1 - b'_{n})\sup_{n \geq 1}\|v_{n} - q\| + b'_{n}\sup_{n \geq 1}\|v_{n} - q\|\Big) \\ &= \|x_{0} - q\| + \sup_{n \geq 1}\|Ty_{n} - q\| + \sup_{n \geq 1}\|u_{n} - q\| + \sup_{n \geq 1}\|v_{n} - q\| \\ &= M_{1}. \end{aligned}$$

So, from the above discussion, we can conclude that the sequence $\{x_n-q\}_{n\geq 0}$ is bounded. Since S is uniformly continuous, so $\{\|Sx_n-q\|\}_{n=1}^{\infty}$ is also bounded. Thus there is a constant

 $M_2 > 0$ satisfying

$$M_{2} = \sup_{n \ge 1} \|x_{n} - q\| + \sup_{n \ge 1} \|Sx_{n} - q\| + \sup_{n \ge 1} \|Ty_{n} - q\| + \sup_{n \ge 1} \|u_{n} - q\| + \sup_{n \ge 1} \|v_{n} - q\|.$$
(2.2)

Denote $M = M_1 + M_2$. Obviously, $M < \infty$. Let $w_n = ||Ty_n - Tx_n||$ for each $n \ge 1$. The uniform continuity of T ensures that

$$\lim_{n \to \infty} w_n = 0. \tag{2.3}$$

Because

$$||y_{n} - x_{n}|| = ||b_{n}(Sx_{n} - x_{n-1}) + b'_{n}(x_{n-1} - Ty_{n}) + c_{n}(u_{n} - x_{n-1}) - c'_{n}(v_{n} - x_{n-1})||$$

$$\leq b_{n}||Sx_{n} - x_{n-1}|| + b'_{n}||x_{n-1} - Ty_{n}|| + c_{n}||u_{n} - x_{n-1}|| + c'_{n}||v_{n} - x_{n-1}||$$

$$\leq 2M_{2}(b_{n} + c_{n} + b'_{n} + c'_{n})$$

$$\to 0$$

as $n \to \infty$.

By virtue of Lemma 2.1 and (2.1), we infer that

$$||x_{n} - q||^{2} = ||a'_{n}x_{n-1} + b'_{n}Ty_{n} + c'_{n}v_{n} - q||^{2}$$

$$= ||a'_{n}(x_{n-1} - q) + b'_{n}(Ty_{n} - q) + c'_{n}(v_{n} - q)||^{2}$$

$$\leq (1 - b'_{n})^{2} ||x_{n-1} - q||^{2} + 2b'_{n}\langle Ty_{n} - q, j(x_{n} - q)\rangle$$

$$+ 2c'_{n}\langle v_{n} - q, j(x_{n} - q)\rangle$$

$$\leq (1 - b'_{n})^{2} ||x_{n-1} - q||^{2} + 2b'_{n}\langle Ty_{n} - Tx_{n}, j(x_{n} - q)\rangle$$

$$+ 2b'_{n}\langle Tx_{n} - q, j(x_{n} - q)\rangle + 2c'_{n}||v_{n} - q|||x_{n} - q||$$

$$\leq (1 - b'_{n})^{2} ||x_{n-1} - q||^{2} + 2b'_{n}||Ty_{n} - Tx_{n}|||x_{n} - q||$$

$$+ 2b'_{n}||x_{n} - q||^{2} - 2b'_{n}\phi(||x_{n} - q||) + 2M^{2}c'_{n}$$

$$\leq (1 - b'_{n})^{2} ||x_{n-1} - q||^{2} + 2Mb'_{n}w_{n} + 2b'_{n}||x_{n} - q||^{2}$$

$$- 2b'_{n}\phi(||x_{n} - q||) + 2M^{2}c'_{n}.$$
(2.4)

Consider

$$||x_{n} - q||^{2} = ||a'_{n}x_{n-1} + b'_{n}Ty_{n} + c'_{n}v_{n} - q||^{2}$$

$$= ||a'_{n}(x_{n-1} - q) + b'_{n}(Ty_{n} - q) + c'_{n}(v_{n} - q)||^{2}$$

$$\leq a'_{n}||x_{n-1} - q||^{2} + b'_{n}||Ty_{n} - q||^{2} + c'_{n}||v_{n} - q||^{2}$$

$$\leq ||x_{n-1} - q||^{2} + M^{2}(b'_{n} + c'_{n}), \qquad (2.5)$$

where the first inequality holds by the convexity of $\|\cdot\|^2$.

Substituting (2.5) in (2.4), we get

$$||x_{n} - q||^{2}$$

$$\leq \left[(1 - b'_{n})^{2} + 2b'_{n} \right] ||x_{n-1} - q||^{2} + 2Mb'_{n} (w_{n} + M(b'_{n} + c'_{n})) + 2M^{2}c'_{n}$$

$$- 2b'_{n}\phi (||x_{n} - q||)$$

$$= (1 + b'^{2}_{n}) ||x_{n-1} - q||^{2} + 2Mb'_{n} (w_{n} + M(b'_{n} + c'_{n})) + 2M^{2}c'_{n}$$

$$- 2b'_{n}\phi (||x_{n} - q||)$$

$$\leq ||x_{n-1} - q||^{2} + Mb'_{n} (3Mb'_{n} + 2w_{n} + 2Mb'_{n}) + 2M^{2}c'_{n}$$

$$- 2b'_{n}\phi (||x_{n} - q||)$$

$$= ||x_{n-1} - q||^{2} + b'_{n}l_{n} + 2M^{2}c'_{n} - 2b'_{n}\phi (||x_{n} - q||), \qquad (2.6)$$

where

$$l_n = M(3Mb'_n + 2w_n + 2Mb'_n) \to 0 (2.7)$$

as $n \to \infty$.

Denote

$$\theta_n = ||x_n - q||,$$

$$\lambda_n = 2b'_n,$$

$$\sigma_n = b'_n l_n,$$

$$\gamma_n = 2M^2 c'_n.$$

Condition (i) assures the existence of a rank $n_0 \in \mathbb{N}$ such that $\lambda_n = 2b'_n \le 1$ for all $n \ge n_0$. Now, with the help of conditions (ii), (iii), (2.3), (2.7) and Lemma 2.2, we obtain from (2.6) that

$$\lim_{n\to\infty}\|x_n-q\|=0,$$

completing the proof.

Using the method of proof in Theorem 2.3, we have the following result.

Corollary 2.4 Let E, K, T, S, $\{u_n\}_{n=1}^{\infty}$, $\{v_n\}_{n=1}^{\infty}$, $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be as in Theorem 2.3. Suppose that $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, $\{c_n\}_{n=1}^{\infty}$, $\{a_n'\}_{n=1}^{\infty}$, $\{b_n'\}_{n=1}^{\infty}$ and $\{c_n'\}_{n=1}^{\infty}$ are sequences in [0,1] satisfying conditions (i), (ii), (iv) and $c_n' = o(b_n')$. Then the conclusions of Theorem 2.3 hold.

Proof From the condition $c'_n = o(b'_n)$, set $c'_n = b'_n t_n$, where $\lim_{n \to \infty} t_n = 0$. Substituting (2.5) in (2.4), we get

$$||x_n - q||^2$$

$$\leq \left[\left(1 - b'_n \right)^2 + 2b'_n \right] ||x_{n-1} - q||^2 + 2Mb'_n (w_n + M(b'_n + c'_n + t_n))$$

$$-2b'_{n}\phi(\|x_{n}-q\|)\|x_{n}-q\|$$

$$= (1+b'_{n}^{2})\|x_{n-1}-q\|^{2} + 2Mb'_{n}(w_{n}+M(b'_{n}+c'_{n}+t_{n}))$$

$$-2b'_{n}\phi(\|x_{n}-q\|)$$

$$\leq \|x_{n-1}-q\|^{2} + Mb'_{n}(2w_{n}+M(3b'_{n}+2c'_{n}+2t_{n}))$$

$$-2b'_{n}\phi(\|x_{n}-q\|)$$

$$= \|x_{n-1}-q\|^{2} - 2b'_{n}\phi(\|x_{n}-q\|)\|x_{n}-q\| + b'_{n}l'_{n}, \qquad (2.8)$$

where

$$l'_n = M(2w_n + M(3b'_n + 2c'_n + 2t_n)) \to 0$$
(2.9)

as $n \to \infty$.

It follows from Lemma 2.2 that $\lim_{n\to\infty} ||x_n - q|| = 0$.

Corollary 2.5 Let K be a nonempty convex subset of an arbitrary Banach space E, and let $T: K \to K$ be a uniformly continuous and ϕ -hemicontractive mapping. Suppose that $\{u_n\}_{n=1}^{\infty}$ and $\{v_n\}_{n=1}^{\infty}$ are bounded sequences in K and $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, $\{c_n\}_{n=1}^{\infty}$, $\{a'_n\}_{n=1}^{\infty}$, $\{b'_n\}_{n=1}^{\infty}$ and $\{c'_n\}_{n=1}^{\infty}$ are sequences in [0,1] satisfying conditions

- (i) $a_n + b_n + c_n = a'_n + b'_n + c'_n = 1$,
- (ii) $\lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n = \lim_{n\to\infty} b'_n = 0$,
- (iii) $c'_n = o(b'_n)$, and
- (iv) $\sum_{n=1}^{\infty} b'_n = \infty.$

For any $x_0 \in K$, define the sequence $\{x_n\}_{n=1}^{\infty}$ inductively as follows:

$$y_n = a_n x_{n-1} + b_n T x_n + c_n u_n,$$

 $x_n = a'_n x_{n-1} + b'_n T y_n + c'_n v_n, \quad n \ge 1.$

Then the following conditions are equivalent:

- (a) $\{x_n\}_{n=1}^{\infty}$ converges strongly to the unique fixed point q of T,
- (b) $\lim_{n\to\infty} Ty_n = q$,
- (c) $\{Ty_n\}_{n=1}^{\infty}$ is bounded.

Corollary 2.6 Let $E, K, T, \{u_n\}_{n=1}^{\infty}, \{v_n\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty} \text{ and } \{y_n\}_{n=1}^{\infty} \text{ be as in Corollary 2.5. Suppose that } \{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}, \{c_n\}_{n=1}^{\infty}, \{a'_n\}_{n=1}^{\infty}, \{b'_n\}_{n=1}^{\infty} \text{ and } \{c'_n\}_{n=1}^{\infty} \text{ are sequences in } [0,1] \text{ satisfying conditions (i), (ii), (iv) and } \sum_{n=1}^{\infty} c'_n < \infty. \text{ Then the conclusions of Corollary 2.5 hold.}$

Corollary 2.7 Let K be a nonempty convex subset of an arbitrary Banach space E, and let $T,S:K \to K$ be two uniformly continuous and ϕ -hemicontractive mappings. Suppose that $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ are any sequences in [0,1] satisfying

- (i) $\lim_{n\to\infty} \beta_n = 0 = \lim_{n\to\infty} \alpha_n$,
- (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$.

For any $x_0 \in K$, define the sequence $\{x_n\}_{n=1}^{\infty}$ inductively as follows:

$$y_n = (1 - \beta_n)x_{n-1} + \beta_n S x_n,$$

 $x_n = (1 - \alpha_n)x_{n-1} + \alpha_n T y_n, \quad n \ge 1.$

Then the following conditions are equivalent:

- (a) $\{x_n\}_{n=1}^{\infty}$ converges strongly to the common fixed point q of T and S,
- (b) $\lim_{n\to\infty} Ty_n = q$,
- (c) $\{Ty_n\}_{n=1}^{\infty}$ is bounded.

Corollary 2.8 Let K be a nonempty convex subset of an arbitrary Banach space E, and let $T: K \to K$ be a uniformly continuous and ϕ -hemicontractive mapping. Suppose that $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ are any sequences in [0,1] satisfying

- (i) $\lim_{n\to\infty} \beta_n = 0 = \lim_{n\to\infty} \alpha_n$,
- (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$.

For any $x_0 \in K$, define the sequence $\{x_n\}_{n=1}^{\infty}$ inductively as follows:

$$y_n = (1 - \beta_n)x_{n-1} + \beta_n Tx_n,$$

$$x_n = (1 - \alpha_n)x_{n-1} + \alpha_n Ty_n, \quad n \ge 1.$$

Then the following conditions are equivalent:

- (a) $\{x_n\}_{n=1}^{\infty}$ converges strongly to the unique fixed point q of T,
- (b) $\lim_{n\to\infty} Ty_n = q$,
- (c) $\{Ty_n\}_{n=1}^{\infty}$ is bounded.

Corollary 2.9 Let K be a nonempty convex subset of an arbitrary Banach space E, and let $T: K \to K$ be a uniformly continuous and ϕ -hemicontractive mapping. Suppose that $\{\alpha_n\}_{n=1}^{\infty}$ is any sequence in [0,1] satisfying

- (i) $\lim_{n\to\infty} \alpha_n = 0$,
- (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$.

For any $x_0 \in K$, define the sequence $\{x_n\}_{n=1}^{\infty}$ inductively as follows:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T x_n, \quad n \ge 1.$$

Then the following conditions are equivalent:

- (a) $\{x_n\}_{n=1}^{\infty}$ converges strongly to the unique fixed point q of T,
- (b) $\lim_{n\to\infty} Tx_n = q$,
- (c) $\{Tx_n\}_{n=1}^{\infty}$ is bounded.

All of the above results are also valid for Lipschitz ϕ -hemicontractive mappings.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally in writing this paper, and read and approved the final manuscript.

Author details

¹Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China. ²Hajvery University, 43-52 Industrial Area, Gulberg-III, Lahore, Pakistan.

Acknowledgements

The authors are grateful to the reviewers for valuable suggestions which helped to improve the manuscript.

Received: 20 June 2013 Accepted: 10 September 2013 Published: 09 Nov 2013

References

- Chidume, CE: Iterative approximation of fixed point of Lipschitz strictly pseudocontractive mappings. Proc. Am. Math. Soc. 99, 283-288 (1987)
- 2. Ishikawa, S: Fixed point by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
- 3. Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 26, 506-510 (1953)
- Zhou, HY, Cho, YJ: Ishikawa and Mann iterative processes with errors for nonlinear φ-strongly quasi-accretive mappings in normed linear spaces. J. Korean Math. Soc. 36, 1061-1073 (1999)
- Ciric, LB, Ume, JS: Ishikawa iterative process for strongly pseudocontractive operators in Banach spaces. Math. Commun. 8, 43-48 (2003)
- Liu, LS: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces.
 J. Math. Anal. Appl. 194, 114-125 (1995)
- 7. Liu, LW: Approximation of fixed points of a strictly pseudocontractive mapping. Proc. Am. Math. Soc. 125, 1363-1366 (1997)
- Liu, Z, Kim, JK, Kang, SM: Necessary and sufficient conditions for convergence of Ishikawa iterative schemes with errors to φ-hemicontractive mappings. Commun. Korean Math. Soc. 18(2), 251-261 (2003)
- Liu, Z, Xu, Y, Kang, SM: Almost stable iteration schemes for local strongly pseudocontractive and local strongly
 accretive operators in real uniformly smooth Banach spaces. Acta Math. Univ. Comen. LXXVII(2), 285-298 (2008)
- 10. Tan, KK, Xu, HK: Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces. J. Math. Anal. Appl. 178, 9-21 (1993)
- Xu, YG: Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations. J. Math. Anal. Appl. 224, 91-101 (1998)
- Xue, ZQ: Iterative approximation of fixed point for φ-hemicontractive mapping without Lipschitz assumption. Int.
 J. Math. Math. Sci. 17, 2711-2718 (2005)
- 13. Xu, HK, Ori, R: An implicit iterative process for nonexpansive mappings. Numer. Funct. Anal. Optim. 22, 767-773 (2001)
- Osilike, MO: Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps.
 J. Math. Anal. Appl. 294(1), 73-81 (2004)
- Agarwal, RP, Cho, YJ, Li, J, Huang, NJ: Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces. J. Math. Anal. Appl. 272, 435-447 (2002)
- 16. Chang, SS, Cho, YJ, Kim, Jl: Some results for uniformly *L*-Lipschitzian mappings in Banach spaces. Appl. Math. Lett. **22**(1), 121-125 (2009)
- 17. Yang, LP: A note on a paper 'Convergence theorem for the common solution for a finite family of ϕ -strongly accretive operator equations'. Appl. Math. Comput. **218**, 10367-10369 (2012)

10.1186/1029-242X-2013-521

Cite this article as: Lv et al.: Implicit iteration scheme for two phi-hemicontractive operators in arbitrary Banach spaces. *Journal of Inequalities and Applications* 2013, 2013:521

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com